1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "Swizzle.h"
#include <arm_neon.h>
namespace mozilla {
namespace gfx {
// Load 1-3 pixels into a 4 pixel vector.
static MOZ_ALWAYS_INLINE uint16x8_t LoadRemainder_NEON(const uint8_t* aSrc,
size_t aLength) {
const uint32_t* src32 = reinterpret_cast<const uint32_t*>(aSrc);
uint32x4_t dst32;
if (aLength >= 2) {
// Load first 2 pixels
dst32 = vcombine_u32(vld1_u32(src32), vdup_n_u32(0));
// Load third pixel
if (aLength >= 3) {
dst32 = vld1q_lane_u32(src32 + 2, dst32, 2);
}
} else {
// Load single pixel
dst32 = vld1q_lane_u32(src32, vdupq_n_u32(0), 0);
}
return vreinterpretq_u16_u32(dst32);
}
// Store 1-3 pixels from a vector into memory without overwriting.
static MOZ_ALWAYS_INLINE void StoreRemainder_NEON(uint8_t* aDst, size_t aLength,
const uint16x8_t& aSrc) {
uint32_t* dst32 = reinterpret_cast<uint32_t*>(aDst);
uint32x4_t src32 = vreinterpretq_u32_u16(aSrc);
if (aLength >= 2) {
// Store first 2 pixels
vst1_u32(dst32, vget_low_u32(src32));
// Store third pixel
if (aLength >= 3) {
vst1q_lane_u32(dst32 + 2, src32, 2);
}
} else {
// Store single pixel
vst1q_lane_u32(dst32, src32, 0);
}
}
// Premultiply vector of 4 pixels using splayed math.
template <bool aSwapRB, bool aOpaqueAlpha>
static MOZ_ALWAYS_INLINE uint16x8_t
PremultiplyVector_NEON(const uint16x8_t& aSrc) {
// Isolate R and B with mask.
const uint16x8_t mask = vdupq_n_u16(0x00FF);
uint16x8_t rb = vandq_u16(aSrc, mask);
// Swap R and B if necessary.
if (aSwapRB) {
rb = vrev32q_u16(rb);
}
// Isolate G and A by shifting down to bottom of word.
uint16x8_t ga = vshrq_n_u16(aSrc, 8);
// Duplicate alphas to get vector of A1 A1 A2 A2 A3 A3 A4 A4
uint16x8_t alphas = vtrnq_u16(ga, ga).val[1];
// rb = rb*a + 255; rb += rb >> 8;
rb = vmlaq_u16(mask, rb, alphas);
rb = vsraq_n_u16(rb, rb, 8);
// If format is not opaque, force A to 255 so that A*alpha/255 = alpha
if (!aOpaqueAlpha) {
ga = vorrq_u16(ga, vreinterpretq_u16_u32(vdupq_n_u32(0x00FF0000)));
}
// ga = ga*a + 255; ga += ga >> 8;
ga = vmlaq_u16(mask, ga, alphas);
ga = vsraq_n_u16(ga, ga, 8);
// If format is opaque, force output A to be 255.
if (aOpaqueAlpha) {
ga = vorrq_u16(ga, vreinterpretq_u16_u32(vdupq_n_u32(0xFF000000)));
}
// Combine back to final pixel with (rb >> 8) | (ga & 0xFF00FF00)
return vsriq_n_u16(ga, rb, 8);
}
template <bool aSwapRB, bool aOpaqueAlpha>
static MOZ_ALWAYS_INLINE void PremultiplyChunk_NEON(const uint8_t*& aSrc,
uint8_t*& aDst,
int32_t aAlignedRow,
int32_t aRemainder) {
// Process all 4-pixel chunks as one vector.
for (const uint8_t* end = aSrc + aAlignedRow; aSrc < end;) {
uint16x8_t px = vld1q_u16(reinterpret_cast<const uint16_t*>(aSrc));
px = PremultiplyVector_NEON<aSwapRB, aOpaqueAlpha>(px);
vst1q_u16(reinterpret_cast<uint16_t*>(aDst), px);
aSrc += 4 * 4;
aDst += 4 * 4;
}
// Handle any 1-3 remaining pixels.
if (aRemainder) {
uint16x8_t px = LoadRemainder_NEON(aSrc, aRemainder);
px = PremultiplyVector_NEON<aSwapRB, aOpaqueAlpha>(px);
StoreRemainder_NEON(aDst, aRemainder, px);
}
}
template <bool aSwapRB, bool aOpaqueAlpha>
void PremultiplyRow_NEON(const uint8_t* aSrc, uint8_t* aDst, int32_t aLength) {
int32_t alignedRow = 4 * (aLength & ~3);
int32_t remainder = aLength & 3;
PremultiplyChunk_NEON<aSwapRB, aOpaqueAlpha>(aSrc, aDst, alignedRow,
remainder);
}
template <bool aSwapRB, bool aOpaqueAlpha>
void Premultiply_NEON(const uint8_t* aSrc, int32_t aSrcGap, uint8_t* aDst,
int32_t aDstGap, IntSize aSize) {
int32_t alignedRow = 4 * (aSize.width & ~3);
int32_t remainder = aSize.width & 3;
// Fold remainder into stride gap.
aSrcGap += 4 * remainder;
aDstGap += 4 * remainder;
for (int32_t height = aSize.height; height > 0; height--) {
PremultiplyChunk_NEON<aSwapRB, aOpaqueAlpha>(aSrc, aDst, alignedRow,
remainder);
aSrc += aSrcGap;
aDst += aDstGap;
}
}
// Force instantiation of premultiply variants here.
template void PremultiplyRow_NEON<false, false>(const uint8_t*, uint8_t*,
int32_t);
template void PremultiplyRow_NEON<false, true>(const uint8_t*, uint8_t*,
int32_t);
template void PremultiplyRow_NEON<true, false>(const uint8_t*, uint8_t*,
int32_t);
template void PremultiplyRow_NEON<true, true>(const uint8_t*, uint8_t*,
int32_t);
template void Premultiply_NEON<false, false>(const uint8_t*, int32_t, uint8_t*,
int32_t, IntSize);
template void Premultiply_NEON<false, true>(const uint8_t*, int32_t, uint8_t*,
int32_t, IntSize);
template void Premultiply_NEON<true, false>(const uint8_t*, int32_t, uint8_t*,
int32_t, IntSize);
template void Premultiply_NEON<true, true>(const uint8_t*, int32_t, uint8_t*,
int32_t, IntSize);
// This generates a table of fixed-point reciprocals representing 1/alpha
// similar to the fallback implementation. However, the reciprocal must
// ultimately be multiplied as an unsigned 9 bit upper part and a signed
// 15 bit lower part to cheaply multiply. Thus, the lower 15 bits of the
// reciprocal is stored 15 bits of the reciprocal are masked off and
// stored in the low word. The upper 9 bits are masked and shifted to fit
// into the high word. These then get independently multiplied with the
// color component and recombined to provide the full recriprocal multiply.
#define UNPREMULQ_NEON(x) \
((((0xFF00FFU / (x)) & 0xFF8000U) << 1) | ((0xFF00FFU / (x)) & 0x7FFFU))
#define UNPREMULQ_NEON_2(x) UNPREMULQ_NEON(x), UNPREMULQ_NEON((x) + 1)
#define UNPREMULQ_NEON_4(x) UNPREMULQ_NEON_2(x), UNPREMULQ_NEON_2((x) + 2)
#define UNPREMULQ_NEON_8(x) UNPREMULQ_NEON_4(x), UNPREMULQ_NEON_4((x) + 4)
#define UNPREMULQ_NEON_16(x) UNPREMULQ_NEON_8(x), UNPREMULQ_NEON_8((x) + 8)
#define UNPREMULQ_NEON_32(x) UNPREMULQ_NEON_16(x), UNPREMULQ_NEON_16((x) + 16)
static const uint32_t sUnpremultiplyTable_NEON[256] = {0,
UNPREMULQ_NEON(1),
UNPREMULQ_NEON_2(2),
UNPREMULQ_NEON_4(4),
UNPREMULQ_NEON_8(8),
UNPREMULQ_NEON_16(16),
UNPREMULQ_NEON_32(32),
UNPREMULQ_NEON_32(64),
UNPREMULQ_NEON_32(96),
UNPREMULQ_NEON_32(128),
UNPREMULQ_NEON_32(160),
UNPREMULQ_NEON_32(192),
UNPREMULQ_NEON_32(224)};
// Unpremultiply a vector of 4 pixels using splayed math and a reciprocal table
// that avoids doing any actual division.
template <bool aSwapRB>
static MOZ_ALWAYS_INLINE uint16x8_t
UnpremultiplyVector_NEON(const uint16x8_t& aSrc) {
// Isolate R and B with mask.
uint16x8_t rb = vandq_u16(aSrc, vdupq_n_u16(0x00FF));
// Swap R and B if necessary.
if (aSwapRB) {
rb = vrev32q_u16(rb);
}
// Isolate G and A by shifting down to bottom of word.
uint16x8_t ga = vshrq_n_u16(aSrc, 8);
// Extract the alphas for the 4 pixels from the now isolated words.
int a1 = vgetq_lane_u16(ga, 1);
int a2 = vgetq_lane_u16(ga, 3);
int a3 = vgetq_lane_u16(ga, 5);
int a4 = vgetq_lane_u16(ga, 7);
// First load all of the interleaved low and high portions of the reciprocals
// and combine them a single vector as lo1 hi1 lo2 hi2 lo3 hi3 lo4 hi4
uint16x8_t q1234 = vreinterpretq_u16_u32(vld1q_lane_u32(
&sUnpremultiplyTable_NEON[a4],
vld1q_lane_u32(
&sUnpremultiplyTable_NEON[a3],
vld1q_lane_u32(
&sUnpremultiplyTable_NEON[a2],
vld1q_lane_u32(&sUnpremultiplyTable_NEON[a1], vdupq_n_u32(0), 0),
1),
2),
3));
// Transpose the interleaved low/high portions so that we produce
// two separate duplicated vectors for the low and high portions respectively:
// lo1 lo1 lo2 lo2 lo3 lo3 lo4 lo4 and hi1 hi1 hi2 hi2 hi3 hi3 hi4 hi4
uint16x8x2_t q1234lohi = vtrnq_u16(q1234, q1234);
// VQDMULH is a signed multiply that doubles (*2) the result, then takes the
// high word. To work around the signedness and the doubling, the low
// portion of the reciprocal only stores the lower 15 bits, which fits in a
// signed 16 bit integer. The high 9 bit portion is effectively also doubled
// by 2 as a side-effect of being shifted for storage. Thus the output scale
// of doing a normal multiply by the high portion and the VQDMULH by the low
// portion are both doubled and can be safely added together. The resulting
// sum just needs to be halved (via VHADD) to thus cancel out the doubling.
// All this combines to produce a reciprocal multiply of the form:
// rb = ((rb * hi) + ((rb * lo * 2) >> 16)) / 2
rb = vhaddq_u16(
vmulq_u16(rb, q1234lohi.val[1]),
vreinterpretq_u16_s16(vqdmulhq_s16(
vreinterpretq_s16_u16(rb), vreinterpretq_s16_u16(q1234lohi.val[0]))));
// ga = ((ga * hi) + ((ga * lo * 2) >> 16)) / 2
ga = vhaddq_u16(
vmulq_u16(ga, q1234lohi.val[1]),
vreinterpretq_u16_s16(vqdmulhq_s16(
vreinterpretq_s16_u16(ga), vreinterpretq_s16_u16(q1234lohi.val[0]))));
// Combine to the final pixel with ((rb | (ga << 8)) & ~0xFF000000) | (aSrc &
// 0xFF000000), which inserts back in the original alpha value unchanged.
return vbslq_u16(vreinterpretq_u16_u32(vdupq_n_u32(0xFF000000)), aSrc,
vsliq_n_u16(rb, ga, 8));
}
template <bool aSwapRB>
static MOZ_ALWAYS_INLINE void UnpremultiplyChunk_NEON(const uint8_t*& aSrc,
uint8_t*& aDst,
int32_t aAlignedRow,
int32_t aRemainder) {
// Process all 4-pixel chunks as one vector.
for (const uint8_t* end = aSrc + aAlignedRow; aSrc < end;) {
uint16x8_t px = vld1q_u16(reinterpret_cast<const uint16_t*>(aSrc));
px = UnpremultiplyVector_NEON<aSwapRB>(px);
vst1q_u16(reinterpret_cast<uint16_t*>(aDst), px);
aSrc += 4 * 4;
aDst += 4 * 4;
}
// Handle any 1-3 remaining pixels.
if (aRemainder) {
uint16x8_t px = LoadRemainder_NEON(aSrc, aRemainder);
px = UnpremultiplyVector_NEON<aSwapRB>(px);
StoreRemainder_NEON(aDst, aRemainder, px);
}
}
template <bool aSwapRB>
void UnpremultiplyRow_NEON(const uint8_t* aSrc, uint8_t* aDst,
int32_t aLength) {
int32_t alignedRow = 4 * (aLength & ~3);
int32_t remainder = aLength & 3;
UnpremultiplyChunk_NEON<aSwapRB>(aSrc, aDst, alignedRow, remainder);
}
template <bool aSwapRB>
void Unpremultiply_NEON(const uint8_t* aSrc, int32_t aSrcGap, uint8_t* aDst,
int32_t aDstGap, IntSize aSize) {
int32_t alignedRow = 4 * (aSize.width & ~3);
int32_t remainder = aSize.width & 3;
// Fold remainder into stride gap.
aSrcGap += 4 * remainder;
aDstGap += 4 * remainder;
for (int32_t height = aSize.height; height > 0; height--) {
UnpremultiplyChunk_NEON<aSwapRB>(aSrc, aDst, alignedRow, remainder);
aSrc += aSrcGap;
aDst += aDstGap;
}
}
// Force instantiation of unpremultiply variants here.
template void UnpremultiplyRow_NEON<false>(const uint8_t*, uint8_t*, int32_t);
template void UnpremultiplyRow_NEON<true>(const uint8_t*, uint8_t*, int32_t);
template void Unpremultiply_NEON<false>(const uint8_t*, int32_t, uint8_t*,
int32_t, IntSize);
template void Unpremultiply_NEON<true>(const uint8_t*, int32_t, uint8_t*,
int32_t, IntSize);
// Swizzle a vector of 4 pixels providing swaps and opaquifying.
template <bool aSwapRB, bool aOpaqueAlpha>
static MOZ_ALWAYS_INLINE uint16x8_t SwizzleVector_NEON(const uint16x8_t& aSrc) {
// Swap R and B, then add to G and A (forced to 255):
// (((src>>16) | (src << 16)) & 0x00FF00FF) |
// ((src | 0xFF000000) & ~0x00FF00FF)
return vbslq_u16(
vdupq_n_u16(0x00FF), vrev32q_u16(aSrc),
aOpaqueAlpha
? vorrq_u16(aSrc, vreinterpretq_u16_u32(vdupq_n_u32(0xFF000000)))
: aSrc);
}
#if 0
// These specializations currently do not profile faster than the generic versions,
// so disable them for now.
// Optimized implementations for when there is no R and B swap.
template<>
static MOZ_ALWAYS_INLINE uint16x8_t
SwizzleVector_NEON<false, true>(const uint16x8_t& aSrc)
{
// Force alpha to 255.
return vorrq_u16(aSrc, vreinterpretq_u16_u32(vdupq_n_u32(0xFF000000)));
}
template<>
static MOZ_ALWAYS_INLINE uint16x8_t
SwizzleVector_NEON<false, false>(const uint16x8_t& aSrc)
{
return aSrc;
}
#endif
template <bool aSwapRB, bool aOpaqueAlpha>
static MOZ_ALWAYS_INLINE void SwizzleChunk_NEON(const uint8_t*& aSrc,
uint8_t*& aDst,
int32_t aAlignedRow,
int32_t aRemainder) {
// Process all 4-pixel chunks as one vector.
for (const uint8_t* end = aSrc + aAlignedRow; aSrc < end;) {
uint16x8_t px = vld1q_u16(reinterpret_cast<const uint16_t*>(aSrc));
px = SwizzleVector_NEON<aSwapRB, aOpaqueAlpha>(px);
vst1q_u16(reinterpret_cast<uint16_t*>(aDst), px);
aSrc += 4 * 4;
aDst += 4 * 4;
}
// Handle any 1-3 remaining pixels.
if (aRemainder) {
uint16x8_t px = LoadRemainder_NEON(aSrc, aRemainder);
px = SwizzleVector_NEON<aSwapRB, aOpaqueAlpha>(px);
StoreRemainder_NEON(aDst, aRemainder, px);
}
}
template <bool aSwapRB, bool aOpaqueAlpha>
void SwizzleRow_NEON(const uint8_t* aSrc, uint8_t* aDst, int32_t aLength) {
int32_t alignedRow = 4 * (aLength & ~3);
int32_t remainder = aLength & 3;
SwizzleChunk_NEON<aSwapRB, aOpaqueAlpha>(aSrc, aDst, alignedRow, remainder);
}
template <bool aSwapRB, bool aOpaqueAlpha>
void Swizzle_NEON(const uint8_t* aSrc, int32_t aSrcGap, uint8_t* aDst,
int32_t aDstGap, IntSize aSize) {
int32_t alignedRow = 4 * (aSize.width & ~3);
int32_t remainder = aSize.width & 3;
// Fold remainder into stride gap.
aSrcGap += 4 * remainder;
aDstGap += 4 * remainder;
for (int32_t height = aSize.height; height > 0; height--) {
SwizzleChunk_NEON<aSwapRB, aOpaqueAlpha>(aSrc, aDst, alignedRow, remainder);
aSrc += aSrcGap;
aDst += aDstGap;
}
}
// Force instantiation of swizzle variants here.
template void SwizzleRow_NEON<true, false>(const uint8_t*, uint8_t*, int32_t);
template void SwizzleRow_NEON<true, true>(const uint8_t*, uint8_t*, int32_t);
template void Swizzle_NEON<true, false>(const uint8_t*, int32_t, uint8_t*,
int32_t, IntSize);
template void Swizzle_NEON<true, true>(const uint8_t*, int32_t, uint8_t*,
int32_t, IntSize);
template <bool aSwapRB>
void UnpackRowRGB24(const uint8_t* aSrc, uint8_t* aDst, int32_t aLength);
template <bool aSwapRB>
void UnpackRowRGB24_NEON(const uint8_t* aSrc, uint8_t* aDst, int32_t aLength) {
// Because this implementation will read an additional 4 bytes of data that
// is ignored and masked over, we cannot use the accelerated version for the
// last 1-5 pixels (3-15 bytes remaining) to guarantee we don't access memory
// outside the buffer (we read in 16 byte chunks).
if (aLength < 6) {
UnpackRowRGB24<aSwapRB>(aSrc, aDst, aLength);
return;
}
// Because we are expanding, we can only process the data back to front in
// case we are performing this in place.
int32_t alignedRow = (aLength - 2) & ~3;
int32_t remainder = aLength - alignedRow;
const uint8_t* src = aSrc + alignedRow * 3;
uint8_t* dst = aDst + alignedRow * 4;
// Handle 2-5 remaining pixels.
UnpackRowRGB24<aSwapRB>(src, dst, remainder);
uint8x8_t masklo;
uint8x8_t maskhi;
if (aSwapRB) {
static const uint8_t masklo_data[] = {2, 1, 0, 0, 5, 4, 3, 0};
static const uint8_t maskhi_data[] = {4, 3, 2, 0, 7, 6, 5, 0};
masklo = vld1_u8(masklo_data);
maskhi = vld1_u8(maskhi_data);
} else {
static const uint8_t masklo_data[] = {0, 1, 2, 0, 3, 4, 5, 0};
static const uint8_t maskhi_data[] = {2, 3, 4, 0, 5, 6, 7, 0};
masklo = vld1_u8(masklo_data);
maskhi = vld1_u8(maskhi_data);
}
uint8x16_t alpha = vreinterpretq_u8_u32(vdupq_n_u32(0xFF000000));
// Process all 4-pixel chunks as one vector.
src -= 4 * 3;
dst -= 4 * 4;
while (src >= aSrc) {
uint8x16_t px = vld1q_u8(src);
// G2R2B1G1 R1B0G0R0 -> X1R1G1B1 X0R0G0B0
uint8x8_t pxlo = vtbl1_u8(vget_low_u8(px), masklo);
// B3G3R3B2 G2R2B1G1 -> X3R3G3B3 X2R2G2B2
uint8x8_t pxhi =
vtbl1_u8(vext_u8(vget_low_u8(px), vget_high_u8(px), 4), maskhi);
px = vcombine_u8(pxlo, pxhi);
px = vorrq_u8(px, alpha);
vst1q_u8(dst, px);
src -= 4 * 3;
dst -= 4 * 4;
}
}
// Force instantiation of swizzle variants here.
template void UnpackRowRGB24_NEON<false>(const uint8_t*, uint8_t*, int32_t);
template void UnpackRowRGB24_NEON<true>(const uint8_t*, uint8_t*, int32_t);
} // namespace gfx
} // namespace mozilla
|