1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "mozilla/AbstractThread.h"
#include "mozilla/ClearOnShutdown.h"
#include "mozilla/DelayedRunnable.h"
#include "mozilla/MozPromise.h" // We initialize the MozPromise logging in this file.
#include "mozilla/ProfilerRunnable.h"
#include "mozilla/StateWatching.h" // We initialize the StateWatching logging in this file.
#include "mozilla/StaticPtr.h"
#include "mozilla/TaskDispatcher.h"
#include "mozilla/TaskQueue.h"
#include "nsContentUtils.h"
#include "nsIDirectTaskDispatcher.h"
#include "nsIThreadInternal.h"
#include "nsServiceManagerUtils.h"
#include "nsThreadManager.h"
#include "nsThreadUtils.h"
#include <memory>
namespace mozilla {
LazyLogModule gMozPromiseLog("MozPromise");
LazyLogModule gStateWatchingLog("StateWatching");
StaticRefPtr<AbstractThread> sMainThread;
MOZ_THREAD_LOCAL(AbstractThread*) AbstractThread::sCurrentThreadTLS;
class XPCOMThreadWrapper final : public AbstractThread,
public nsIThreadObserver,
public nsIDirectTaskDispatcher {
public:
XPCOMThreadWrapper(nsIThreadInternal* aThread, bool aRequireTailDispatch,
bool aOnThread)
: AbstractThread(aRequireTailDispatch),
mThread(aThread),
mDirectTaskDispatcher(do_QueryInterface(aThread)),
mOnThread(aOnThread) {
MOZ_DIAGNOSTIC_ASSERT(mThread && mDirectTaskDispatcher);
MOZ_DIAGNOSTIC_ASSERT(!aOnThread || IsCurrentThreadIn());
if (aOnThread) {
MOZ_ASSERT(!sCurrentThreadTLS.get(),
"There can only be a single XPCOMThreadWrapper available on a "
"thread");
// Set the default current thread so that GetCurrent() never returns
// nullptr.
sCurrentThreadTLS.set(this);
}
}
NS_DECL_THREADSAFE_ISUPPORTS
nsresult Dispatch(already_AddRefed<nsIRunnable> aRunnable,
DispatchReason aReason = NormalDispatch) override {
nsCOMPtr<nsIRunnable> r = aRunnable;
AbstractThread* currentThread;
if (aReason != TailDispatch && (currentThread = GetCurrent()) &&
RequiresTailDispatch(currentThread) &&
currentThread->IsTailDispatcherAvailable()) {
return currentThread->TailDispatcher().AddTask(this, r.forget());
}
// At a certain point during shutdown, we stop processing events from the
// main thread event queue (this happens long after all _other_ XPCOM
// threads have been shut down). However, various bits of subsequent
// teardown logic (the media shutdown blocker and the final shutdown cycle
// collection) can trigger state watching and state mirroring notifications
// that result in dispatch to the main thread. This causes shutdown leaks,
// because the |Runner| wrapper below creates a guaranteed cycle
// (Thread->EventQueue->Runnable->Thread) until the event is processed. So
// if we put the event into a queue that will never be processed, we'll wind
// up with a leak.
//
// We opt to just release the runnable in that case. Ordinarily, this
// approach could cause problems for runnables that are only safe to be
// released on the target thread (and not the dispatching thread). This is
// why XPCOM thread dispatch explicitly leaks the runnable when dispatch
// fails, rather than releasing it. But given that this condition only
// applies very late in shutdown when only one thread remains operational,
// that concern is unlikely to apply.
//
// For the same reason, we also always specify `NS_DISPATCH_FALLIBLE` when
// dispatching to the underlying thread here, to ensure we consistently do
// not leak the runnable.
if (gXPCOMMainThreadEventsAreDoomed) {
return NS_ERROR_FAILURE;
}
RefPtr<nsIRunnable> runner = new Runner(this, r.forget());
return mThread->Dispatch(runner.forget(), NS_DISPATCH_FALLIBLE);
}
// Prevent a GCC warning about the other overload of Dispatch being hidden.
using AbstractThread::Dispatch;
NS_IMETHOD RegisterShutdownTask(nsITargetShutdownTask* aTask) override {
return mThread->RegisterShutdownTask(aTask);
}
NS_IMETHOD UnregisterShutdownTask(nsITargetShutdownTask* aTask) override {
return mThread->UnregisterShutdownTask(aTask);
}
bool IsCurrentThreadIn() const override {
return mThread->IsOnCurrentThread();
}
TaskDispatcher& TailDispatcher() override {
MOZ_ASSERT(IsCurrentThreadIn());
MOZ_ASSERT(IsTailDispatcherAvailable());
if (!mTailDispatcher) {
mTailDispatcher =
std::make_unique<AutoTaskDispatcher>(mDirectTaskDispatcher,
/* aIsTailDispatcher = */ true);
mThread->AddObserver(this);
}
return *mTailDispatcher;
}
bool IsTailDispatcherAvailable() override {
// Our tail dispatching implementation relies on nsIThreadObserver
// callbacks. If we're not doing event processing, it won't work.
bool inEventLoop =
static_cast<nsThread*>(mThread.get())->RecursionDepth() > 0;
return inEventLoop;
}
bool MightHaveTailTasks() override { return !!mTailDispatcher; }
nsIEventTarget* AsEventTarget() override { return mThread; }
//-----------------------------------------------------------------------------
// nsIThreadObserver
//-----------------------------------------------------------------------------
NS_IMETHOD OnDispatchedEvent() override { return NS_OK; }
NS_IMETHOD AfterProcessNextEvent(nsIThreadInternal* thread,
bool eventWasProcessed) override {
// This is the primary case.
MaybeFireTailDispatcher();
return NS_OK;
}
NS_IMETHOD OnProcessNextEvent(nsIThreadInternal* thread,
bool mayWait) override {
// In general, the tail dispatcher is handled at the end of the current in
// AfterProcessNextEvent() above. However, if start spinning a nested event
// loop, it's generally better to fire the tail dispatcher before the first
// nested event, rather than after it. This check handles that case.
MaybeFireTailDispatcher();
return NS_OK;
}
//-----------------------------------------------------------------------------
// nsIDirectTaskDispatcher
//-----------------------------------------------------------------------------
// Forward calls to nsIDirectTaskDispatcher to the underlying nsThread object.
// We can't use the generated NS_FORWARD_NSIDIRECTTASKDISPATCHER macro
// as already_AddRefed type must be moved.
NS_IMETHOD DispatchDirectTask(already_AddRefed<nsIRunnable> aEvent) override {
return mDirectTaskDispatcher->DispatchDirectTask(std::move(aEvent));
}
NS_IMETHOD DrainDirectTasks() override {
return mDirectTaskDispatcher->DrainDirectTasks();
}
NS_IMETHOD HaveDirectTasks(bool* aResult) override {
return mDirectTaskDispatcher->HaveDirectTasks(aResult);
}
private:
const RefPtr<nsIThreadInternal> mThread;
const nsCOMPtr<nsIDirectTaskDispatcher> mDirectTaskDispatcher;
std::unique_ptr<AutoTaskDispatcher> mTailDispatcher;
const bool mOnThread;
~XPCOMThreadWrapper() {
if (mOnThread) {
MOZ_DIAGNOSTIC_ASSERT(IsCurrentThreadIn(),
"Must be destroyed on the thread it was created");
sCurrentThreadTLS.set(nullptr);
}
}
void MaybeFireTailDispatcher() {
if (mTailDispatcher) {
mTailDispatcher->DrainDirectTasks();
mThread->RemoveObserver(this);
mTailDispatcher.reset();
}
}
class Runner : public Runnable {
public:
explicit Runner(XPCOMThreadWrapper* aThread,
already_AddRefed<nsIRunnable> aRunnable)
: Runnable("XPCOMThreadWrapper::Runner"),
mThread(aThread),
mRunnable(aRunnable) {}
NS_IMETHOD Run() override {
MOZ_ASSERT(mThread == AbstractThread::GetCurrent());
MOZ_ASSERT(mThread->IsCurrentThreadIn());
SerialEventTargetGuard guard(mThread);
AUTO_PROFILE_FOLLOWING_RUNNABLE(mRunnable);
return mRunnable->Run();
}
#ifdef MOZ_COLLECTING_RUNNABLE_TELEMETRY
NS_IMETHOD GetName(nsACString& aName) override {
aName.AssignLiteral("AbstractThread::Runner");
if (nsCOMPtr<nsINamed> named = do_QueryInterface(mRunnable)) {
nsAutoCString name;
named->GetName(name);
if (!name.IsEmpty()) {
aName.AppendLiteral(" for ");
aName.Append(name);
}
}
return NS_OK;
}
#endif
private:
const RefPtr<XPCOMThreadWrapper> mThread;
const RefPtr<nsIRunnable> mRunnable;
};
};
NS_IMPL_ISUPPORTS(XPCOMThreadWrapper, nsIThreadObserver,
nsIDirectTaskDispatcher, nsISerialEventTarget, nsIEventTarget)
NS_IMETHODIMP_(bool)
AbstractThread::IsOnCurrentThreadInfallible() { return IsCurrentThreadIn(); }
NS_IMETHODIMP
AbstractThread::IsOnCurrentThread(bool* aResult) {
*aResult = IsCurrentThreadIn();
return NS_OK;
}
NS_IMETHODIMP
AbstractThread::DispatchFromScript(nsIRunnable* aEvent, DispatchFlags aFlags) {
return Dispatch(do_AddRef(aEvent), aFlags);
}
NS_IMETHODIMP
AbstractThread::Dispatch(already_AddRefed<nsIRunnable> aEvent,
DispatchFlags aFlags) {
// NOTE: This dispatch implementation never leaks aEvent on error, whether or
// not `NS_DISPATCH_FALLIBLE` is specified.
return Dispatch(std::move(aEvent), NormalDispatch);
}
NS_IMETHODIMP
AbstractThread::DelayedDispatch(already_AddRefed<nsIRunnable> aEvent,
uint32_t aDelayMs) {
nsCOMPtr<nsIRunnable> event = aEvent;
NS_ENSURE_TRUE(!!aDelayMs, NS_ERROR_UNEXPECTED);
RefPtr<DelayedRunnable> r =
new DelayedRunnable(do_AddRef(this), event.forget(), aDelayMs);
nsresult rv = r->Init();
NS_ENSURE_SUCCESS(rv, rv);
return Dispatch(r.forget(), NS_DISPATCH_NORMAL);
}
nsresult AbstractThread::TailDispatchTasksFor(AbstractThread* aThread) {
if (MightHaveTailTasks()) {
return TailDispatcher().DispatchTasksFor(aThread);
}
return NS_OK;
}
bool AbstractThread::HasTailTasksFor(AbstractThread* aThread) {
if (!MightHaveTailTasks()) {
return false;
}
return TailDispatcher().HasTasksFor(aThread);
}
bool AbstractThread::RequiresTailDispatch(AbstractThread* aThread) const {
MOZ_ASSERT(aThread);
// We require tail dispatch if both the source and destination
// threads support it.
return SupportsTailDispatch() && aThread->SupportsTailDispatch();
}
bool AbstractThread::RequiresTailDispatchFromCurrentThread() const {
AbstractThread* current = GetCurrent();
return current && RequiresTailDispatch(current);
}
AbstractThread* AbstractThread::MainThread() {
MOZ_ASSERT(sMainThread);
return sMainThread;
}
void AbstractThread::InitTLS() {
if (!sCurrentThreadTLS.init()) {
MOZ_CRASH();
}
}
void AbstractThread::InitMainThread() {
MOZ_ASSERT(NS_IsMainThread());
MOZ_ASSERT(!sMainThread);
nsCOMPtr<nsIThreadInternal> mainThread =
do_QueryInterface(nsThreadManager::get().GetMainThreadWeak());
MOZ_DIAGNOSTIC_ASSERT(mainThread);
if (!sCurrentThreadTLS.init()) {
MOZ_CRASH();
}
sMainThread = new XPCOMThreadWrapper(mainThread.get(),
/* aRequireTailDispatch = */ true,
true /* onThread */);
}
void AbstractThread::ShutdownMainThread() {
MOZ_ASSERT(NS_IsMainThread());
sMainThread = nullptr;
}
void AbstractThread::DispatchStateChange(
already_AddRefed<nsIRunnable> aRunnable) {
AbstractThread* currentThread = GetCurrent();
MOZ_DIAGNOSTIC_ASSERT(currentThread, "An AbstractThread must exist");
if (currentThread->IsTailDispatcherAvailable()) {
currentThread->TailDispatcher().AddStateChangeTask(this,
std::move(aRunnable));
} else {
// If the tail dispatcher isn't available, we just avoid sending state
// updates.
//
// This happens, specifically (1) During async shutdown (via the media
// shutdown blocker), and (2) During the final shutdown cycle collection.
// Both of these trigger changes to various watched and mirrored state.
nsCOMPtr<nsIRunnable> neverDispatched = aRunnable;
}
}
/* static */
void AbstractThread::DispatchDirectTask(
already_AddRefed<nsIRunnable> aRunnable) {
AbstractThread* currentThread = GetCurrent();
MOZ_DIAGNOSTIC_ASSERT(currentThread, "An AbstractThread must exist");
if (currentThread->IsTailDispatcherAvailable()) {
currentThread->TailDispatcher().AddDirectTask(std::move(aRunnable));
} else {
// If the tail dispatcher isn't available, we post as a regular task.
currentThread->Dispatch(std::move(aRunnable));
}
}
} // namespace mozilla
|