1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/* utility functions for drawing borders and backgrounds */
#include "nsCSSRenderingGradients.h"
#include <tuple>
#include "Units.h"
#include "gfx2DGlue.h"
#include "gfxContext.h"
#include "gfxGradientCache.h"
#include "gfxUtils.h"
#include "mozilla/ComputedStyle.h"
#include "mozilla/MathAlgorithms.h"
#include "mozilla/ProfilerLabels.h"
#include "mozilla/StaticPrefs_layout.h"
#include "mozilla/gfx/2D.h"
#include "mozilla/gfx/Helpers.h"
#include "mozilla/layers/StackingContextHelper.h"
#include "mozilla/layers/WebRenderLayerManager.h"
#include "mozilla/webrender/WebRenderAPI.h"
#include "mozilla/webrender/WebRenderTypes.h"
#include "nsCSSColorUtils.h"
#include "nsCSSProps.h"
#include "nsLayoutUtils.h"
#include "nsPoint.h"
#include "nsPresContext.h"
#include "nsRect.h"
#include "nsStyleConsts.h"
#include "nsStyleStructInlines.h"
using namespace mozilla;
using namespace mozilla::gfx;
static CSSPoint ResolvePosition(const Position& aPos, const CSSSize& aSize) {
CSSCoord h = aPos.horizontal.ResolveToCSSPixels(aSize.width);
CSSCoord v = aPos.vertical.ResolveToCSSPixels(aSize.height);
return CSSPoint(h, v);
}
// Given a box with size aBoxSize and origin (0,0), and an angle aAngle,
// and a starting point for the gradient line aStart, find the endpoint of
// the gradient line --- the intersection of the gradient line with a line
// perpendicular to aAngle that passes through the farthest corner in the
// direction aAngle.
static CSSPoint ComputeGradientLineEndFromAngle(const CSSPoint& aStart,
double aAngle,
const CSSSize& aBoxSize) {
double dx = cos(-aAngle);
double dy = sin(-aAngle);
CSSPoint farthestCorner(dx > 0 ? aBoxSize.width : 0,
dy > 0 ? aBoxSize.height : 0);
CSSPoint delta = farthestCorner - aStart;
double u = delta.x * dy - delta.y * dx;
return farthestCorner + CSSPoint(-u * dy, u * dx);
}
// Compute the start and end points of the gradient line for a linear gradient.
static std::tuple<CSSPoint, CSSPoint> ComputeLinearGradientLine(
nsPresContext* aPresContext, const StyleGradient& aGradient,
const CSSSize& aBoxSize) {
using X = StyleHorizontalPositionKeyword;
using Y = StyleVerticalPositionKeyword;
const StyleLineDirection& direction = aGradient.AsLinear().direction;
const bool isModern =
aGradient.AsLinear().compat_mode == StyleGradientCompatMode::Modern;
CSSPoint center(aBoxSize.width / 2, aBoxSize.height / 2);
switch (direction.tag) {
case StyleLineDirection::Tag::Angle: {
double angle = direction.AsAngle().ToRadians();
if (isModern) {
angle = M_PI_2 - angle;
}
CSSPoint end = ComputeGradientLineEndFromAngle(center, angle, aBoxSize);
CSSPoint start = CSSPoint(aBoxSize.width, aBoxSize.height) - end;
return {start, end};
}
case StyleLineDirection::Tag::Vertical: {
CSSPoint start(center.x, 0);
CSSPoint end(center.x, aBoxSize.height);
if (isModern == (direction.AsVertical() == Y::Top)) {
std::swap(start.y, end.y);
}
return {start, end};
}
case StyleLineDirection::Tag::Horizontal: {
CSSPoint start(0, center.y);
CSSPoint end(aBoxSize.width, center.y);
if (isModern == (direction.AsHorizontal() == X::Left)) {
std::swap(start.x, end.x);
}
return {start, end};
}
case StyleLineDirection::Tag::Corner: {
const auto& corner = direction.AsCorner();
const X& h = corner._0;
const Y& v = corner._1;
if (isModern) {
float xSign = h == X::Right ? 1.0 : -1.0;
float ySign = v == Y::Top ? 1.0 : -1.0;
double angle = atan2(ySign * aBoxSize.width, xSign * aBoxSize.height);
CSSPoint end = ComputeGradientLineEndFromAngle(center, angle, aBoxSize);
CSSPoint start = CSSPoint(aBoxSize.width, aBoxSize.height) - end;
return {start, end};
}
CSSCoord startX = h == X::Left ? 0.0 : aBoxSize.width;
CSSCoord startY = v == Y::Top ? 0.0 : aBoxSize.height;
CSSPoint start(startX, startY);
CSSPoint end = CSSPoint(aBoxSize.width, aBoxSize.height) - start;
return {start, end};
}
default:
break;
}
MOZ_ASSERT_UNREACHABLE("Unknown line direction");
return {CSSPoint(), CSSPoint()};
}
using EndingShape = StyleGenericEndingShape<Length, LengthPercentage>;
using RadialGradientRadii =
Variant<StyleShapeExtent, std::pair<CSSCoord, CSSCoord>>;
static RadialGradientRadii ComputeRadialGradientRadii(const EndingShape& aShape,
const CSSSize& aSize) {
if (aShape.IsCircle()) {
auto& circle = aShape.AsCircle();
if (circle.IsExtent()) {
return RadialGradientRadii(circle.AsExtent());
}
CSSCoord radius = circle.AsRadius().ToCSSPixels();
return RadialGradientRadii(std::make_pair(radius, radius));
}
auto& ellipse = aShape.AsEllipse();
if (ellipse.IsExtent()) {
return RadialGradientRadii(ellipse.AsExtent());
}
auto& radii = ellipse.AsRadii();
return RadialGradientRadii(
std::make_pair(radii._0.ResolveToCSSPixels(aSize.width),
radii._1.ResolveToCSSPixels(aSize.height)));
}
// Compute the start and end points of the gradient line for a radial gradient.
// Also returns the horizontal and vertical radii defining the circle or
// ellipse to use.
static std::tuple<CSSPoint, CSSPoint, CSSCoord, CSSCoord>
ComputeRadialGradientLine(const StyleGradient& aGradient,
const CSSSize& aBoxSize) {
const auto& radial = aGradient.AsRadial();
const EndingShape& endingShape = radial.shape;
const Position& position = radial.position;
CSSPoint start = ResolvePosition(position, aBoxSize);
// Compute gradient shape: the x and y radii of an ellipse.
CSSCoord radiusX, radiusY;
CSSCoord leftDistance = Abs(start.x);
CSSCoord rightDistance = Abs(aBoxSize.width - start.x);
CSSCoord topDistance = Abs(start.y);
CSSCoord bottomDistance = Abs(aBoxSize.height - start.y);
auto radii = ComputeRadialGradientRadii(endingShape, aBoxSize);
if (radii.is<StyleShapeExtent>()) {
switch (radii.as<StyleShapeExtent>()) {
case StyleShapeExtent::ClosestSide:
radiusX = std::min(leftDistance, rightDistance);
radiusY = std::min(topDistance, bottomDistance);
if (endingShape.IsCircle()) {
radiusX = radiusY = std::min(radiusX, radiusY);
}
break;
case StyleShapeExtent::ClosestCorner: {
// Compute x and y distances to nearest corner
CSSCoord offsetX = std::min(leftDistance, rightDistance);
CSSCoord offsetY = std::min(topDistance, bottomDistance);
if (endingShape.IsCircle()) {
radiusX = radiusY = NS_hypot(offsetX, offsetY);
} else {
// maintain aspect ratio
radiusX = offsetX * M_SQRT2;
radiusY = offsetY * M_SQRT2;
}
break;
}
case StyleShapeExtent::FarthestSide:
radiusX = std::max(leftDistance, rightDistance);
radiusY = std::max(topDistance, bottomDistance);
if (endingShape.IsCircle()) {
radiusX = radiusY = std::max(radiusX, radiusY);
}
break;
case StyleShapeExtent::FarthestCorner: {
// Compute x and y distances to nearest corner
CSSCoord offsetX = std::max(leftDistance, rightDistance);
CSSCoord offsetY = std::max(topDistance, bottomDistance);
if (endingShape.IsCircle()) {
radiusX = radiusY = NS_hypot(offsetX, offsetY);
} else {
// maintain aspect ratio
radiusX = offsetX * M_SQRT2;
radiusY = offsetY * M_SQRT2;
}
break;
}
default:
MOZ_ASSERT_UNREACHABLE("Unknown shape extent keyword?");
radiusX = radiusY = 0;
}
} else {
auto pair = radii.as<std::pair<CSSCoord, CSSCoord>>();
radiusX = pair.first;
radiusY = pair.second;
}
// The gradient line end point is where the gradient line intersects
// the ellipse.
CSSPoint end = start + CSSPoint(radiusX, 0);
return {start, end, radiusX, radiusY};
}
// Compute the center and the start angle of the conic gradient.
static std::tuple<CSSPoint, float> ComputeConicGradientProperties(
const StyleGradient& aGradient, const CSSSize& aBoxSize) {
const auto& conic = aGradient.AsConic();
const Position& position = conic.position;
float angle = static_cast<float>(conic.angle.ToRadians());
CSSPoint center = ResolvePosition(position, aBoxSize);
return {center, angle};
}
static float Interpolate(float aF1, float aF2, float aFrac) {
return aF1 + aFrac * (aF2 - aF1);
}
static StyleAbsoluteColor Interpolate(const StyleAbsoluteColor& aLeft,
const StyleAbsoluteColor& aRight,
float aFrac) {
// NOTE: This has to match the interpolation method that WebRender uses which
// right now is sRGB. In the future we should implement interpolation in more
// gradient color-spaces.
static constexpr auto kMethod = StyleColorInterpolationMethod{
StyleColorSpace::Srgb,
StyleHueInterpolationMethod::Shorter,
};
return Servo_InterpolateColor(kMethod, &aLeft, &aRight, aFrac);
}
static nscoord FindTileStart(nscoord aDirtyCoord, nscoord aTilePos,
nscoord aTileDim) {
NS_ASSERTION(aTileDim > 0, "Non-positive tile dimension");
double multiples = floor(double(aDirtyCoord - aTilePos) / aTileDim);
return NSToCoordRound(multiples * aTileDim + aTilePos);
}
static gfxFloat LinearGradientStopPositionForPoint(
const gfxPoint& aGradientStart, const gfxPoint& aGradientEnd,
const gfxPoint& aPoint) {
gfxPoint d = aGradientEnd - aGradientStart;
gfxPoint p = aPoint - aGradientStart;
/**
* Compute a parameter t such that a line perpendicular to the
* d vector, passing through aGradientStart + d*t, also
* passes through aPoint.
*
* t is given by
* (p.x - d.x*t)*d.x + (p.y - d.y*t)*d.y = 0
*
* Solving for t we get
* numerator = d.x*p.x + d.y*p.y
* denominator = d.x^2 + d.y^2
* t = numerator/denominator
*
* In nsCSSRendering::PaintGradient we know the length of d
* is not zero.
*/
double numerator = d.x.value * p.x.value + d.y.value * p.y.value;
double denominator = d.x.value * d.x.value + d.y.value * d.y.value;
return numerator / denominator;
}
static bool RectIsBeyondLinearGradientEdge(const gfxRect& aRect,
const gfxMatrix& aPatternMatrix,
const nsTArray<ColorStop>& aStops,
const gfxPoint& aGradientStart,
const gfxPoint& aGradientEnd,
StyleAbsoluteColor* aOutEdgeColor) {
gfxFloat topLeft = LinearGradientStopPositionForPoint(
aGradientStart, aGradientEnd,
aPatternMatrix.TransformPoint(aRect.TopLeft()));
gfxFloat topRight = LinearGradientStopPositionForPoint(
aGradientStart, aGradientEnd,
aPatternMatrix.TransformPoint(aRect.TopRight()));
gfxFloat bottomLeft = LinearGradientStopPositionForPoint(
aGradientStart, aGradientEnd,
aPatternMatrix.TransformPoint(aRect.BottomLeft()));
gfxFloat bottomRight = LinearGradientStopPositionForPoint(
aGradientStart, aGradientEnd,
aPatternMatrix.TransformPoint(aRect.BottomRight()));
const ColorStop& firstStop = aStops[0];
if (topLeft < firstStop.mPosition && topRight < firstStop.mPosition &&
bottomLeft < firstStop.mPosition && bottomRight < firstStop.mPosition) {
*aOutEdgeColor = firstStop.mColor;
return true;
}
const ColorStop& lastStop = aStops.LastElement();
if (topLeft >= lastStop.mPosition && topRight >= lastStop.mPosition &&
bottomLeft >= lastStop.mPosition && bottomRight >= lastStop.mPosition) {
*aOutEdgeColor = lastStop.mColor;
return true;
}
return false;
}
static void ResolveMidpoints(nsTArray<ColorStop>& stops) {
for (size_t x = 1; x < stops.Length() - 1;) {
if (!stops[x].mIsMidpoint) {
x++;
continue;
}
const auto& color1 = stops[x - 1].mColor;
const auto& color2 = stops[x + 1].mColor;
float offset1 = stops[x - 1].mPosition;
float offset2 = stops[x + 1].mPosition;
float offset = stops[x].mPosition;
// check if everything coincides. If so, ignore the midpoint.
if (offset - offset1 == offset2 - offset) {
stops.RemoveElementAt(x);
continue;
}
// Check if we coincide with the left colorstop.
if (offset1 == offset) {
// Morph the midpoint to a regular stop with the color of the next
// color stop.
stops[x].mColor = color2;
stops[x].mIsMidpoint = false;
continue;
}
// Check if we coincide with the right colorstop.
if (offset2 == offset) {
// Morph the midpoint to a regular stop with the color of the previous
// color stop.
stops[x].mColor = color1;
stops[x].mIsMidpoint = false;
continue;
}
// Calculate the intermediate color stops per the formula of the CSS
// images spec. http://dev.w3.org/csswg/css-images/#color-stop-syntax
// 9 points were chosen since it is the minimum number of stops that always
// give the smoothest appearace regardless of midpoint position and
// difference in luminance of the end points.
float midpoint = (offset - offset1) / (offset2 - offset1);
ColorStop newStops[9];
if (midpoint > .5f) {
for (size_t y = 0; y < 7; y++) {
newStops[y].mPosition = offset1 + (offset - offset1) * (7 + y) / 13;
}
newStops[7].mPosition = offset + (offset2 - offset) / 3;
newStops[8].mPosition = offset + (offset2 - offset) * 2 / 3;
} else {
newStops[0].mPosition = offset1 + (offset - offset1) / 3;
newStops[1].mPosition = offset1 + (offset - offset1) * 2 / 3;
for (size_t y = 0; y < 7; y++) {
newStops[y + 2].mPosition = offset + (offset2 - offset) * y / 13;
}
}
// calculate colors
for (auto& newStop : newStops) {
const float relativeOffset =
(newStop.mPosition - offset1) / (offset2 - offset1);
const float multiplier = powf(relativeOffset, logf(.5f) / logf(midpoint));
newStop.mColor = Interpolate(color1, color2, multiplier);
}
stops.ReplaceElementsAt(x, 1, newStops, 9);
x += 9;
}
}
static StyleAbsoluteColor TransparentColor(const StyleAbsoluteColor& aColor) {
auto color = aColor;
color.alpha = 0.0f;
return color;
}
// Adjusts and adds color stops in such a way that drawing the gradient with
// unpremultiplied interpolation looks nearly the same as if it were drawn with
// premultiplied interpolation.
static const float kAlphaIncrementPerGradientStep = 0.1f;
static void ResolvePremultipliedAlpha(nsTArray<ColorStop>& aStops) {
for (size_t x = 1; x < aStops.Length(); x++) {
const ColorStop leftStop = aStops[x - 1];
const ColorStop rightStop = aStops[x];
// if the left and right stop have the same alpha value, we don't need
// to do anything. Hardstops should be instant, and also should never
// require dealing with interpolation.
if (leftStop.mColor.alpha == rightStop.mColor.alpha ||
leftStop.mPosition == rightStop.mPosition) {
continue;
}
// Is the stop on the left 100% transparent? If so, have it adopt the color
// of the right stop
if (leftStop.mColor.alpha == 0) {
aStops[x - 1].mColor = TransparentColor(rightStop.mColor);
continue;
}
// Is the stop on the right completely transparent?
// If so, duplicate it and assign it the color on the left.
if (rightStop.mColor.alpha == 0) {
ColorStop newStop = rightStop;
newStop.mColor = TransparentColor(leftStop.mColor);
aStops.InsertElementAt(x, newStop);
x++;
continue;
}
// Now handle cases where one or both of the stops are partially
// transparent.
if (leftStop.mColor.alpha != 1.0f || rightStop.mColor.alpha != 1.0f) {
// Calculate how many extra steps. We do a step per 10% transparency.
size_t stepCount =
NSToIntFloor(fabsf(leftStop.mColor.alpha - rightStop.mColor.alpha) /
kAlphaIncrementPerGradientStep);
for (size_t y = 1; y < stepCount; y++) {
float frac = static_cast<float>(y) / stepCount;
ColorStop newStop(
Interpolate(leftStop.mPosition, rightStop.mPosition, frac), false,
Interpolate(leftStop.mColor, rightStop.mColor, frac));
aStops.InsertElementAt(x, newStop);
x++;
}
}
}
}
static ColorStop InterpolateColorStop(const ColorStop& aFirst,
const ColorStop& aSecond,
double aPosition,
const StyleAbsoluteColor& aDefault) {
MOZ_ASSERT(aFirst.mPosition <= aPosition);
MOZ_ASSERT(aPosition <= aSecond.mPosition);
double delta = aSecond.mPosition - aFirst.mPosition;
if (delta < 1e-6) {
return ColorStop(aPosition, false, aDefault);
}
return ColorStop(aPosition, false,
Interpolate(aFirst.mColor, aSecond.mColor,
(aPosition - aFirst.mPosition) / delta));
}
// Clamp and extend the given ColorStop array in-place to fit exactly into the
// range [0, 1].
static void ClampColorStops(nsTArray<ColorStop>& aStops) {
MOZ_ASSERT(aStops.Length() > 0);
// If all stops are outside the range, then get rid of everything and replace
// with a single colour.
if (aStops.Length() < 2 || aStops[0].mPosition > 1 ||
aStops.LastElement().mPosition < 0) {
const auto c = aStops[0].mPosition > 1 ? aStops[0].mColor
: aStops.LastElement().mColor;
aStops.Clear();
aStops.AppendElement(ColorStop(0, false, c));
return;
}
// Create the 0 and 1 points if they fall in the range of |aStops|, and
// discard all stops outside the range [0, 1].
// XXX: If we have stops positioned at 0 or 1, we only keep the innermost of
// those stops. This should be fine for the current user(s) of this function.
for (size_t i = aStops.Length() - 1; i > 0; i--) {
if (aStops[i - 1].mPosition < 1 && aStops[i].mPosition >= 1) {
// Add a point to position 1.
aStops[i] =
InterpolateColorStop(aStops[i - 1], aStops[i],
/* aPosition = */ 1, aStops[i - 1].mColor);
// Remove all the elements whose position is greater than 1.
aStops.RemoveLastElements(aStops.Length() - (i + 1));
}
if (aStops[i - 1].mPosition <= 0 && aStops[i].mPosition > 0) {
// Add a point to position 0.
aStops[i - 1] =
InterpolateColorStop(aStops[i - 1], aStops[i],
/* aPosition = */ 0, aStops[i].mColor);
// Remove all of the preceding stops -- they are all negative.
aStops.RemoveElementsAt(0, i - 1);
break;
}
}
MOZ_ASSERT(aStops[0].mPosition >= -1e6);
MOZ_ASSERT(aStops.LastElement().mPosition - 1 <= 1e6);
// The end points won't exist yet if they don't fall in the original range of
// |aStops|. Create them if needed.
if (aStops[0].mPosition > 0) {
aStops.InsertElementAt(0, ColorStop(0, false, aStops[0].mColor));
}
if (aStops.LastElement().mPosition < 1) {
aStops.AppendElement(ColorStop(1, false, aStops.LastElement().mColor));
}
}
namespace mozilla {
template <typename T>
static StyleAbsoluteColor GetSpecifiedColor(
const StyleGenericGradientItem<StyleColor, T>& aItem,
const ComputedStyle& aStyle) {
if (aItem.IsInterpolationHint()) {
return StyleAbsoluteColor::TRANSPARENT_BLACK;
}
const StyleColor& c = aItem.IsSimpleColorStop()
? aItem.AsSimpleColorStop()
: aItem.AsComplexColorStop().color;
return c.ResolveColor(aStyle.StyleText()->mColor);
}
static Maybe<double> GetSpecifiedGradientPosition(
const StyleGenericGradientItem<StyleColor, StyleLengthPercentage>& aItem,
CSSCoord aLineLength) {
if (aItem.IsSimpleColorStop()) {
return Nothing();
}
const LengthPercentage& pos = aItem.IsComplexColorStop()
? aItem.AsComplexColorStop().position
: aItem.AsInterpolationHint();
if (pos.ConvertsToPercentage()) {
return Some(pos.ToPercentage());
}
if (aLineLength < 1e-6) {
return Some(0.0);
}
return Some(pos.ResolveToCSSPixels(aLineLength) / aLineLength);
}
// aLineLength argument is unused for conic-gradients.
static Maybe<double> GetSpecifiedGradientPosition(
const StyleGenericGradientItem<StyleColor, StyleAngleOrPercentage>& aItem,
CSSCoord aLineLength) {
if (aItem.IsSimpleColorStop()) {
return Nothing();
}
const StyleAngleOrPercentage& pos = aItem.IsComplexColorStop()
? aItem.AsComplexColorStop().position
: aItem.AsInterpolationHint();
if (pos.IsPercentage()) {
return Some(pos.AsPercentage()._0);
}
return Some(pos.AsAngle().ToRadians() / (2 * M_PI));
}
template <typename T>
static nsTArray<ColorStop> ComputeColorStopsForItems(
ComputedStyle* aComputedStyle,
Span<const StyleGenericGradientItem<StyleColor, T>> aItems,
CSSCoord aLineLength) {
MOZ_ASSERT(!aItems.IsEmpty(),
"The parser should reject gradients with no stops");
nsTArray<ColorStop> stops(aItems.Length());
// If there is a run of stops before stop i that did not have specified
// positions, then this is the index of the first stop in that run.
Maybe<size_t> firstUnsetPosition;
for (size_t i = 0; i < aItems.Length(); ++i) {
const auto& stop = aItems[i];
double position;
Maybe<double> specifiedPosition =
GetSpecifiedGradientPosition(stop, aLineLength);
if (specifiedPosition) {
position = *specifiedPosition;
} else if (i == 0) {
// First stop defaults to position 0.0
position = 0.0;
} else if (i == aItems.Length() - 1) {
// Last stop defaults to position 1.0
position = 1.0;
} else {
// Other stops with no specified position get their position assigned
// later by interpolation, see below.
// Remember where the run of stops with no specified position starts,
// if it starts here.
if (firstUnsetPosition.isNothing()) {
firstUnsetPosition.emplace(i);
}
MOZ_ASSERT(!stop.IsInterpolationHint(),
"Interpolation hints always specify position");
auto color = GetSpecifiedColor(stop, *aComputedStyle);
stops.AppendElement(ColorStop(0, false, color));
continue;
}
if (i > 0) {
// Prevent decreasing stop positions by advancing this position
// to the previous stop position, if necessary
double previousPosition = firstUnsetPosition
? stops[*firstUnsetPosition - 1].mPosition
: stops[i - 1].mPosition;
position = std::max(position, previousPosition);
}
auto stopColor = GetSpecifiedColor(stop, *aComputedStyle);
stops.AppendElement(
ColorStop(position, stop.IsInterpolationHint(), stopColor));
if (firstUnsetPosition) {
// Interpolate positions for all stops that didn't have a specified
// position
double p = stops[*firstUnsetPosition - 1].mPosition;
double d = (stops[i].mPosition - p) / (i - *firstUnsetPosition + 1);
for (size_t j = *firstUnsetPosition; j < i; ++j) {
p += d;
stops[j].mPosition = p;
}
firstUnsetPosition.reset();
}
}
return stops;
}
static nsTArray<ColorStop> ComputeColorStops(ComputedStyle* aComputedStyle,
const StyleGradient& aGradient,
CSSCoord aLineLength) {
if (aGradient.IsLinear()) {
return ComputeColorStopsForItems(
aComputedStyle, aGradient.AsLinear().items.AsSpan(), aLineLength);
}
if (aGradient.IsRadial()) {
return ComputeColorStopsForItems(
aComputedStyle, aGradient.AsRadial().items.AsSpan(), aLineLength);
}
return ComputeColorStopsForItems(
aComputedStyle, aGradient.AsConic().items.AsSpan(), aLineLength);
}
nsCSSGradientRenderer nsCSSGradientRenderer::Create(
nsPresContext* aPresContext, ComputedStyle* aComputedStyle,
const StyleGradient& aGradient, const nsSize& aIntrinsicSize) {
auto srcSize = CSSSize::FromAppUnits(aIntrinsicSize);
// Compute "gradient line" start and end relative to the intrinsic size of
// the gradient.
CSSPoint lineStart, lineEnd, center; // center is for conic gradients only
CSSCoord radiusX = 0, radiusY = 0; // for radial gradients only
float angle = 0.0; // for conic gradients only
if (aGradient.IsLinear()) {
std::tie(lineStart, lineEnd) =
ComputeLinearGradientLine(aPresContext, aGradient, srcSize);
} else if (aGradient.IsRadial()) {
std::tie(lineStart, lineEnd, radiusX, radiusY) =
ComputeRadialGradientLine(aGradient, srcSize);
} else {
MOZ_ASSERT(aGradient.IsConic());
std::tie(center, angle) =
ComputeConicGradientProperties(aGradient, srcSize);
}
// Avoid sending Infs or Nans to downwind draw targets.
if (!lineStart.IsFinite() || !lineEnd.IsFinite()) {
lineStart = lineEnd = CSSPoint(0, 0);
}
if (!center.IsFinite()) {
center = CSSPoint(0, 0);
}
CSSCoord lineLength =
NS_hypot(lineEnd.x - lineStart.x, lineEnd.y - lineStart.y);
// Build color stop array and compute stop positions
nsTArray<ColorStop> stops =
ComputeColorStops(aComputedStyle, aGradient, lineLength);
ResolveMidpoints(stops);
nsCSSGradientRenderer renderer;
renderer.mPresContext = aPresContext;
renderer.mGradient = &aGradient;
renderer.mStops = std::move(stops);
renderer.mLineStart = {
aPresContext->CSSPixelsToDevPixels(lineStart.x),
aPresContext->CSSPixelsToDevPixels(lineStart.y),
};
renderer.mLineEnd = {
aPresContext->CSSPixelsToDevPixels(lineEnd.x),
aPresContext->CSSPixelsToDevPixels(lineEnd.y),
};
renderer.mRadiusX = aPresContext->CSSPixelsToDevPixels(radiusX);
renderer.mRadiusY = aPresContext->CSSPixelsToDevPixels(radiusY);
renderer.mCenter = {
aPresContext->CSSPixelsToDevPixels(center.x),
aPresContext->CSSPixelsToDevPixels(center.y),
};
renderer.mAngle = angle;
return renderer;
}
void nsCSSGradientRenderer::Paint(gfxContext& aContext, const nsRect& aDest,
const nsRect& aFillArea,
const nsSize& aRepeatSize,
const CSSIntRect& aSrc,
const nsRect& aDirtyRect, float aOpacity) {
AUTO_PROFILER_LABEL("nsCSSGradientRenderer::Paint", GRAPHICS);
if (aDest.IsEmpty() || aFillArea.IsEmpty()) {
return;
}
nscoord appUnitsPerDevPixel = mPresContext->AppUnitsPerDevPixel();
gfxFloat lineLength =
NS_hypot(mLineEnd.x - mLineStart.x, mLineEnd.y - mLineStart.y);
bool cellContainsFill = aDest.Contains(aFillArea);
// If a non-repeating linear gradient is axis-aligned and there are no gaps
// between tiles, we can optimise away most of the work by converting to a
// repeating linear gradient and filling the whole destination rect at once.
bool forceRepeatToCoverTiles =
mGradient->IsLinear() &&
(mLineStart.x == mLineEnd.x) != (mLineStart.y == mLineEnd.y) &&
aRepeatSize.width == aDest.width && aRepeatSize.height == aDest.height &&
!(mGradient->Repeating()) && !aSrc.IsEmpty() && !cellContainsFill;
gfxMatrix matrix;
if (forceRepeatToCoverTiles) {
// Length of the source rectangle along the gradient axis.
double rectLen;
// The position of the start of the rectangle along the gradient.
double offset;
// The gradient line is "backwards". Flip the line upside down to make
// things easier, and then rotate the matrix to turn everything back the
// right way up.
if (mLineStart.x > mLineEnd.x || mLineStart.y > mLineEnd.y) {
std::swap(mLineStart, mLineEnd);
matrix.PreScale(-1, -1);
}
// Fit the gradient line exactly into the source rect.
// aSrc is relative to aIntrinsincSize.
// srcRectDev will be relative to srcSize, so in the same coordinate space
// as lineStart / lineEnd.
gfxRect srcRectDev = nsLayoutUtils::RectToGfxRect(
CSSPixel::ToAppUnits(aSrc), appUnitsPerDevPixel);
if (mLineStart.x != mLineEnd.x) {
rectLen = srcRectDev.width;
offset = (srcRectDev.x - mLineStart.x) / lineLength;
mLineStart.x = srcRectDev.x;
mLineEnd.x = srcRectDev.XMost();
} else {
rectLen = srcRectDev.height;
offset = (srcRectDev.y - mLineStart.y) / lineLength;
mLineStart.y = srcRectDev.y;
mLineEnd.y = srcRectDev.YMost();
}
// Adjust gradient stop positions for the new gradient line.
double scale = lineLength / rectLen;
for (size_t i = 0; i < mStops.Length(); i++) {
mStops[i].mPosition = (mStops[i].mPosition - offset) * fabs(scale);
}
// Clamp or extrapolate gradient stops to exactly [0, 1].
ClampColorStops(mStops);
lineLength = rectLen;
}
// Eliminate negative-position stops if the gradient is radial.
double firstStop = mStops[0].mPosition;
if (mGradient->IsRadial() && firstStop < 0.0) {
if (mGradient->AsRadial().flags & StyleGradientFlags::REPEATING) {
// Choose an instance of the repeated pattern that gives us all positive
// stop-offsets.
double lastStop = mStops[mStops.Length() - 1].mPosition;
double stopDelta = lastStop - firstStop;
// If all the stops are in approximately the same place then logic below
// will kick in that makes us draw just the last stop color, so don't
// try to do anything in that case. We certainly need to avoid
// dividing by zero.
if (stopDelta >= 1e-6) {
double instanceCount = ceil(-firstStop / stopDelta);
// Advance stops by instanceCount multiples of the period of the
// repeating gradient.
double offset = instanceCount * stopDelta;
for (uint32_t i = 0; i < mStops.Length(); i++) {
mStops[i].mPosition += offset;
}
}
} else {
// Move negative-position stops to position 0.0. We may also need
// to set the color of the stop to the color the gradient should have
// at the center of the ellipse.
for (uint32_t i = 0; i < mStops.Length(); i++) {
double pos = mStops[i].mPosition;
if (pos < 0.0) {
mStops[i].mPosition = 0.0;
// If this is the last stop, we don't need to adjust the color,
// it will fill the entire area.
if (i < mStops.Length() - 1) {
double nextPos = mStops[i + 1].mPosition;
// If nextPos is approximately equal to pos, then we don't
// need to adjust the color of this stop because it's
// not going to be displayed.
// If nextPos is negative, we don't need to adjust the color of
// this stop since it's not going to be displayed because
// nextPos will also be moved to 0.0.
if (nextPos >= 0.0 && nextPos - pos >= 1e-6) {
// Compute how far the new position 0.0 is along the interval
// between pos and nextPos.
// XXX Color interpolation (in cairo, too) should use the
// CSS 'color-interpolation' property!
float frac = float((0.0 - pos) / (nextPos - pos));
mStops[i].mColor =
Interpolate(mStops[i].mColor, mStops[i + 1].mColor, frac);
}
}
}
}
}
firstStop = mStops[0].mPosition;
MOZ_ASSERT(firstStop >= 0.0, "Failed to fix stop offsets");
}
if (mGradient->IsRadial() &&
!(mGradient->AsRadial().flags & StyleGradientFlags::REPEATING)) {
// Direct2D can only handle a particular class of radial gradients because
// of the way the it specifies gradients. Setting firstStop to 0, when we
// can, will help us stay on the fast path. Currently we don't do this
// for repeating gradients but we could by adjusting the stop collection
// to start at 0
firstStop = 0;
}
double lastStop = mStops[mStops.Length() - 1].mPosition;
// Cairo gradients must have stop positions in the range [0, 1]. So,
// stop positions will be normalized below by subtracting firstStop and then
// multiplying by stopScale.
double stopScale;
double stopOrigin = firstStop;
double stopEnd = lastStop;
double stopDelta = lastStop - firstStop;
bool zeroRadius =
mGradient->IsRadial() && (mRadiusX < 1e-6 || mRadiusY < 1e-6);
if (stopDelta < 1e-6 || (!mGradient->IsConic() && lineLength < 1e-6) ||
zeroRadius) {
// Stops are all at the same place. Map all stops to 0.0.
// For repeating radial gradients, or for any radial gradients with
// a zero radius, we need to fill with the last stop color, so just set
// both radii to 0.
if (mGradient->Repeating() || zeroRadius) {
mRadiusX = mRadiusY = 0.0;
}
stopDelta = 0.0;
}
// Don't normalize non-repeating or degenerate gradients below 0..1
// This keeps the gradient line as large as the box and doesn't
// lets us avoiding having to get padding correct for stops
// at 0 and 1
if (!mGradient->Repeating() || stopDelta == 0.0) {
stopOrigin = std::min(stopOrigin, 0.0);
stopEnd = std::max(stopEnd, 1.0);
}
stopScale = 1.0 / (stopEnd - stopOrigin);
// Create the gradient pattern.
RefPtr<gfxPattern> gradientPattern;
gfxPoint gradientStart;
gfxPoint gradientEnd;
if (mGradient->IsLinear()) {
// Compute the actual gradient line ends we need to pass to cairo after
// stops have been normalized.
gradientStart = mLineStart + (mLineEnd - mLineStart) * stopOrigin;
gradientEnd = mLineStart + (mLineEnd - mLineStart) * stopEnd;
if (stopDelta == 0.0) {
// Stops are all at the same place. For repeating gradients, this will
// just paint the last stop color. We don't need to do anything.
// For non-repeating gradients, this should render as two colors, one
// on each "side" of the gradient line segment, which is a point. All
// our stops will be at 0.0; we just need to set the direction vector
// correctly.
gradientEnd = gradientStart + (mLineEnd - mLineStart);
}
gradientPattern = new gfxPattern(gradientStart.x, gradientStart.y,
gradientEnd.x, gradientEnd.y);
} else if (mGradient->IsRadial()) {
NS_ASSERTION(firstStop >= 0.0,
"Negative stops not allowed for radial gradients");
// To form an ellipse, we'll stretch a circle vertically, if necessary.
// So our radii are based on radiusX.
double innerRadius = mRadiusX * stopOrigin;
double outerRadius = mRadiusX * stopEnd;
if (stopDelta == 0.0) {
// Stops are all at the same place. See above (except we now have
// the inside vs. outside of an ellipse).
outerRadius = innerRadius + 1;
}
gradientPattern = new gfxPattern(mLineStart.x, mLineStart.y, innerRadius,
mLineStart.x, mLineStart.y, outerRadius);
if (mRadiusX != mRadiusY) {
// Stretch the circles into ellipses vertically by setting a transform
// in the pattern.
// Recall that this is the transform from user space to pattern space.
// So to stretch the ellipse by factor of P vertically, we scale
// user coordinates by 1/P.
matrix.PreTranslate(mLineStart);
matrix.PreScale(1.0, mRadiusX / mRadiusY);
matrix.PreTranslate(-mLineStart);
}
} else {
gradientPattern =
new gfxPattern(mCenter.x, mCenter.y, mAngle, stopOrigin, stopEnd);
}
// Use a pattern transform to take account of source and dest rects
matrix.PreTranslate(gfxPoint(mPresContext->CSSPixelsToDevPixels(aSrc.x),
mPresContext->CSSPixelsToDevPixels(aSrc.y)));
matrix.PreScale(
gfxFloat(nsPresContext::CSSPixelsToAppUnits(aSrc.width)) / aDest.width,
gfxFloat(nsPresContext::CSSPixelsToAppUnits(aSrc.height)) / aDest.height);
gradientPattern->SetMatrix(matrix);
if (stopDelta == 0.0) {
// Non-repeating gradient with all stops in same place -> just add
// first stop and last stop, both at position 0.
// Repeating gradient with all stops in the same place, or radial
// gradient with radius of 0 -> just paint the last stop color.
// We use firstStop offset to keep |stops| with same units (will later
// normalize to 0).
auto firstColor(mStops[0].mColor);
auto lastColor(mStops.LastElement().mColor);
mStops.Clear();
if (!mGradient->Repeating() && !zeroRadius) {
mStops.AppendElement(ColorStop(firstStop, false, firstColor));
}
mStops.AppendElement(ColorStop(firstStop, false, lastColor));
}
ResolvePremultipliedAlpha(mStops);
bool isRepeat = mGradient->Repeating() || forceRepeatToCoverTiles;
// Now set normalized color stops in pattern.
// Offscreen gradient surface cache (not a tile):
// On some backends (e.g. D2D), the GradientStops object holds an offscreen
// surface which is a lookup table used to evaluate the gradient. This surface
// can use much memory (ram and/or GPU ram) and can be expensive to create. So
// we cache it. The cache key correlates 1:1 with the arguments for
// CreateGradientStops (also the implied backend type) Note that GradientStop
// is a simple struct with a stop value (while GradientStops has the surface).
nsTArray<gfx::GradientStop> rawStops(mStops.Length());
StyleColorInterpolationMethod styleColorInterpolationMethod =
mGradient->ColorInterpolationMethod();
if (styleColorInterpolationMethod.space != StyleColorSpace::Srgb ||
gfxPlatform::GetCMSMode() == CMSMode::All) {
class MOZ_STACK_CLASS GradientStopInterpolator final
: public ColorStopInterpolator<GradientStopInterpolator> {
public:
GradientStopInterpolator(
const nsTArray<ColorStop>& aStops,
const StyleColorInterpolationMethod& aStyleColorInterpolationMethod,
bool aExtend, nsTArray<gfx::GradientStop>& aResult)
: ColorStopInterpolator(aStops, aStyleColorInterpolationMethod,
aExtend),
mStops(aResult) {}
void CreateStop(float aPosition, gfx::DeviceColor aColor) {
mStops.AppendElement(gfx::GradientStop{aPosition, aColor});
}
private:
nsTArray<gfx::GradientStop>& mStops;
};
bool extend = !isRepeat && styleColorInterpolationMethod.hue ==
StyleHueInterpolationMethod::Longer;
GradientStopInterpolator interpolator(mStops, styleColorInterpolationMethod,
extend, rawStops);
interpolator.CreateStops();
} else {
rawStops.SetLength(mStops.Length());
for (uint32_t i = 0; i < mStops.Length(); i++) {
rawStops[i].color = ToDeviceColor(mStops[i].mColor);
rawStops[i].color.a *= aOpacity;
rawStops[i].offset = stopScale * (mStops[i].mPosition - stopOrigin);
}
}
RefPtr<mozilla::gfx::GradientStops> gs =
gfxGradientCache::GetOrCreateGradientStops(
aContext.GetDrawTarget(), rawStops,
isRepeat ? gfx::ExtendMode::REPEAT : gfx::ExtendMode::CLAMP);
gradientPattern->SetColorStops(gs);
// Paint gradient tiles. This isn't terribly efficient, but doing it this
// way is simple and sure to get pixel-snapping right. We could speed things
// up by drawing tiles into temporary surfaces and copying those to the
// destination, but after pixel-snapping tiles may not all be the same size.
nsRect dirty;
if (!dirty.IntersectRect(aDirtyRect, aFillArea)) {
return;
}
gfxRect areaToFill =
nsLayoutUtils::RectToGfxRect(aFillArea, appUnitsPerDevPixel);
gfxRect dirtyAreaToFill =
nsLayoutUtils::RectToGfxRect(dirty, appUnitsPerDevPixel);
dirtyAreaToFill.RoundOut();
Matrix ctm = aContext.CurrentMatrix();
bool isCTMPreservingAxisAlignedRectangles =
ctm.PreservesAxisAlignedRectangles();
// xStart/yStart are the top-left corner of the top-left tile.
nscoord xStart = FindTileStart(dirty.x, aDest.x, aRepeatSize.width);
nscoord yStart = FindTileStart(dirty.y, aDest.y, aRepeatSize.height);
nscoord xEnd = forceRepeatToCoverTiles ? xStart + aDest.width : dirty.XMost();
nscoord yEnd =
forceRepeatToCoverTiles ? yStart + aDest.height : dirty.YMost();
if (TryPaintTilesWithExtendMode(aContext, gradientPattern, xStart, yStart,
dirtyAreaToFill, aDest, aRepeatSize,
forceRepeatToCoverTiles)) {
return;
}
// x and y are the top-left corner of the tile to draw
for (nscoord y = yStart; y < yEnd; y += aRepeatSize.height) {
for (nscoord x = xStart; x < xEnd; x += aRepeatSize.width) {
// The coordinates of the tile
gfxRect tileRect = nsLayoutUtils::RectToGfxRect(
nsRect(x, y, aDest.width, aDest.height), appUnitsPerDevPixel);
// The actual area to fill with this tile is the intersection of this
// tile with the overall area we're supposed to be filling
gfxRect fillRect =
forceRepeatToCoverTiles ? areaToFill : tileRect.Intersect(areaToFill);
// Try snapping the fill rect. Snap its top-left and bottom-right
// independently to preserve the orientation.
gfxPoint snappedFillRectTopLeft = fillRect.TopLeft();
gfxPoint snappedFillRectTopRight = fillRect.TopRight();
gfxPoint snappedFillRectBottomRight = fillRect.BottomRight();
// Snap three points instead of just two to ensure we choose the
// correct orientation if there's a reflection.
if (isCTMPreservingAxisAlignedRectangles &&
aContext.UserToDevicePixelSnapped(snappedFillRectTopLeft, true) &&
aContext.UserToDevicePixelSnapped(snappedFillRectBottomRight, true) &&
aContext.UserToDevicePixelSnapped(snappedFillRectTopRight, true)) {
if (snappedFillRectTopLeft.x == snappedFillRectBottomRight.x ||
snappedFillRectTopLeft.y == snappedFillRectBottomRight.y) {
// Nothing to draw; avoid scaling by zero and other weirdness that
// could put the context in an error state.
continue;
}
// Set the context's transform to the transform that maps fillRect to
// snappedFillRect. The part of the gradient that was going to
// exactly fill fillRect will fill snappedFillRect instead.
gfxMatrix transform = gfxUtils::TransformRectToRect(
fillRect, snappedFillRectTopLeft, snappedFillRectTopRight,
snappedFillRectBottomRight);
aContext.SetMatrixDouble(transform);
}
aContext.NewPath();
aContext.Rectangle(fillRect);
gfxRect dirtyFillRect = fillRect.Intersect(dirtyAreaToFill);
gfxRect fillRectRelativeToTile = dirtyFillRect - tileRect.TopLeft();
auto edgeColor = StyleAbsoluteColor::TRANSPARENT_BLACK;
if (mGradient->IsLinear() && !isRepeat &&
RectIsBeyondLinearGradientEdge(fillRectRelativeToTile, matrix, mStops,
gradientStart, gradientEnd,
&edgeColor)) {
edgeColor.alpha *= aOpacity;
aContext.SetColor(ToSRGBColor(edgeColor));
} else {
aContext.SetMatrixDouble(
aContext.CurrentMatrixDouble().Copy().PreTranslate(
tileRect.TopLeft()));
aContext.SetPattern(gradientPattern);
}
aContext.Fill();
aContext.SetMatrix(ctm);
}
}
}
bool nsCSSGradientRenderer::TryPaintTilesWithExtendMode(
gfxContext& aContext, gfxPattern* aGradientPattern, nscoord aXStart,
nscoord aYStart, const gfxRect& aDirtyAreaToFill, const nsRect& aDest,
const nsSize& aRepeatSize, bool aForceRepeatToCoverTiles) {
// If we have forced a non-repeating gradient to repeat to cover tiles,
// then it will be faster to just paint it once using that optimization
if (aForceRepeatToCoverTiles) {
return false;
}
nscoord appUnitsPerDevPixel = mPresContext->AppUnitsPerDevPixel();
// We can only use this fast path if we don't have to worry about pixel
// snapping, and there is no spacing between tiles. We could handle spacing
// by increasing the size of tileSurface and leaving it transparent, but I'm
// not sure it's worth it
bool canUseExtendModeForTiling = (aXStart % appUnitsPerDevPixel == 0) &&
(aYStart % appUnitsPerDevPixel == 0) &&
(aDest.width % appUnitsPerDevPixel == 0) &&
(aDest.height % appUnitsPerDevPixel == 0) &&
(aRepeatSize.width == aDest.width) &&
(aRepeatSize.height == aDest.height);
if (!canUseExtendModeForTiling) {
return false;
}
IntSize tileSize{
NSAppUnitsToIntPixels(aDest.width, appUnitsPerDevPixel),
NSAppUnitsToIntPixels(aDest.height, appUnitsPerDevPixel),
};
// Check whether this is a reasonable surface size and doesn't overflow
// before doing calculations with the tile size
if (!Factory::ReasonableSurfaceSize(tileSize)) {
return false;
}
// We only want to do this when there are enough tiles to justify the
// overhead of painting to an offscreen surface. The heuristic here
// is when we will be painting at least 16 tiles or more, this is kind
// of arbitrary
bool shouldUseExtendModeForTiling =
aDirtyAreaToFill.Area() > (tileSize.width * tileSize.height) * 16.0;
if (!shouldUseExtendModeForTiling) {
return false;
}
// Draw the gradient pattern into a surface for our single tile
RefPtr<gfx::SourceSurface> tileSurface;
{
RefPtr<gfx::DrawTarget> tileTarget =
aContext.GetDrawTarget()->CreateSimilarDrawTarget(
tileSize, gfx::SurfaceFormat::B8G8R8A8);
if (!tileTarget || !tileTarget->IsValid()) {
return false;
}
{
gfxContext tileContext(tileTarget);
tileContext.SetPattern(aGradientPattern);
tileContext.Paint();
}
tileSurface = tileTarget->Snapshot();
tileTarget = nullptr;
}
// Draw the gradient using tileSurface as a repeating pattern masked by
// the dirtyRect
Matrix tileTransform = Matrix::Translation(
NSAppUnitsToFloatPixels(aXStart, appUnitsPerDevPixel),
NSAppUnitsToFloatPixels(aYStart, appUnitsPerDevPixel));
aContext.NewPath();
aContext.Rectangle(aDirtyAreaToFill);
aContext.Fill(SurfacePattern(tileSurface, ExtendMode::REPEAT, tileTransform));
return true;
}
class MOZ_STACK_CLASS WrColorStopInterpolator
: public ColorStopInterpolator<WrColorStopInterpolator> {
public:
WrColorStopInterpolator(
const nsTArray<ColorStop>& aStops,
const StyleColorInterpolationMethod& aStyleColorInterpolationMethod,
float aOpacity, nsTArray<wr::GradientStop>& aResult, bool aExtend)
: ColorStopInterpolator(aStops, aStyleColorInterpolationMethod, aExtend),
mResult(aResult),
mOpacity(aOpacity),
mOutputStop(0) {}
void CreateStops() {
mResult.SetLengthAndRetainStorage(0);
// We always emit at least two stops (start and end) for each input stop,
// which avoids ambiguity with incomplete oklch/lch/hsv/hsb color stops for
// the last stop pair, where the last color stop can't be interpreted on its
// own because it actually depends on the previous stop.
mResult.SetLength(mStops.Length() * 2 + kFullRangeExtraStops);
mOutputStop = 0;
ColorStopInterpolator::CreateStops();
mResult.SetLength(mOutputStop);
}
void CreateStop(float aPosition, DeviceColor aColor) {
if (mOutputStop < mResult.Capacity()) {
mResult[mOutputStop].color = wr::ToColorF(aColor);
mResult[mOutputStop].color.a *= mOpacity;
mResult[mOutputStop].offset = aPosition;
mOutputStop++;
}
}
private:
nsTArray<wr::GradientStop>& mResult;
float mOpacity;
uint32_t mOutputStop;
};
void nsCSSGradientRenderer::BuildWebRenderParameters(
float aOpacity, wr::ExtendMode& aMode, nsTArray<wr::GradientStop>& aStops,
LayoutDevicePoint& aLineStart, LayoutDevicePoint& aLineEnd,
LayoutDeviceSize& aGradientRadius, LayoutDevicePoint& aGradientCenter,
float& aGradientAngle) {
aMode =
mGradient->Repeating() ? wr::ExtendMode::Repeat : wr::ExtendMode::Clamp;
// If the interpolation space is not sRGB, or if color management is active,
// we need to add additional stops so that the sRGB interpolation in WebRender
// still closely approximates the correct curves. We prefer avoiding this if
// the gradient is simple because WebRender has fast rendering of linear
// gradients with 2 stops (which represent >99% of all gradients on the web).
//
// WebRender doesn't have easy access to StyleAbsoluteColor and CMS display
// color correction, so we just expand the gradient stop table significantly
// so that gamma and hue interpolation errors become imperceptible.
//
// This always turns into 128 pairs of stops inside WebRender as an
// implementation detail, so the number of stops we generate here should have
// very little impact on performance as the texture upload is always the same,
// except for the special linear gradient 2-stop case, and it is gpucache so
// if it does not change it is not re-uploaded.
//
// Color management bugs that this addresses:
// * https://bugzilla.mozilla.org/show_bug.cgi?id=939387
// * https://bugzilla.mozilla.org/show_bug.cgi?id=1248178
StyleColorInterpolationMethod styleColorInterpolationMethod =
mGradient->ColorInterpolationMethod();
// For colorspaces supported by WebRender (Srgb, Hsl, Hwb) we technically do
// not need to add extra stops, but the only one of those colorspaces that
// appears frequently is Srgb, and Srgb still needs extra stops if CMS is
// enabled. Hsl/Hwb need extra stops if StyleHueInterpolationMethod is not
// Shorter, or if CMS is enabled.
//
// It's probably best to keep this logic as simple as possible, see
// https://bugzilla.mozilla.org/show_bug.cgi?id=1885716 for an example of
// what can happen if we try to be clever here.
if (styleColorInterpolationMethod.space != StyleColorSpace::Srgb ||
gfxPlatform::GetCMSMode() == CMSMode::All) {
// For the specific case of longer hue interpolation on a CSS non-repeating
// gradient, we have to pretend there is another stop at position=1.0 that
// duplicates the last stop, this is probably only used for things like a
// color wheel. No such problem for SVG as it doesn't have that complexity.
bool extend = aMode == wr::ExtendMode::Clamp &&
styleColorInterpolationMethod.hue ==
StyleHueInterpolationMethod::Longer;
WrColorStopInterpolator interpolator(mStops, styleColorInterpolationMethod,
aOpacity, aStops, extend);
interpolator.CreateStops();
} else {
aStops.SetLength(mStops.Length());
for (uint32_t i = 0; i < mStops.Length(); i++) {
aStops[i].color = wr::ToColorF(ToDeviceColor(mStops[i].mColor));
aStops[i].color.a *= aOpacity;
aStops[i].offset = (float)mStops[i].mPosition;
}
}
aLineStart = LayoutDevicePoint(mLineStart.x, mLineStart.y);
aLineEnd = LayoutDevicePoint(mLineEnd.x, mLineEnd.y);
aGradientRadius = LayoutDeviceSize(mRadiusX, mRadiusY);
aGradientCenter = LayoutDevicePoint(mCenter.x, mCenter.y);
aGradientAngle = mAngle;
}
void nsCSSGradientRenderer::BuildWebRenderDisplayItems(
wr::DisplayListBuilder& aBuilder, const layers::StackingContextHelper& aSc,
const nsRect& aDest, const nsRect& aFillArea, const nsSize& aRepeatSize,
const CSSIntRect& aSrc, bool aIsBackfaceVisible, float aOpacity) {
if (aDest.IsEmpty() || aFillArea.IsEmpty()) {
return;
}
wr::ExtendMode extendMode;
nsTArray<wr::GradientStop> stops;
LayoutDevicePoint lineStart;
LayoutDevicePoint lineEnd;
LayoutDeviceSize gradientRadius;
LayoutDevicePoint gradientCenter;
float gradientAngle;
BuildWebRenderParameters(aOpacity, extendMode, stops, lineStart, lineEnd,
gradientRadius, gradientCenter, gradientAngle);
nscoord appUnitsPerDevPixel = mPresContext->AppUnitsPerDevPixel();
nsPoint firstTile =
nsPoint(FindTileStart(aFillArea.x, aDest.x, aRepeatSize.width),
FindTileStart(aFillArea.y, aDest.y, aRepeatSize.height));
// Translate the parameters into device coordinates
LayoutDeviceRect clipBounds =
LayoutDevicePixel::FromAppUnits(aFillArea, appUnitsPerDevPixel);
LayoutDeviceRect firstTileBounds = LayoutDevicePixel::FromAppUnits(
nsRect(firstTile, aDest.Size()), appUnitsPerDevPixel);
LayoutDeviceSize tileRepeat =
LayoutDevicePixel::FromAppUnits(aRepeatSize, appUnitsPerDevPixel);
// Calculate the bounds of the gradient display item, which starts at the
// first tile and extends to the end of clip bounds
LayoutDevicePoint tileToClip =
clipBounds.BottomRight() - firstTileBounds.TopLeft();
LayoutDeviceRect gradientBounds = LayoutDeviceRect(
firstTileBounds.TopLeft(), LayoutDeviceSize(tileToClip.x, tileToClip.y));
// Calculate the tile spacing, which is the repeat size minus the tile size
LayoutDeviceSize tileSpacing = tileRepeat - firstTileBounds.Size();
// srcTransform is used for scaling the gradient to match aSrc
LayoutDeviceRect srcTransform = LayoutDeviceRect(
nsPresContext::CSSPixelsToAppUnits(aSrc.x),
nsPresContext::CSSPixelsToAppUnits(aSrc.y),
aDest.width / ((float)nsPresContext::CSSPixelsToAppUnits(aSrc.width)),
aDest.height / ((float)nsPresContext::CSSPixelsToAppUnits(aSrc.height)));
lineStart.x = (lineStart.x - srcTransform.x) * srcTransform.width;
lineStart.y = (lineStart.y - srcTransform.y) * srcTransform.height;
gradientCenter.x = (gradientCenter.x - srcTransform.x) * srcTransform.width;
gradientCenter.y = (gradientCenter.y - srcTransform.y) * srcTransform.height;
if (mGradient->IsLinear()) {
lineEnd.x = (lineEnd.x - srcTransform.x) * srcTransform.width;
lineEnd.y = (lineEnd.y - srcTransform.y) * srcTransform.height;
aBuilder.PushLinearGradient(
mozilla::wr::ToLayoutRect(gradientBounds),
mozilla::wr::ToLayoutRect(clipBounds), aIsBackfaceVisible,
mozilla::wr::ToLayoutPoint(lineStart),
mozilla::wr::ToLayoutPoint(lineEnd), stops, extendMode,
mozilla::wr::ToLayoutSize(firstTileBounds.Size()),
mozilla::wr::ToLayoutSize(tileSpacing));
} else if (mGradient->IsRadial()) {
gradientRadius.width *= srcTransform.width;
gradientRadius.height *= srcTransform.height;
aBuilder.PushRadialGradient(
mozilla::wr::ToLayoutRect(gradientBounds),
mozilla::wr::ToLayoutRect(clipBounds), aIsBackfaceVisible,
mozilla::wr::ToLayoutPoint(lineStart),
mozilla::wr::ToLayoutSize(gradientRadius), stops, extendMode,
mozilla::wr::ToLayoutSize(firstTileBounds.Size()),
mozilla::wr::ToLayoutSize(tileSpacing));
} else {
MOZ_ASSERT(mGradient->IsConic());
aBuilder.PushConicGradient(
mozilla::wr::ToLayoutRect(gradientBounds),
mozilla::wr::ToLayoutRect(clipBounds), aIsBackfaceVisible,
mozilla::wr::ToLayoutPoint(gradientCenter), gradientAngle, stops,
extendMode, mozilla::wr::ToLayoutSize(firstTileBounds.Size()),
mozilla::wr::ToLayoutSize(tileSpacing));
}
}
} // namespace mozilla
|