1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
|
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef MOZILLA_GFX_GL_COLORSPACES_H_
#define MOZILLA_GFX_GL_COLORSPACES_H_
// We are going to be doing so, so many transforms, so descriptive labels are
// critical.
// Colorspace background info: https://hackmd.io/0wkiLmP7RWOFjcD13M870A
#include <algorithm>
#include <array>
#include <cmath>
#include <cstdint>
#include <cstdlib>
#include <functional>
#include <optional>
#include <ostream>
#include <vector>
#include "AutoMappable.h"
#include "mozilla/Assertions.h"
#include "mozilla/Attributes.h"
#include "mozilla/Span.h"
#ifdef DEBUG
# define ASSERT(EXPR) \
do { \
if (!(EXPR)) { \
__builtin_trap(); \
} \
} while (false)
#else
# define ASSERT(EXPR) (void)(EXPR)
#endif
struct _qcms_profile;
typedef struct _qcms_profile qcms_profile;
namespace mozilla::color {
// -
struct YuvLumaCoeffs final {
float r = 0.2126;
float g = 0.7152;
float b = 0.0722;
auto Members() const { return std::tie(r, g, b); }
MOZ_MIXIN_DERIVE_CMP_OPS_BY_MEMBERS(YuvLumaCoeffs)
static constexpr auto Rec601() {
return YuvLumaCoeffs{
.r = 0.299,
.g = 0.587,
.b = 0.114,
};
}
static constexpr auto Rec709() { return YuvLumaCoeffs(); }
static constexpr auto Rec2020() {
return YuvLumaCoeffs{
.r = 0.2627,
.g = 0.6780,
.b = 0.0593,
};
}
static constexpr auto Gbr() { return YuvLumaCoeffs{.r = 0, .g = 1, .b = 0}; }
};
struct PiecewiseGammaDesc final {
// tf = { k * linear | linear < b
// { a * pow(linear, 1/g) - (a-1) | linear >= b
// Default to Srgb
float a = 1.055;
float b = 0.04045 / 12.92;
float g = 2.4;
float k = 12.92;
auto Members() const { return std::tie(a, b, g, k); }
MOZ_MIXIN_DERIVE_CMP_OPS_BY_MEMBERS(PiecewiseGammaDesc)
static constexpr auto Srgb() { return PiecewiseGammaDesc(); }
static constexpr auto DisplayP3() { return Srgb(); }
static constexpr auto Rec709() {
return PiecewiseGammaDesc{
.a = 1.099,
.b = 0.018,
.g = 1.0 / 0.45, // ~2.222
.k = 4.5,
};
}
// FYI: static constexpr auto Rec2020_10bit() { return Rec709(); }
static constexpr auto Rec2020_12bit() {
return PiecewiseGammaDesc{
.a = 1.0993,
.b = 0.0181,
.g = 1.0 / 0.45, // ~2.222
.k = 4.5,
};
}
};
struct YcbcrDesc final {
float y0 = 16 / 255.0;
float y1 = 235 / 255.0;
float u0 = 128 / 255.0;
float uPlusHalf = 240 / 255.0;
auto Members() const { return std::tie(y0, y1, u0, uPlusHalf); }
MOZ_MIXIN_DERIVE_CMP_OPS_BY_MEMBERS(YcbcrDesc)
static constexpr auto Narrow8() { // AKA limited/studio/tv
return YcbcrDesc();
}
static constexpr auto Full8() { // AKA pc
return YcbcrDesc{
.y0 = 0 / 255.0,
.y1 = 255 / 255.0,
.u0 = 128 / 255.0,
.uPlusHalf = 254 / 255.0,
};
}
static constexpr auto Float() { // Best for a LUT
return YcbcrDesc{.y0 = 0.0, .y1 = 1.0, .u0 = 0.5, .uPlusHalf = 1.0};
}
};
struct Chromaticities final {
float rx = 0.640;
float ry = 0.330;
float gx = 0.300;
float gy = 0.600;
float bx = 0.150;
float by = 0.060;
// D65:
static constexpr float wx = 0.3127;
static constexpr float wy = 0.3290;
auto Members() const { return std::tie(rx, ry, gx, gy, bx, by); }
MOZ_MIXIN_DERIVE_CMP_OPS_BY_MEMBERS(Chromaticities)
// -
static constexpr auto Rec709() { // AKA limited/studio/tv
return Chromaticities();
}
static constexpr auto Srgb() { return Rec709(); }
static constexpr auto Rec601_625_Pal() {
auto ret = Rec709();
ret.gx = 0.290;
return ret;
}
static constexpr auto Rec601_525_Ntsc() {
return Chromaticities{
.rx = 0.630,
.ry = 0.340, // r
.gx = 0.310,
.gy = 0.595, // g
.bx = 0.155,
.by = 0.070, // b
};
}
static constexpr auto Rec2020() {
return Chromaticities{
.rx = 0.708,
.ry = 0.292, // r
.gx = 0.170,
.gy = 0.797, // g
.bx = 0.131,
.by = 0.046, // b
};
}
static constexpr auto DisplayP3() {
return Chromaticities{
.rx = 0.680,
.ry = 0.320, // r
.gx = 0.265,
.gy = 0.690, // g
.bx = 0.150,
.by = 0.060, // b
};
}
};
// -
struct YuvDesc final {
YuvLumaCoeffs yCoeffs;
YcbcrDesc ycbcr;
auto Members() const { return std::tie(yCoeffs, ycbcr); }
MOZ_MIXIN_DERIVE_CMP_OPS_BY_MEMBERS(YuvDesc)
};
struct ColorspaceDesc final {
Chromaticities chrom;
std::optional<PiecewiseGammaDesc> tf;
std::optional<YuvDesc> yuv;
auto Members() const { return std::tie(chrom, tf, yuv); }
MOZ_MIXIN_DERIVE_CMP_OPS_BY_MEMBERS(ColorspaceDesc)
};
// -
} // namespace mozilla::color
#define _(X) \
template <> \
struct std::hash<X> : mozilla::StdHashMembers<X> {};
_(mozilla::color::YuvLumaCoeffs)
_(mozilla::color::PiecewiseGammaDesc)
_(mozilla::color::YcbcrDesc)
_(mozilla::color::Chromaticities)
_(mozilla::color::YuvDesc)
_(mozilla::color::ColorspaceDesc)
#undef _
namespace mozilla::color {
// -
template <class TT, int NN>
struct avec final {
using T = TT;
static constexpr auto N = NN;
std::array<T, N> data = {};
// -
constexpr avec() = default;
constexpr avec(const avec&) = default;
constexpr avec(const avec<T, N - 1>& v, T a) {
for (int i = 0; i < N - 1; i++) {
data[i] = v[i];
}
data[N - 1] = a;
}
constexpr avec(const avec<T, N - 2>& v, T a, T b) {
for (int i = 0; i < N - 2; i++) {
data[i] = v[i];
}
data[N - 2] = a;
data[N - 1] = b;
}
MOZ_IMPLICIT constexpr avec(const std::array<T, N>& data) {
this->data = data;
}
explicit constexpr avec(const T v) {
for (int i = 0; i < N; i++) {
data[i] = v;
}
}
template <class T2, int N2>
explicit constexpr avec(const avec<T2, N2>& v) {
const auto n = std::min(N, N2);
for (int i = 0; i < n; i++) {
data[i] = static_cast<T>(v[i]);
}
}
// -
constexpr auto size() const { return data.size(); }
const auto& operator[](const size_t n) const { return data[n]; }
auto& operator[](const size_t n) { return data[n]; }
template <int i>
constexpr auto get() const {
return (i < N) ? data[i] : 0;
}
constexpr auto x() const { return get<0>(); }
constexpr auto y() const { return get<1>(); }
constexpr auto z() const { return get<2>(); }
constexpr auto w() const { return get<3>(); }
constexpr auto xyz() const { return vec3({x(), y(), z()}); }
template <int i>
void set(const T v) {
if (i < N) {
data[i] = v;
}
}
void x(const T v) { set<0>(v); }
void y(const T v) { set<1>(v); }
void z(const T v) { set<2>(v); }
void w(const T v) { set<3>(v); }
// -
#define _(OP) \
friend avec operator OP(const avec a, const avec b) { \
avec c; \
for (int i = 0; i < N; i++) { \
c[i] = a[i] OP b[i]; \
} \
return c; \
} \
friend avec operator OP(const avec a, const T b) { \
avec c; \
for (int i = 0; i < N; i++) { \
c[i] = a[i] OP b; \
} \
return c; \
} \
friend avec operator OP(const T a, const avec b) { \
avec c; \
for (int i = 0; i < N; i++) { \
c[i] = a OP b[i]; \
} \
return c; \
}
_(+)
_(-)
_(*)
_(/)
#undef _
friend bool operator==(const avec a, const avec b) {
bool eq = true;
for (int i = 0; i < N; i++) {
eq &= (a[i] == b[i]);
}
return eq;
}
friend std::ostream& operator<<(std::ostream& s, const avec& a) {
s << "avec(";
const char* delim = "";
for (const auto& v : a.data) {
s << delim << v;
delim = ", ";
}
return s << ")";
}
};
using vec2 = avec<float, 2>;
using vec3 = avec<float, 3>;
using vec4 = avec<float, 4>;
using ivec3 = avec<int32_t, 3>;
using ivec4 = avec<int32_t, 4>;
template <class T, int N>
T dot(const avec<T, N>& a, const avec<T, N>& b) {
const auto c = a * b;
T ret = 0;
for (int i = 0; i < N; i++) {
ret += c[i];
}
return ret;
}
template <class V>
V mix(const V& zero, const V& one, const float val) {
return zero * (1 - val) + one * val;
}
template <class T, int N>
auto min(const avec<T, N>& a, const avec<T, N>& b) {
auto ret = avec<T, N>{};
for (int i = 0; i < ret.N; i++) {
ret[i] = std::min(a[i], b[i]);
}
return ret;
}
template <class T, int N>
auto max(const avec<T, N>& a, const avec<T, N>& b) {
auto ret = avec<T, N>{};
for (int i = 0; i < ret.N; i++) {
ret[i] = std::max(a[i], b[i]);
}
return ret;
}
template <class T, int N>
auto clamp(const avec<T, N>& v, const avec<T, N>& lo, const avec<T, N>& hi) {
return max(lo, min(v, hi));
}
template <class T, int N>
auto floor(const avec<T, N>& a) {
auto ret = avec<T, N>{};
for (int i = 0; i < ret.N; i++) {
ret[i] = floorf(a[i]);
}
return ret;
}
template <class T, int N>
auto round(const avec<T, N>& a) {
auto ret = avec<T, N>{};
for (int i = 0; i < ret.N; i++) {
ret[i] = roundf(a[i]);
}
return ret;
}
template <class T, int N>
auto abs(const avec<T, N>& a) {
auto ret = avec<T, N>{};
for (int i = 0; i < ret.N; i++) {
ret[i] = std::abs(a[i]);
}
return ret;
}
// -
template <int Y_Rows, int X_Cols>
struct mat final {
static constexpr int y_rows = Y_Rows;
static constexpr int x_cols = X_Cols;
static constexpr auto Identity() {
auto ret = mat{};
for (int i = 0; i < std::min(x_cols, y_rows); i++) {
ret.at(i, i) = 1;
}
return ret;
}
static constexpr auto Scale(const avec<float, std::min(x_cols, y_rows)>& v) {
auto ret = mat{};
for (int i = 0; i < v.N; i++) {
ret.at(i, i) = v[i];
}
return ret;
}
std::array<avec<float, X_Cols>, Y_Rows> rows = {}; // row-major
// -
constexpr mat() = default;
explicit constexpr mat(const std::array<avec<float, X_Cols>, Y_Rows>& rows) {
this->rows = rows;
}
template <int Y_Rows2, int X_Cols2>
explicit constexpr mat(const mat<Y_Rows2, X_Cols2>& m) {
*this = Identity();
for (int x = 0; x < std::min(X_Cols, X_Cols2); x++) {
for (int y = 0; y < std::min(Y_Rows, Y_Rows2); y++) {
at(x, y) = m.at(x, y);
}
}
}
constexpr bool operator==(const mat& rhs) const {
return this->rows == rhs.rows;
}
constexpr bool operator!=(const mat& rhs) const { return !(*this == rhs); }
const auto& at(const int x, const int y) const { return rows.at(y)[x]; }
auto& at(const int x, const int y) { return rows.at(y)[x]; }
friend auto operator*(const mat& a, const avec<float, X_Cols>& b_colvec) {
avec<float, Y_Rows> c_colvec;
for (int i = 0; i < y_rows; i++) {
c_colvec[i] = dot(a.rows.at(i), b_colvec);
}
return c_colvec;
}
friend auto operator*(const mat& a, const float b) {
mat c;
for (int x = 0; x < x_cols; x++) {
for (int y = 0; y < y_rows; y++) {
c.at(x, y) = a.at(x, y) * b;
}
}
return c;
}
friend auto operator/(const mat& a, const float b) { return a * (1 / b); }
template <int BCols, int BRows = X_Cols>
friend auto operator*(const mat& a, const mat<BRows, BCols>& b) {
const auto bt = transpose(b);
const auto& b_cols = bt.rows;
mat<Y_Rows, BCols> c;
for (int x = 0; x < BCols; x++) {
for (int y = 0; y < Y_Rows; y++) {
c.at(x, y) = dot(a.rows.at(y), b_cols.at(x));
}
}
return c;
}
// For e.g. similarity evaluation
friend auto operator-(const mat& a, const mat& b) {
mat c;
for (int y = 0; y < y_rows; y++) {
c.rows[y] = a.rows[y] - b.rows[y];
}
return c;
}
};
template <class M>
inline float dotDifference(const M& a, const M& b) {
const auto c = a - b;
const auto d = c * avec<float, M::x_cols>(1);
const auto d2 = dot(d, d);
return d2;
}
template <class M>
inline bool approx(const M& a, const M& b, const float eps = 0.0001) {
const auto errSquared = dotDifference(a, b);
return errSquared <= (eps * eps);
}
using mat3 = mat<3, 3>;
using mat4 = mat<4, 4>;
inline float determinant(const mat<1, 1>& m) { return m.at(0, 0); }
template <class T>
float determinant(const T& m) {
static_assert(T::x_cols == T::y_rows);
float ret = 0;
for (int i = 0; i < T::x_cols; i++) {
const auto cofact = cofactor(m, i, 0);
ret += m.at(i, 0) * cofact;
}
return ret;
}
// -
template <class T>
float cofactor(const T& m, const int x_col, const int y_row) {
ASSERT(0 <= x_col && x_col < T::x_cols);
ASSERT(0 <= y_row && y_row < T::y_rows);
auto cofactor = minor_val(m, x_col, y_row);
if ((x_col + y_row) % 2 == 1) {
cofactor *= -1;
}
return cofactor;
}
// -
// Unfortunately, can't call this `minor(...)` because there is
// `#define minor(dev) gnu_dev_minor (dev)`
// in /usr/include/x86_64-linux-gnu/sys/sysmacros.h:62
template <class T>
float minor_val(const T& a, const int skip_x, const int skip_y) {
ASSERT(0 <= skip_x && skip_x < T::x_cols);
ASSERT(0 <= skip_y && skip_y < T::y_rows);
// A minor matrix is a matrix without its x_col and y_row.
mat<T::y_rows - 1, T::x_cols - 1> b;
int x_skips = 0;
for (int ax = 0; ax < T::x_cols; ax++) {
if (ax == skip_x) {
x_skips = 1;
continue;
}
int y_skips = 0;
for (int ay = 0; ay < T::y_rows; ay++) {
if (ay == skip_y) {
y_skips = 1;
continue;
}
b.at(ax - x_skips, ay - y_skips) = a.at(ax, ay);
}
}
const auto minor = determinant(b);
return minor;
}
// -
/// The matrix of cofactors.
template <class T>
auto comatrix(const T& a) {
auto b = T{};
for (int x = 0; x < T::x_cols; x++) {
for (int y = 0; y < T::y_rows; y++) {
b.at(x, y) = cofactor(a, x, y);
}
}
return b;
}
// -
template <class T>
auto transpose(const T& a) {
auto b = mat<T::x_cols, T::y_rows>{};
for (int x = 0; x < T::x_cols; x++) {
for (int y = 0; y < T::y_rows; y++) {
b.at(y, x) = a.at(x, y);
}
}
return b;
}
// -
template <class T>
inline T inverse(const T& a) {
const auto det = determinant(a);
const auto comat = comatrix(a);
const auto adjugate = transpose(comat);
const auto inv = adjugate / det;
return inv;
}
// -
template <class F>
void ForEachIntWithin(const ivec3 size, const F& f) {
ivec3 p;
for (p.z(0); p.z() < size.z(); p.z(p.z() + 1)) {
for (p.y(0); p.y() < size.y(); p.y(p.y() + 1)) {
for (p.x(0); p.x() < size.x(); p.x(p.x() + 1)) {
f(p);
}
}
}
}
template <class F>
void ForEachSampleWithin(const ivec3 size, const F& f) {
const auto div = vec3(size - 1);
ForEachIntWithin(size, [&](const ivec3& isrc) {
const auto fsrc = vec3(isrc) / div;
f(fsrc);
});
}
// -
struct Lut3 final {
ivec3 size;
std::vector<vec3> data;
// -
static Lut3 Create(const ivec3 size) {
Lut3 lut;
lut.size = size;
lut.data.resize(size.x() * size.y() * size.z());
return lut;
}
// -
/// p: [0, N-1] (clamps)
size_t Index(ivec3 p) const {
const auto scales = ivec3({1, size.x(), size.x() * size.y()});
p = max(ivec3(0), min(p, size - 1)); // clamp
return dot(p, scales);
}
// -
template <class F>
void SetMap(const F& dstFromSrc01) {
ForEachIntWithin(size, [&](const ivec3 p) {
const auto i = Index(p);
const auto src01 = vec3(p) / vec3(size - 1);
const auto dstVal = dstFromSrc01(src01);
data.at(i) = dstVal;
});
}
// -
/// p: [0, N-1] (clamps)
vec3 Fetch(ivec3 p) const {
const auto i = Index(p);
return data.at(i);
}
/// in01: [0.0, 1.0] (clamps)
vec3 Sample(vec3 in01) const;
};
// -
/**
Naively, it would be ideal to map directly from ycbcr to rgb,
but headroom and footroom are problematic: For e.g. narrow-range-8-bit,
our naive LUT would start at absolute y=0/255. However, values only start
at y=16/255, and depending on where your first LUT sample is, you might get
very poor approximations for y=16/255.
Further, even for full-range-8-bit, y=-0.5 is encoded as 1/255. U and v
aren't *as* important as y, but we should try be accurate for the min and
max values. Additionally, it would be embarassing to get whites/greys wrong,
so preserving u=0.0 should also be a goal.
Finally, when using non-linear transfer functions, the linear approximation of a
point between two samples will be fairly inaccurate.
We preserve min and max by choosing our input range such that min and max are
the endpoints of their LUT axis.
We preserve accuracy (at and around) mid by choosing odd sizes for dimentions.
But also, the LUT is surprisingly robust, so check if the simple version works
before adding complexity!
**/
struct ColorspaceTransform final {
ColorspaceDesc srcSpace;
ColorspaceDesc dstSpace;
mat4 srcRgbTfFromSrc;
std::optional<PiecewiseGammaDesc> srcTf;
mat3 dstRgbLinFromSrcRgbLin;
std::optional<PiecewiseGammaDesc> dstTf;
mat4 dstFromDstRgbTf;
static ColorspaceTransform Create(const ColorspaceDesc& src,
const ColorspaceDesc& dst);
// -
vec3 DstFromSrc(vec3 src) const;
std::optional<mat4> ToMat4() const;
Lut3 ToLut3(const ivec3 size) const;
Lut3 ToLut3() const {
auto defaultSize = ivec3({31, 31, 15}); // Order of importance: G, R, B
if (srcSpace.yuv) {
defaultSize = ivec3({31, 15, 31}); // Y, Cb, Cr
}
return ToLut3(defaultSize);
}
};
// -
struct RgbTransferTables {
std::vector<float> r;
std::vector<float> g;
std::vector<float> b;
};
float GuessGamma(const std::vector<float>& vals, float exp_guess = 1.0);
static constexpr auto D65 = vec2{{0.3127, 0.3290}};
static constexpr auto D50 = vec2{{0.34567, 0.35850}};
mat3 XyzAFromXyzB_BradfordLinear(const vec2 xyA, const vec2 xyB);
// -
struct ColorProfileDesc {
// ICC profiles are phrased as PCS-from-encoded (PCS is CIEXYZ-D50)
// However, all of our colorspaces are D65, so let's normalize to that,
// even though it's a reversible transform.
color::mat4 rgbFromYcbcr = color::mat4::Identity();
RgbTransferTables linearFromTf;
color::mat3 xyzd65FromLinearRgb = color::mat3::Identity();
static ColorProfileDesc From(const ColorspaceDesc&);
static ColorProfileDesc From(const qcms_profile&);
};
template <class C>
inline float SampleOutByIn(const C& outByIn, const float in) {
switch (outByIn.size()) {
case 0:
return in;
case 1:
return outByIn.at(0);
}
MOZ_ASSERT(outByIn.size() >= 2);
// Estimate based on nearest (first) derivative:
// Find the nearest point to `in` in `outByIn`.
const auto inId = in * (outByIn.size() - 1);
const auto inId0F = std::clamp(floorf(inId), 0.f, float(outByIn.size() - 2));
const auto inId0 = size_t(inId0F);
const auto out0 = outByIn.at(inId0 + 0);
const auto out1 = outByIn.at(inId0 + 1);
const auto d_inId0 = float(1);
const auto d_out0 = out1 - out0;
const auto d_inId = inId - inId0;
const auto out = out0 + (d_out0 / d_inId0) * d_inId;
// printf("SampleOutByIn(%f)->%f\n", in, out);
return out;
}
template <class C>
inline float SampleInByOut(const C& outByIn, const float out) {
MOZ_ASSERT(outByIn.size() >= 2);
const auto begin = outByIn.begin();
const auto out0_itr = std::lower_bound(begin + 1, outByIn.end() - 1, out) - 1;
const auto in0 = float(out0_itr - begin) / (outByIn.size() - 1);
const auto out0 = *out0_itr;
const auto d_in = float(1) / (outByIn.size() - 1);
const auto d_out = *(out0_itr + 1) - *out0_itr;
// printf("%f + (%f / %f) * (%f - %f)\n", in0, d_in, d_out, out, out0);
const auto in = in0 + (d_in / d_out) * (out - out0);
// printf("SampleInByOut(%f)->%f\n", out, in);
return in;
}
template <class C, class FnLessEqualT = std::less_equal<typename C::value_type>>
inline bool IsMonotonic(const C& vals, const FnLessEqualT& LessEqual = {}) {
bool ok = true;
const auto begin = vals.begin();
for (size_t i = 1; i < vals.size(); i++) {
const auto itr = begin + i;
ok &= LessEqual(*(itr - 1), *itr);
// Assert(true, [&]() {
// return prints("[%zu]->%f <= [%zu]->%f", i-1, *(itr-1), i, *itr);
// });
}
return ok;
}
template <class T, class I>
inline std::optional<I> SeekNeq(const T& ref, const I first, const I last) {
const auto inc = (last - first) > 0 ? 1 : -1;
auto itr = first;
while (true) {
if (*itr != ref) return itr;
if (itr == last) return {};
itr += inc;
}
}
template <class T>
struct TwoPoints {
struct {
T x;
T y;
} p0;
struct {
T x;
T y;
} p1;
T y(const T x) const {
const auto dx = p1.x - p0.x;
const auto dy = p1.y - p0.y;
return p0.y + dy / dx * (x - p0.x);
}
};
/// Fills `vals` with `x:[0..vals.size()-1] => line.y(x)`.
template <class T>
static void LinearFill(T& vals, const TwoPoints<float>& line) {
float x = -1;
for (auto& val : vals) {
x += 1;
val = line.y(x);
}
}
// -
inline void DequantizeMonotonic(const Span<float> vals) {
MOZ_ASSERT(IsMonotonic(vals));
const auto first = vals.begin();
const auto end = vals.end();
if (first == end) return;
const auto last = end - 1;
if (first == last) return;
// Three monotonic cases:
// 1. [0,0,0,0]
// 2. [0,0,1,1]
// 3. [0,1,1,2]
const auto body_first = SeekNeq(*first, first, last);
if (!body_first) {
// E.g. [0,0,0,0]
return;
}
const auto body_last = SeekNeq(*last, last, *body_first);
if (!body_last) {
// E.g. [0,0,1,1]
// This isn't the most accurate, but close enough.
// print("#2: %s", to_str(vals).c_str());
LinearFill(vals, {
{0, *first},
{float(vals.size() - 1), *last},
});
// print(" -> %s\n", to_str(vals).c_str());
return;
}
// E.g. [0,1,1,2]
// ^^^ body
// => f(0.5)->0.5, f(2.5)->1.5
// => f(x) = f(x0) + (x-x0) * (f(x1) - f(x0)) / (x1-x0)
// => f(x) = f(x0) + (x-x0) * dfdx
const auto head_end = *body_first;
const auto head = vals.subspan(0, head_end - vals.begin());
const auto tail_begin = *body_last + 1;
const auto tail = vals.subspan(tail_begin - vals.begin());
// print("head tail: %s %s\n",
// to_str(head).c_str(),
// to_str(tail).c_str());
// const auto body = vals->subspan(head.size(), vals->size()-tail.size());
auto next_part_first = head_end;
while (next_part_first != tail_begin) {
const auto part_first = next_part_first;
// print("part_first: %f\n", *part_first);
next_part_first = *SeekNeq(*part_first, part_first, tail_begin);
// print("next_part_first: %f\n", *next_part_first);
const auto part =
Span<float>{part_first, size_t(next_part_first - part_first)};
// print("part: %s\n", to_str(part).c_str());
const auto prev_part_last = part_first - 1;
const auto part_last = next_part_first - 1;
const auto line = TwoPoints<float>{
{-0.5, (*prev_part_last + *part_first) / 2},
{part.size() - 0.5f, (*part_last + *next_part_first) / 2},
};
LinearFill(part, line);
}
static constexpr bool INFER_HEAD_TAIL_FROM_BODY_EDGE = false;
// Basically ignore contents of head and tail, and infer from edges of body.
// print("3: %s\n", to_str(vals).c_str());
if (!IsMonotonic(head, std::less<float>{})) {
if (!INFER_HEAD_TAIL_FROM_BODY_EDGE) {
LinearFill(head,
{
{0, *head.begin()},
{head.size() - 0.5f, (*(head.end() - 1) + *head_end) / 2},
});
} else {
LinearFill(head, {
{head.size() + 0.0f, *head_end},
{head.size() + 1.0f, *(head_end + 1)},
});
}
}
if (!IsMonotonic(tail, std::less<float>{})) {
if (!INFER_HEAD_TAIL_FROM_BODY_EDGE) {
LinearFill(tail, {
{-0.5, (*(tail_begin - 1) + *tail.begin()) / 2},
{tail.size() - 1.0f, *(tail.end() - 1)},
});
} else {
LinearFill(tail, {
{-2.0f, *(tail_begin - 2)},
{-1.0f, *(tail_begin - 1)},
});
}
}
// print("3: %s\n", to_str(vals).c_str());
MOZ_ASSERT(IsMonotonic(vals, std::less<float>{}));
// Rescale, because we tend to lose range.
static constexpr bool RESCALE = false;
if (RESCALE) {
const auto firstv = *first;
const auto lastv = *last;
for (auto& val : vals) {
val = (val - firstv) / (lastv - firstv);
}
}
// print("4: %s\n", to_str(vals).c_str());
}
template <class In, class Out>
static void InvertLut(const In& lut, Out* const out_invertedLut) {
MOZ_ASSERT(IsMonotonic(lut));
auto plut = &lut;
auto vec = std::vector<float>{};
if (!IsMonotonic(lut, std::less<float>{})) {
// print("Not strictly monotonic...\n");
vec.assign(lut.begin(), lut.end());
DequantizeMonotonic(vec);
plut = &vec;
// print(" Now strictly monotonic: %i: %s\n",
// int(IsMonotonic(*plut, std::less<float>{})), to_str(*plut).c_str());
MOZ_ASSERT(IsMonotonic(*plut, std::less<float>{}));
}
MOZ_ASSERT(plut->size() >= 2);
auto& ret = *out_invertedLut;
for (size_t i_out = 0; i_out < ret.size(); i_out++) {
const auto f_out = i_out / float(ret.size() - 1);
const auto f_in = SampleInByOut(*plut, f_out);
ret[i_out] = f_in;
}
MOZ_ASSERT(IsMonotonic(ret));
MOZ_ASSERT(IsMonotonic(ret, std::less<float>{}));
}
// -
struct ColorProfileConversionDesc {
// ICC profiles are phrased as PCS-from-encoded (PCS is CIEXYZ-D50)
color::mat4 srcRgbFromSrcYuv = color::mat4::Identity();
RgbTransferTables srcLinearFromSrcTf;
color::mat3 dstLinearFromSrcLinear = color::mat3::Identity();
RgbTransferTables dstTfFromDstLinear;
struct FromDesc {
ColorProfileDesc src;
ColorProfileDesc dst;
};
static ColorProfileConversionDesc From(const FromDesc&);
vec3 DstFromSrc(const vec3 src) const {
const auto srcRgb = vec3(srcRgbFromSrcYuv * vec4(src, 1));
const auto srcLinear = vec3{{
SampleOutByIn(srcLinearFromSrcTf.r, srcRgb.x()),
SampleOutByIn(srcLinearFromSrcTf.g, srcRgb.y()),
SampleOutByIn(srcLinearFromSrcTf.b, srcRgb.z()),
}};
const auto dstLinear = dstLinearFromSrcLinear * srcLinear;
const auto dstRgb = vec3{{
SampleOutByIn(dstTfFromDstLinear.r, dstLinear.x()),
SampleOutByIn(dstTfFromDstLinear.g, dstLinear.y()),
SampleOutByIn(dstTfFromDstLinear.b, dstLinear.z()),
}};
return dstRgb;
}
};
} // namespace mozilla::color
#undef ASSERT
#endif // MOZILLA_GFX_GL_COLORSPACES_H_
|