1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this file,
* You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "mozilla/dom/AnimationEffect.h"
#include "mozilla/AnimationUtils.h"
#include "mozilla/FloatingPoint.h"
#include "mozilla/dom/Animation.h"
#include "mozilla/dom/AnimationEffectBinding.h"
#include "mozilla/dom/KeyframeEffect.h"
#include "mozilla/dom/MutationObservers.h"
#include "nsDOMMutationObserver.h"
namespace mozilla::dom {
NS_IMPL_CYCLE_COLLECTION_WRAPPERCACHE_CLASS(AnimationEffect)
NS_IMPL_CYCLE_COLLECTION_UNLINK_BEGIN(AnimationEffect)
NS_IMPL_CYCLE_COLLECTION_UNLINK(mDocument, mAnimation)
NS_IMPL_CYCLE_COLLECTION_UNLINK_PRESERVED_WRAPPER
NS_IMPL_CYCLE_COLLECTION_UNLINK_END
NS_IMPL_CYCLE_COLLECTION_TRAVERSE_BEGIN(AnimationEffect)
NS_IMPL_CYCLE_COLLECTION_TRAVERSE(mDocument, mAnimation)
NS_IMPL_CYCLE_COLLECTION_TRAVERSE_END
NS_IMPL_CYCLE_COLLECTING_ADDREF(AnimationEffect)
NS_IMPL_CYCLE_COLLECTING_RELEASE(AnimationEffect)
NS_INTERFACE_MAP_BEGIN_CYCLE_COLLECTION(AnimationEffect)
NS_WRAPPERCACHE_INTERFACE_MAP_ENTRY
NS_INTERFACE_MAP_ENTRY(nsISupports)
NS_INTERFACE_MAP_END
AnimationEffect::AnimationEffect(Document* aDocument, TimingParams&& aTiming)
: mDocument(aDocument), mTiming(std::move(aTiming)) {
mRTPCallerType = mDocument->GetScopeObject()->GetRTPCallerType();
}
AnimationEffect::~AnimationEffect() = default;
nsISupports* AnimationEffect::GetParentObject() const {
return ToSupports(mDocument);
}
// https://drafts.csswg.org/web-animations/#current
bool AnimationEffect::IsCurrent() const {
if (!mAnimation || mAnimation->PlayState() == AnimationPlayState::Finished) {
return false;
}
ComputedTiming computedTiming = GetComputedTiming();
if (computedTiming.mPhase == ComputedTiming::AnimationPhase::Active) {
return true;
}
return (mAnimation->PlaybackRate() > 0 &&
computedTiming.mPhase == ComputedTiming::AnimationPhase::Before) ||
(mAnimation->PlaybackRate() < 0 &&
computedTiming.mPhase == ComputedTiming::AnimationPhase::After);
}
// https://drafts.csswg.org/web-animations/#in-effect
bool AnimationEffect::IsInEffect() const {
ComputedTiming computedTiming = GetComputedTiming();
return !computedTiming.mProgress.IsNull();
}
void AnimationEffect::SetSpecifiedTiming(TimingParams&& aTiming) {
if (mTiming == aTiming) {
return;
}
mTiming = aTiming;
UpdateNormalizedTiming();
if (mAnimation) {
Maybe<nsAutoAnimationMutationBatch> mb;
if (AsKeyframeEffect() && AsKeyframeEffect()->GetAnimationTarget()) {
mb.emplace(AsKeyframeEffect()->GetAnimationTarget().mElement->OwnerDoc());
}
mAnimation->NotifyEffectTimingUpdated();
if (mAnimation->IsRelevant()) {
MutationObservers::NotifyAnimationChanged(mAnimation);
}
if (AsKeyframeEffect()) {
AsKeyframeEffect()->RequestRestyle(EffectCompositor::RestyleType::Layer);
}
}
// For keyframe effects, NotifyEffectTimingUpdated above will eventually
// cause KeyframeEffect::NotifyAnimationTimingUpdated to be called so it can
// update its registration with the target element as necessary.
}
ComputedTiming AnimationEffect::GetComputedTimingAt(
const Nullable<TimeDuration>& aLocalTime, const TimingParams& aTiming,
double aPlaybackRate,
Animation::ProgressTimelinePosition aProgressTimelinePosition,
EndpointBehavior aEndpointBehavior) {
static const StickyTimeDuration zeroDuration;
// Always return the same object to benefit from return-value optimization.
ComputedTiming result;
if (aTiming.Duration()) {
MOZ_ASSERT(aTiming.Duration().ref() >= zeroDuration,
"Iteration duration should be positive");
result.mDuration = aTiming.Duration().ref();
}
MOZ_ASSERT(aTiming.Iterations() >= 0.0 && !std::isnan(aTiming.Iterations()),
"mIterations should be nonnegative & finite, as ensured by "
"ValidateIterations or CSSParser");
result.mIterations = aTiming.Iterations();
MOZ_ASSERT(aTiming.IterationStart() >= 0.0,
"mIterationStart should be nonnegative, as ensured by "
"ValidateIterationStart");
result.mIterationStart = aTiming.IterationStart();
result.mActiveDuration = aTiming.ActiveDuration();
result.mEndTime = aTiming.EndTime();
result.mFill = aTiming.Fill() == dom::FillMode::Auto ? dom::FillMode::None
: aTiming.Fill();
// The default constructor for ComputedTiming sets all other members to
// values consistent with an animation that has not been sampled.
if (aLocalTime.IsNull()) {
return result;
}
const TimeDuration& localTime = aLocalTime.Value();
const bool atProgressTimelineBoundary =
aProgressTimelinePosition ==
Animation::ProgressTimelinePosition::Boundary;
StickyTimeDuration beforeActiveBoundary = aTiming.CalcBeforeActiveBoundary();
StickyTimeDuration activeAfterBoundary = aTiming.CalcActiveAfterBoundary();
if (localTime > activeAfterBoundary ||
(aEndpointBehavior == EndpointBehavior::Exclusive && aPlaybackRate >= 0 &&
localTime == activeAfterBoundary && !atProgressTimelineBoundary)) {
result.mPhase = ComputedTiming::AnimationPhase::After;
if (!result.FillsForwards()) {
// The animation isn't active or filling at this time.
return result;
}
result.mActiveTime =
std::max(std::min(StickyTimeDuration(localTime - aTiming.Delay()),
result.mActiveDuration),
zeroDuration);
} else if (localTime < beforeActiveBoundary ||
(aEndpointBehavior == EndpointBehavior::Exclusive &&
aPlaybackRate < 0 && localTime == beforeActiveBoundary &&
!atProgressTimelineBoundary)) {
result.mPhase = ComputedTiming::AnimationPhase::Before;
if (!result.FillsBackwards()) {
// The animation isn't active or filling at this time.
return result;
}
result.mActiveTime =
std::max(StickyTimeDuration(localTime - aTiming.Delay()), zeroDuration);
} else {
// Note: For progress-based timeline, it's possible to have a zero active
// duration with active phase.
result.mPhase = ComputedTiming::AnimationPhase::Active;
result.mActiveTime = localTime - aTiming.Delay();
}
// Convert active time to a multiple of iterations.
// https://drafts.csswg.org/web-animations/#overall-progress
double overallProgress;
if (!result.mDuration) {
overallProgress = result.mPhase == ComputedTiming::AnimationPhase::Before
? 0.0
: result.mIterations;
} else {
overallProgress = result.mActiveTime / result.mDuration;
}
// Factor in iteration start offset.
if (std::isfinite(overallProgress)) {
overallProgress += result.mIterationStart;
}
// Determine the 0-based index of the current iteration.
// https://drafts.csswg.org/web-animations/#current-iteration
result.mCurrentIteration =
(result.mIterations >= double(UINT64_MAX) &&
result.mPhase == ComputedTiming::AnimationPhase::After) ||
overallProgress >= double(UINT64_MAX)
? UINT64_MAX // In GetComputedTimingDictionary(),
// we will convert this into Infinity
: static_cast<uint64_t>(std::max(overallProgress, 0.0));
// Convert the overall progress to a fraction of a single iteration--the
// simply iteration progress.
// https://drafts.csswg.org/web-animations/#simple-iteration-progress
double progress = std::isfinite(overallProgress)
? fmod(overallProgress, 1.0)
: fmod(result.mIterationStart, 1.0);
// When we are at the end of the active interval and the end of an iteration
// we need to report the end of the final iteration and not the start of the
// next iteration. We *don't* want to do this, however, when we have
// a zero-iteration animation.
if (progress == 0.0 &&
(result.mPhase == ComputedTiming::AnimationPhase::After ||
result.mPhase == ComputedTiming::AnimationPhase::Active) &&
result.mActiveTime == result.mActiveDuration &&
result.mIterations != 0.0) {
// The only way we can reach the end of the active interval and have
// a progress of zero and a current iteration of zero, is if we have a
// zero iteration count -- something we should have detected above.
MOZ_ASSERT(result.mCurrentIteration != 0,
"Should not have zero current iteration");
progress = 1.0;
if (result.mCurrentIteration != UINT64_MAX) {
result.mCurrentIteration--;
}
}
// Factor in the direction.
bool thisIterationReverse = false;
switch (aTiming.Direction()) {
case PlaybackDirection::Normal:
thisIterationReverse = false;
break;
case PlaybackDirection::Reverse:
thisIterationReverse = true;
break;
case PlaybackDirection::Alternate:
thisIterationReverse = (result.mCurrentIteration & 1) == 1;
break;
case PlaybackDirection::Alternate_reverse:
thisIterationReverse = (result.mCurrentIteration & 1) == 0;
break;
default:
MOZ_ASSERT_UNREACHABLE("Unknown PlaybackDirection type");
}
if (thisIterationReverse) {
progress = 1.0 - progress;
}
// Calculate the 'before flag' which we use when applying step timing
// functions.
if ((result.mPhase == ComputedTiming::AnimationPhase::After &&
thisIterationReverse) ||
(result.mPhase == ComputedTiming::AnimationPhase::Before &&
!thisIterationReverse)) {
result.mBeforeFlag = true;
}
// Apply the easing.
if (const auto& fn = aTiming.TimingFunction()) {
progress = fn->At(progress, result.mBeforeFlag);
}
MOZ_ASSERT(std::isfinite(progress), "Progress value should be finite");
result.mProgress.SetValue(progress);
return result;
}
ComputedTiming AnimationEffect::GetComputedTiming(
const TimingParams* aTiming, EndpointBehavior aEndpointBehavior) const {
const double playbackRate = mAnimation ? mAnimation->PlaybackRate() : 1;
const auto progressTimelinePosition =
mAnimation ? mAnimation->AtProgressTimelineBoundary()
: Animation::ProgressTimelinePosition::NotBoundary;
return GetComputedTimingAt(
GetLocalTime(), aTiming ? *aTiming : NormalizedTiming(), playbackRate,
progressTimelinePosition, aEndpointBehavior);
}
// Helper function for generating an (Computed)EffectTiming dictionary
static void GetEffectTimingDictionary(const TimingParams& aTiming,
EffectTiming& aRetVal) {
aRetVal.mDelay = aTiming.Delay().ToMilliseconds();
aRetVal.mEndDelay = aTiming.EndDelay().ToMilliseconds();
aRetVal.mFill = aTiming.Fill();
aRetVal.mIterationStart = aTiming.IterationStart();
aRetVal.mIterations = aTiming.Iterations();
if (aTiming.Duration()) {
aRetVal.mDuration.SetAsUnrestrictedDouble() =
aTiming.Duration()->ToMilliseconds();
}
aRetVal.mDirection = aTiming.Direction();
if (aTiming.TimingFunction()) {
aRetVal.mEasing.Truncate();
aTiming.TimingFunction()->AppendToString(aRetVal.mEasing);
}
}
void AnimationEffect::GetTiming(EffectTiming& aRetVal) const {
GetEffectTimingDictionary(SpecifiedTiming(), aRetVal);
}
void AnimationEffect::GetComputedTimingAsDict(
ComputedEffectTiming& aRetVal) const {
// Specified timing
GetEffectTimingDictionary(SpecifiedTiming(), aRetVal);
// Computed timing
double playbackRate = mAnimation ? mAnimation->PlaybackRate() : 1;
const Nullable<TimeDuration> currentTime = GetLocalTime();
const auto progressTimelinePosition =
mAnimation ? mAnimation->AtProgressTimelineBoundary()
: Animation::ProgressTimelinePosition::NotBoundary;
ComputedTiming computedTiming = GetComputedTimingAt(
currentTime, SpecifiedTiming(), playbackRate, progressTimelinePosition);
aRetVal.mDuration.SetAsUnrestrictedDouble() =
computedTiming.mDuration.ToMilliseconds();
aRetVal.mFill = computedTiming.mFill;
aRetVal.mActiveDuration = computedTiming.mActiveDuration.ToMilliseconds();
aRetVal.mEndTime = computedTiming.mEndTime.ToMilliseconds();
aRetVal.mLocalTime =
AnimationUtils::TimeDurationToDouble(currentTime, mRTPCallerType);
aRetVal.mProgress = computedTiming.mProgress;
if (!aRetVal.mProgress.IsNull()) {
// Convert the returned currentIteration into Infinity if we set
// (uint64_t) computedTiming.mCurrentIteration to UINT64_MAX
double iteration =
computedTiming.mCurrentIteration == UINT64_MAX
? PositiveInfinity<double>()
: static_cast<double>(computedTiming.mCurrentIteration);
aRetVal.mCurrentIteration.SetValue(iteration);
}
}
void AnimationEffect::UpdateTiming(const OptionalEffectTiming& aTiming,
ErrorResult& aRv) {
TimingParams timing =
TimingParams::MergeOptionalEffectTiming(mTiming, aTiming, aRv);
if (aRv.Failed()) {
return;
}
SetSpecifiedTiming(std::move(timing));
}
void AnimationEffect::UpdateNormalizedTiming() {
mNormalizedTiming.reset();
if (!mAnimation || !mAnimation->UsingScrollTimeline()) {
return;
}
// Since `mAnimation` has a scroll timeline, we can be sure `GetTimeline()`
// and `TimelineDuration()` will not return null.
mNormalizedTiming.emplace(
mTiming.Normalize(mAnimation->GetTimeline()->TimelineDuration().Value()));
}
Nullable<TimeDuration> AnimationEffect::GetLocalTime() const {
// Since the *animation* start time is currently always zero, the local
// time is equal to the parent time.
Nullable<TimeDuration> result;
if (mAnimation) {
result = mAnimation->GetCurrentTimeAsDuration();
}
return result;
}
} // namespace mozilla::dom
|