1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
|
/*
* Copyright © 2013 Sebastien Alaiwan <sebastien.alaiwan@gmail.com>
*
* This program is made available under an ISC-style license. See the
* accompanying file LICENSE for details.
*/
/* libcubeb api/function exhaustive test. Plays a series of tones in different
* conditions. */
#include "gtest/gtest.h"
#if !defined(_XOPEN_SOURCE)
#define _XOPEN_SOURCE 600
#endif
#include "cubeb/cubeb.h"
#include <math.h>
#include <memory>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <string>
// #define ENABLE_NORMAL_LOG
// #define ENABLE_VERBOSE_LOG
#include "common.h"
using namespace std;
#define MAX_NUM_CHANNELS 32
#define VOLUME 0.2
float
get_frequency(int channel_index)
{
return 220.0f * (channel_index + 1);
}
template <typename T>
T
ConvertSample(double input);
template <>
float
ConvertSample(double input)
{
return input;
}
template <>
short
ConvertSample(double input)
{
return short(input * 32767.0f);
}
/* store the phase of the generated waveform */
struct synth_state {
synth_state(int num_channels_, float sample_rate_)
: num_channels(num_channels_), sample_rate(sample_rate_)
{
for (int i = 0; i < MAX_NUM_CHANNELS; ++i)
phase[i] = 0.0f;
}
template <typename T> void run(T * audiobuffer, long nframes)
{
for (int c = 0; c < num_channels; ++c) {
float freq = get_frequency(c);
float phase_inc = 2.0 * M_PI * freq / sample_rate;
for (long n = 0; n < nframes; ++n) {
audiobuffer[n * num_channels + c] =
ConvertSample<T>(sin(phase[c]) * VOLUME);
phase[c] += phase_inc;
}
}
}
private:
int num_channels;
float phase[MAX_NUM_CHANNELS];
float sample_rate;
};
template <typename T>
long
data_cb(cubeb_stream * /*stream*/, void * user, const void * /*inputbuffer*/,
void * outputbuffer, long nframes)
{
synth_state * synth = (synth_state *)user;
synth->run((T *)outputbuffer, nframes);
return nframes;
}
void
state_cb_audio(cubeb_stream * /*stream*/, void * /*user*/,
cubeb_state /*state*/)
{
}
/* Our android backends don't support float, only int16. */
int
supports_float32(string backend_id)
{
return backend_id != "opensl" && backend_id != "audiotrack";
}
/* Some backends don't have code to deal with more than mono or stereo. */
int
supports_channel_count(string backend_id, int nchannels)
{
return nchannels <= 2 ||
(backend_id != "opensl" && backend_id != "audiotrack");
}
int
run_test(int num_channels, int sampling_rate, int is_float)
{
int r = CUBEB_OK;
cubeb * ctx = NULL;
r = common_init(&ctx, "Cubeb audio test: channels");
if (r != CUBEB_OK) {
fprintf(stderr, "Error initializing cubeb library\n");
return r;
}
std::unique_ptr<cubeb, decltype(&cubeb_destroy)> cleanup_cubeb_at_exit(
ctx, cubeb_destroy);
const char * backend_id = cubeb_get_backend_id(ctx);
if ((is_float && !supports_float32(backend_id)) ||
!supports_channel_count(backend_id, num_channels)) {
/* don't treat this as a test failure. */
return CUBEB_OK;
}
fprintf(stderr, "Testing %d channel(s), %d Hz, %s (%s)\n", num_channels,
sampling_rate, is_float ? "float" : "short",
cubeb_get_backend_id(ctx));
cubeb_stream_params params;
params.format = is_float ? CUBEB_SAMPLE_FLOAT32NE : CUBEB_SAMPLE_S16NE;
params.rate = sampling_rate;
params.channels = num_channels;
params.layout = CUBEB_LAYOUT_UNDEFINED;
params.prefs = CUBEB_STREAM_PREF_NONE;
synth_state synth(params.channels, params.rate);
cubeb_stream * stream = NULL;
r = cubeb_stream_init(ctx, &stream, "test tone", NULL, NULL, NULL, ¶ms,
4096, is_float ? &data_cb<float> : &data_cb<short>,
state_cb_audio, &synth);
if (r != CUBEB_OK) {
fprintf(stderr, "Error initializing cubeb stream: %d\n", r);
return r;
}
std::unique_ptr<cubeb_stream, decltype(&cubeb_stream_destroy)>
cleanup_stream_at_exit(stream, cubeb_stream_destroy);
cubeb_stream_start(stream);
delay(200);
cubeb_stream_stop(stream);
return r;
}
int
run_volume_test(int is_float)
{
int r = CUBEB_OK;
cubeb * ctx = NULL;
r = common_init(&ctx, "Cubeb audio test");
if (r != CUBEB_OK) {
fprintf(stderr, "Error initializing cubeb library\n");
return r;
}
std::unique_ptr<cubeb, decltype(&cubeb_destroy)> cleanup_cubeb_at_exit(
ctx, cubeb_destroy);
const char * backend_id = cubeb_get_backend_id(ctx);
if ((is_float && !supports_float32(backend_id))) {
/* don't treat this as a test failure. */
return CUBEB_OK;
}
cubeb_stream_params params;
params.format = is_float ? CUBEB_SAMPLE_FLOAT32NE : CUBEB_SAMPLE_S16NE;
params.rate = 44100;
params.channels = 2;
params.layout = CUBEB_LAYOUT_STEREO;
params.prefs = CUBEB_STREAM_PREF_NONE;
synth_state synth(params.channels, params.rate);
cubeb_stream * stream = NULL;
r = cubeb_stream_init(ctx, &stream, "test tone", NULL, NULL, NULL, ¶ms,
4096, is_float ? &data_cb<float> : &data_cb<short>,
state_cb_audio, &synth);
if (r != CUBEB_OK) {
fprintf(stderr, "Error initializing cubeb stream: %d\n", r);
return r;
}
std::unique_ptr<cubeb_stream, decltype(&cubeb_stream_destroy)>
cleanup_stream_at_exit(stream, cubeb_stream_destroy);
fprintf(stderr, "Testing: volume\n");
for (int i = 0; i <= 4; ++i) {
fprintf(stderr, "Volume: %d%%\n", i * 25);
cubeb_stream_set_volume(stream, i / 4.0f);
cubeb_stream_start(stream);
delay(400);
cubeb_stream_stop(stream);
delay(100);
}
return r;
}
TEST(cubeb, run_volume_test_short) { ASSERT_EQ(run_volume_test(0), CUBEB_OK); }
TEST(cubeb, run_volume_test_float) { ASSERT_EQ(run_volume_test(1), CUBEB_OK); }
TEST(cubeb, run_channel_rate_test)
{
unsigned int channel_values[] = {
1, 2, 3, 4, 6,
};
int freq_values[] = {
16000,
24000,
44100,
48000,
};
for (auto channels : channel_values) {
for (auto freq : freq_values) {
ASSERT_TRUE(channels < MAX_NUM_CHANNELS);
fprintf(stderr, "--------------------------\n");
ASSERT_EQ(run_test(channels, freq, 0), CUBEB_OK);
ASSERT_EQ(run_test(channels, freq, 1), CUBEB_OK);
}
}
}
#undef MAX_NUM_CHANNELS
#undef VOLUME
|