1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
|
/*
* Copyright © 2016 Mozilla Foundation
*
* This program is made available under an ISC-style license. See the
* accompanying file LICENSE for details.
*/
#ifndef NOMINMAX
#define NOMINMAX
#endif // NOMINMAX
#include "cubeb/cubeb.h"
#include "cubeb_audio_dump.h"
#include "cubeb_log.h"
#include "cubeb_resampler.h"
// #define ENABLE_NORMAL_LOG
// #define ENABLE_VERBOSE_LOG
#include "common.h"
#include "cubeb_resampler_internal.h"
#include "gtest/gtest.h"
#include <algorithm>
#include <cmath>
#include <iostream>
#include <queue>
#include <stdio.h>
#include <thread>
/* Windows cmath USE_MATH_DEFINE thing... */
const float PI = 3.14159265359f;
/* Testing all sample rates is very long, so if THOROUGH_TESTING is not defined,
* only part of the test suite is ran. */
#ifdef THOROUGH_TESTING
/* Some standard sample rates we're testing with. */
const uint32_t sample_rates[] = {8000, 16000, 32000, 44100,
48000, 88200, 96000, 192000};
/* The maximum number of channels we're resampling. */
const uint32_t max_channels = 2;
/* The minimum an maximum number of milliseconds we're resampling for. This is
* used to simulate the fact that the audio stream is resampled in chunks,
* because audio is delivered using callbacks. */
const uint32_t min_chunks = 10; /* ms */
const uint32_t max_chunks = 30; /* ms */
const uint32_t chunk_increment = 1;
#else
const uint32_t sample_rates[] = {
8000,
44100,
48000,
};
const uint32_t max_channels = 2;
const uint32_t min_chunks = 10; /* ms */
const uint32_t max_chunks = 30; /* ms */
const uint32_t chunk_increment = 10;
#endif
// #define DUMP_ARRAYS
#ifdef DUMP_ARRAYS
/**
* Files produced by dump(...) can be converted to .wave files using:
*
* sox -c <channel_count> -r <rate> -e float -b 32 file.raw file.wav
*
* for floating-point audio, or:
*
* sox -c <channel_count> -r <rate> -e unsigned -b 16 file.raw file.wav
*
* for 16bit integer audio.
*/
/* Use the correct implementation of fopen, depending on the platform. */
void
fopen_portable(FILE ** f, const char * name, const char * mode)
{
#ifdef WIN32
fopen_s(f, name, mode);
#else
*f = fopen(name, mode);
#endif
}
template <typename T>
void
dump(const char * name, T * frames, size_t count)
{
FILE * file;
fopen_portable(&file, name, "wb");
if (!file) {
fprintf(stderr, "error opening %s\n", name);
return;
}
if (count != fwrite(frames, sizeof(T), count, file)) {
fprintf(stderr, "error writing to %s\n", name);
}
fclose(file);
}
#else
template <typename T>
void
dump(const char * name, T * frames, size_t count)
{
}
#endif
// The more the ratio is far from 1, the more we accept a big error.
float
epsilon_tweak_ratio(float ratio)
{
return ratio >= 1 ? ratio : 1 / ratio;
}
// Epsilon values for comparing resampled data to expected data.
// The bigger the resampling ratio is, the more lax we are about errors.
template <typename T>
T
epsilon(float ratio);
template <>
float
epsilon(float ratio)
{
return 0.08f * epsilon_tweak_ratio(ratio);
}
template <>
int16_t
epsilon(float ratio)
{
return static_cast<int16_t>(10 * epsilon_tweak_ratio(ratio));
}
void
test_delay_lines(uint32_t delay_frames, uint32_t channels, uint32_t chunk_ms)
{
const size_t length_s = 2;
const size_t rate = 44100;
const size_t length_frames = rate * length_s;
delay_line<float> delay(delay_frames, channels, rate);
auto_array<float> input;
auto_array<float> output;
uint32_t chunk_length = channels * chunk_ms * rate / 1000;
uint32_t output_offset = 0;
uint32_t channel = 0;
/** Generate diracs every 100 frames, and check they are delayed. */
input.push_silence(length_frames * channels);
for (uint32_t i = 0; i < input.length() - 1; i += 100) {
input.data()[i + channel] = 0.5;
channel = (channel + 1) % channels;
}
dump("input.raw", input.data(), input.length());
while (input.length()) {
uint32_t to_pop =
std::min<uint32_t>(input.length(), chunk_length * channels);
float * in = delay.input_buffer(to_pop / channels);
input.pop(in, to_pop);
delay.written(to_pop / channels);
output.push_silence(to_pop);
delay.output(output.data() + output_offset, to_pop / channels);
output_offset += to_pop;
}
// Check the diracs have been shifted by `delay_frames` frames.
for (uint32_t i = 0; i < output.length() - delay_frames * channels + 1;
i += 100) {
ASSERT_EQ(output.data()[i + channel + delay_frames * channels], 0.5);
channel = (channel + 1) % channels;
}
dump("output.raw", output.data(), output.length());
}
/**
* This takes sine waves with a certain `channels` count, `source_rate`, and
* resample them, by chunk of `chunk_duration` milliseconds, to `target_rate`.
* Then a sample-wise comparison is performed against a sine wave generated at
* the correct rate.
*/
template <typename T>
void
test_resampler_one_way(uint32_t channels, uint32_t source_rate,
uint32_t target_rate, float chunk_duration)
{
size_t chunk_duration_in_source_frames =
static_cast<uint32_t>(ceil(chunk_duration * source_rate / 1000.));
float resampling_ratio = static_cast<float>(source_rate) / target_rate;
cubeb_resampler_speex_one_way<T> resampler(channels, source_rate, target_rate,
3);
auto_array<T> source(channels * source_rate * 10);
auto_array<T> destination(channels * target_rate * 10);
auto_array<T> expected(channels * target_rate * 10);
uint32_t phase_index = 0;
uint32_t offset = 0;
const uint32_t buf_len = 2; /* seconds */
// generate a sine wave in each channel, at the source sample rate
source.push_silence(channels * source_rate * buf_len);
while (offset != source.length()) {
float p = phase_index++ / static_cast<float>(source_rate);
for (uint32_t j = 0; j < channels; j++) {
source.data()[offset++] = 0.5 * sin(440. * 2 * PI * p);
}
}
dump("input.raw", source.data(), source.length());
expected.push_silence(channels * target_rate * buf_len);
// generate a sine wave in each channel, at the target sample rate.
// Insert silent samples at the beginning to account for the resampler
// latency.
offset = resampler.latency() * channels;
for (uint32_t i = 0; i < offset; i++) {
expected.data()[i] = 0.0f;
}
phase_index = 0;
while (offset != expected.length()) {
float p = phase_index++ / static_cast<float>(target_rate);
for (uint32_t j = 0; j < channels; j++) {
expected.data()[offset++] = 0.5 * sin(440. * 2 * PI * p);
}
}
dump("expected.raw", expected.data(), expected.length());
// resample by chunk
uint32_t write_offset = 0;
destination.push_silence(channels * target_rate * buf_len);
while (write_offset < destination.length()) {
size_t output_frames = static_cast<uint32_t>(
floor(chunk_duration_in_source_frames / resampling_ratio));
uint32_t input_frames = resampler.input_needed_for_output(output_frames);
resampler.input(source.data(), input_frames);
source.pop(nullptr, input_frames * channels);
resampler.output(
destination.data() + write_offset,
std::min(output_frames,
(destination.length() - write_offset) / channels));
write_offset += output_frames * channels;
}
dump("output.raw", destination.data(), expected.length());
// compare, taking the latency into account
bool fuzzy_equal = true;
for (uint32_t i = resampler.latency() + 1; i < expected.length(); i++) {
float diff = fabs(expected.data()[i] - destination.data()[i]);
if (diff > epsilon<T>(resampling_ratio)) {
fprintf(stderr, "divergence at %d: %f %f (delta %f)\n", i,
expected.data()[i], destination.data()[i], diff);
fuzzy_equal = false;
}
}
ASSERT_TRUE(fuzzy_equal);
}
template <typename T>
cubeb_sample_format
cubeb_format();
template <>
cubeb_sample_format
cubeb_format<float>()
{
return CUBEB_SAMPLE_FLOAT32NE;
}
template <>
cubeb_sample_format
cubeb_format<short>()
{
return CUBEB_SAMPLE_S16NE;
}
struct osc_state {
osc_state()
: input_phase_index(0), output_phase_index(0), output_offset(0),
input_channels(0), output_channels(0)
{
}
uint32_t input_phase_index;
uint32_t max_output_phase_index;
uint32_t output_phase_index;
uint32_t output_offset;
uint32_t input_channels;
uint32_t output_channels;
uint32_t output_rate;
uint32_t target_rate;
auto_array<float> input;
auto_array<float> output;
};
uint32_t
fill_with_sine(float * buf, uint32_t rate, uint32_t channels, uint32_t frames,
uint32_t initial_phase)
{
uint32_t offset = 0;
for (uint32_t i = 0; i < frames; i++) {
float p = initial_phase++ / static_cast<float>(rate);
for (uint32_t j = 0; j < channels; j++) {
buf[offset++] = 0.5 * sin(440. * 2 * PI * p);
}
}
return initial_phase;
}
long
data_cb_resampler(cubeb_stream * /*stm*/, void * user_ptr,
const void * input_buffer, void * output_buffer,
long frame_count)
{
osc_state * state = reinterpret_cast<osc_state *>(user_ptr);
const float * in = reinterpret_cast<const float *>(input_buffer);
float * out = reinterpret_cast<float *>(output_buffer);
state->input.push(in, frame_count * state->input_channels);
/* Check how much output frames we need to write */
uint32_t remaining =
state->max_output_phase_index - state->output_phase_index;
uint32_t to_write = std::min<uint32_t>(remaining, frame_count);
state->output_phase_index =
fill_with_sine(out, state->target_rate, state->output_channels, to_write,
state->output_phase_index);
return to_write;
}
template <typename T>
bool
array_fuzzy_equal(const auto_array<T> & lhs, const auto_array<T> & rhs, T epsi)
{
uint32_t len = std::min(lhs.length(), rhs.length());
for (uint32_t i = 0; i < len; i++) {
if (fabs(lhs.at(i) - rhs.at(i)) > epsi) {
std::cout << "not fuzzy equal at index: " << i << " lhs: " << lhs.at(i)
<< " rhs: " << rhs.at(i)
<< " delta: " << fabs(lhs.at(i) - rhs.at(i))
<< " epsilon: " << epsi << std::endl;
return false;
}
}
return true;
}
template <typename T>
void
test_resampler_duplex(uint32_t input_channels, uint32_t output_channels,
uint32_t input_rate, uint32_t output_rate,
uint32_t target_rate, float chunk_duration)
{
cubeb_stream_params input_params;
cubeb_stream_params output_params;
osc_state state;
input_params.format = output_params.format = cubeb_format<T>();
state.input_channels = input_params.channels = input_channels;
state.output_channels = output_params.channels = output_channels;
input_params.rate = input_rate;
state.output_rate = output_params.rate = output_rate;
state.target_rate = target_rate;
input_params.prefs = output_params.prefs = CUBEB_STREAM_PREF_NONE;
long got;
cubeb_resampler * resampler = cubeb_resampler_create(
(cubeb_stream *)nullptr, &input_params, &output_params, target_rate,
data_cb_resampler, (void *)&state, CUBEB_RESAMPLER_QUALITY_VOIP,
CUBEB_RESAMPLER_RECLOCK_NONE);
long latency = cubeb_resampler_latency(resampler);
const uint32_t duration_s = 2;
int32_t duration_frames = duration_s * target_rate;
uint32_t input_array_frame_count =
ceil(chunk_duration * input_rate / 1000) +
ceilf(static_cast<float>(input_rate) / target_rate) * 2;
uint32_t output_array_frame_count = chunk_duration * output_rate / 1000;
auto_array<float> input_buffer(input_channels * input_array_frame_count);
auto_array<float> output_buffer(output_channels * output_array_frame_count);
auto_array<float> expected_resampled_input(input_channels * duration_frames);
auto_array<float> expected_resampled_output(output_channels * output_rate *
duration_s);
state.max_output_phase_index = duration_s * target_rate;
expected_resampled_input.push_silence(input_channels * duration_frames);
expected_resampled_output.push_silence(output_channels * output_rate *
duration_s);
/* expected output is a 440Hz sine wave at 16kHz */
fill_with_sine(expected_resampled_input.data() + latency, target_rate,
input_channels, duration_frames - latency, 0);
/* expected output is a 440Hz sine wave at 32kHz */
fill_with_sine(expected_resampled_output.data() + latency, output_rate,
output_channels, output_rate * duration_s - latency, 0);
while (state.output_phase_index != state.max_output_phase_index) {
uint32_t leftover_samples = input_buffer.length() * input_channels;
input_buffer.reserve(input_array_frame_count);
state.input_phase_index = fill_with_sine(
input_buffer.data() + leftover_samples, input_rate, input_channels,
input_array_frame_count - leftover_samples, state.input_phase_index);
long input_consumed = input_array_frame_count;
input_buffer.set_length(input_array_frame_count);
got = cubeb_resampler_fill(resampler, input_buffer.data(), &input_consumed,
output_buffer.data(), output_array_frame_count);
/* handle leftover input */
if (input_array_frame_count != static_cast<uint32_t>(input_consumed)) {
input_buffer.pop(nullptr, input_consumed * input_channels);
} else {
input_buffer.clear();
}
state.output.push(output_buffer.data(), got * state.output_channels);
}
dump("input_expected.raw", expected_resampled_input.data(),
expected_resampled_input.length());
dump("output_expected.raw", expected_resampled_output.data(),
expected_resampled_output.length());
dump("input.raw", state.input.data(), state.input.length());
dump("output.raw", state.output.data(), state.output.length());
// This is disabled because the latency estimation in the resampler code is
// slightly off so we can generate expected vectors.
// See https://github.com/kinetiknz/cubeb/issues/93
// ASSERT_TRUE(array_fuzzy_equal(state.input, expected_resampled_input,
// epsilon<T>(input_rate/target_rate)));
// ASSERT_TRUE(array_fuzzy_equal(state.output, expected_resampled_output,
// epsilon<T>(output_rate/target_rate)));
cubeb_resampler_destroy(resampler);
}
#define array_size(x) (sizeof(x) / sizeof(x[0]))
TEST(cubeb, resampler_one_way)
{
/* Test one way resamplers */
for (uint32_t channels = 1; channels <= max_channels; channels++) {
for (uint32_t source_rate = 0; source_rate < array_size(sample_rates);
source_rate++) {
for (uint32_t dest_rate = 0; dest_rate < array_size(sample_rates);
dest_rate++) {
for (uint32_t chunk_duration = min_chunks; chunk_duration < max_chunks;
chunk_duration += chunk_increment) {
fprintf(stderr,
"one_way: channels: %d, source_rate: %d, dest_rate: %d, "
"chunk_duration: %d\n",
channels, sample_rates[source_rate], sample_rates[dest_rate],
chunk_duration);
test_resampler_one_way<float>(channels, sample_rates[source_rate],
sample_rates[dest_rate],
chunk_duration);
}
}
}
}
}
TEST(cubeb, DISABLED_resampler_duplex)
{
for (uint32_t input_channels = 1; input_channels <= max_channels;
input_channels++) {
for (uint32_t output_channels = 1; output_channels <= max_channels;
output_channels++) {
for (uint32_t source_rate_input = 0;
source_rate_input < array_size(sample_rates); source_rate_input++) {
for (uint32_t source_rate_output = 0;
source_rate_output < array_size(sample_rates);
source_rate_output++) {
for (uint32_t dest_rate = 0; dest_rate < array_size(sample_rates);
dest_rate++) {
for (uint32_t chunk_duration = min_chunks;
chunk_duration < max_chunks;
chunk_duration += chunk_increment) {
fprintf(stderr,
"input channels:%d output_channels:%d input_rate:%d "
"output_rate:%d target_rate:%d chunk_ms:%d\n",
input_channels, output_channels,
sample_rates[source_rate_input],
sample_rates[source_rate_output], sample_rates[dest_rate],
chunk_duration);
test_resampler_duplex<float>(input_channels, output_channels,
sample_rates[source_rate_input],
sample_rates[source_rate_output],
sample_rates[dest_rate],
chunk_duration);
}
}
}
}
}
}
}
TEST(cubeb, resampler_delay_line)
{
for (uint32_t channel = 1; channel <= 2; channel++) {
for (uint32_t delay_frames = 4; delay_frames <= 40;
delay_frames += chunk_increment) {
for (uint32_t chunk_size = 10; chunk_size <= 30; chunk_size++) {
fprintf(stderr, "channel: %d, delay_frames: %d, chunk_size: %d\n",
channel, delay_frames, chunk_size);
test_delay_lines(delay_frames, channel, chunk_size);
}
}
}
}
long
test_output_only_noop_data_cb(cubeb_stream * /*stm*/, void * /*user_ptr*/,
const void * input_buffer, void * output_buffer,
long frame_count)
{
EXPECT_TRUE(output_buffer);
EXPECT_TRUE(!input_buffer);
return frame_count;
}
TEST(cubeb, resampler_output_only_noop)
{
cubeb_stream_params output_params;
int target_rate;
output_params.rate = 44100;
output_params.channels = 1;
output_params.format = CUBEB_SAMPLE_FLOAT32NE;
target_rate = output_params.rate;
cubeb_resampler * resampler = cubeb_resampler_create(
(cubeb_stream *)nullptr, nullptr, &output_params, target_rate,
test_output_only_noop_data_cb, nullptr, CUBEB_RESAMPLER_QUALITY_VOIP,
CUBEB_RESAMPLER_RECLOCK_NONE);
const long out_frames = 128;
float out_buffer[out_frames];
long got;
got =
cubeb_resampler_fill(resampler, nullptr, nullptr, out_buffer, out_frames);
ASSERT_EQ(got, out_frames);
cubeb_resampler_destroy(resampler);
}
long
test_drain_data_cb(cubeb_stream * /*stm*/, void * user_ptr,
const void * input_buffer, void * output_buffer,
long frame_count)
{
EXPECT_TRUE(output_buffer);
EXPECT_TRUE(!input_buffer);
auto cb_count = static_cast<int *>(user_ptr);
(*cb_count)++;
return frame_count - 1;
}
TEST(cubeb, resampler_drain)
{
cubeb_stream_params output_params;
int target_rate;
output_params.rate = 44100;
output_params.channels = 1;
output_params.format = CUBEB_SAMPLE_FLOAT32NE;
target_rate = 48000;
int cb_count = 0;
cubeb_resampler * resampler = cubeb_resampler_create(
(cubeb_stream *)nullptr, nullptr, &output_params, target_rate,
test_drain_data_cb, &cb_count, CUBEB_RESAMPLER_QUALITY_VOIP,
CUBEB_RESAMPLER_RECLOCK_NONE);
const long out_frames = 128;
float out_buffer[out_frames];
long got;
do {
got = cubeb_resampler_fill(resampler, nullptr, nullptr, out_buffer,
out_frames);
} while (got == out_frames);
/* The callback should be called once but not again after returning <
* frame_count. */
ASSERT_EQ(cb_count, 1);
cubeb_resampler_destroy(resampler);
}
// gtest does not support using ASSERT_EQ and friend in a function that returns
// a value.
void
check_output(const void * input_buffer, void * output_buffer, long frame_count)
{
ASSERT_EQ(input_buffer, nullptr);
ASSERT_EQ(frame_count, 256);
ASSERT_TRUE(!!output_buffer);
}
long
cb_passthrough_resampler_output(cubeb_stream * /*stm*/, void * /*user_ptr*/,
const void * input_buffer, void * output_buffer,
long frame_count)
{
check_output(input_buffer, output_buffer, frame_count);
return frame_count;
}
TEST(cubeb, resampler_passthrough_output_only)
{
// Test that the passthrough resampler works when there is only an output
// stream.
cubeb_stream_params output_params;
const size_t output_channels = 2;
output_params.channels = output_channels;
output_params.rate = 44100;
output_params.format = CUBEB_SAMPLE_FLOAT32NE;
int target_rate = output_params.rate;
cubeb_resampler * resampler = cubeb_resampler_create(
(cubeb_stream *)nullptr, nullptr, &output_params, target_rate,
cb_passthrough_resampler_output, nullptr, CUBEB_RESAMPLER_QUALITY_VOIP,
CUBEB_RESAMPLER_RECLOCK_NONE);
float output_buffer[output_channels * 256];
long got;
for (uint32_t i = 0; i < 30; i++) {
got = cubeb_resampler_fill(resampler, nullptr, nullptr, output_buffer, 256);
ASSERT_EQ(got, 256);
}
cubeb_resampler_destroy(resampler);
}
// gtest does not support using ASSERT_EQ and friend in a function that returns
// a value.
void
check_input(const void * input_buffer, void * output_buffer, long frame_count)
{
ASSERT_EQ(output_buffer, nullptr);
ASSERT_EQ(frame_count, 256);
ASSERT_TRUE(!!input_buffer);
}
long
cb_passthrough_resampler_input(cubeb_stream * /*stm*/, void * /*user_ptr*/,
const void * input_buffer, void * output_buffer,
long frame_count)
{
check_input(input_buffer, output_buffer, frame_count);
return frame_count;
}
TEST(cubeb, resampler_passthrough_input_only)
{
// Test that the passthrough resampler works when there is only an output
// stream.
cubeb_stream_params input_params;
const size_t input_channels = 2;
input_params.channels = input_channels;
input_params.rate = 44100;
input_params.format = CUBEB_SAMPLE_FLOAT32NE;
int target_rate = input_params.rate;
cubeb_resampler * resampler = cubeb_resampler_create(
(cubeb_stream *)nullptr, &input_params, nullptr, target_rate,
cb_passthrough_resampler_input, nullptr, CUBEB_RESAMPLER_QUALITY_VOIP,
CUBEB_RESAMPLER_RECLOCK_NONE);
float input_buffer[input_channels * 256];
long got;
for (uint32_t i = 0; i < 30; i++) {
long int frames = 256;
got = cubeb_resampler_fill(resampler, input_buffer, &frames, nullptr, 0);
ASSERT_EQ(got, 256);
}
cubeb_resampler_destroy(resampler);
}
template <typename T>
long
seq(T * array, int stride, long start, long count)
{
uint32_t output_idx = 0;
for (int i = 0; i < count; i++) {
for (int j = 0; j < stride; j++) {
array[output_idx + j] = static_cast<T>(start + i);
}
output_idx += stride;
}
return start + count;
}
template <typename T>
void
is_seq(T * array, int stride, long count, long expected_start)
{
uint32_t output_index = 0;
for (long i = 0; i < count; i++) {
for (int j = 0; j < stride; j++) {
ASSERT_EQ(array[output_index + j], expected_start + i);
}
output_index += stride;
}
}
template <typename T>
void
is_not_seq(T * array, int stride, long count, long expected_start)
{
uint32_t output_index = 0;
for (long i = 0; i < count; i++) {
for (int j = 0; j < stride; j++) {
ASSERT_NE(array[output_index + j], expected_start + i);
}
output_index += stride;
}
}
struct closure {
int input_channel_count;
};
// gtest does not support using ASSERT_EQ and friend in a function that returns
// a value.
template <typename T>
void
check_duplex(const T * input_buffer, T * output_buffer, long frame_count,
int input_channel_count)
{
ASSERT_EQ(frame_count, 256);
// Silence scan-build warning.
ASSERT_TRUE(!!output_buffer);
assert(output_buffer);
ASSERT_TRUE(!!input_buffer);
assert(input_buffer);
int output_index = 0;
int input_index = 0;
for (int i = 0; i < frame_count; i++) {
// output is two channels, input one or two channels.
if (input_channel_count == 1) {
output_buffer[output_index] = output_buffer[output_index + 1] =
input_buffer[i];
} else if (input_channel_count == 2) {
output_buffer[output_index] = input_buffer[input_index];
output_buffer[output_index + 1] = input_buffer[input_index + 1];
}
output_index += 2;
input_index += input_channel_count;
}
}
long
cb_passthrough_resampler_duplex(cubeb_stream * /*stm*/, void * user_ptr,
const void * input_buffer, void * output_buffer,
long frame_count)
{
closure * c = reinterpret_cast<closure *>(user_ptr);
check_duplex<float>(static_cast<const float *>(input_buffer),
static_cast<float *>(output_buffer), frame_count,
c->input_channel_count);
return frame_count;
}
TEST(cubeb, resampler_passthrough_duplex_callback_reordering)
{
// Test that when pre-buffering on resampler creation, we can survive an input
// callback being delayed.
cubeb_stream_params input_params;
cubeb_stream_params output_params;
const int input_channels = 1;
const int output_channels = 2;
input_params.channels = input_channels;
input_params.rate = 44100;
input_params.format = CUBEB_SAMPLE_FLOAT32NE;
output_params.channels = output_channels;
output_params.rate = input_params.rate;
output_params.format = CUBEB_SAMPLE_FLOAT32NE;
int target_rate = input_params.rate;
closure c;
c.input_channel_count = input_channels;
cubeb_resampler * resampler = cubeb_resampler_create(
(cubeb_stream *)nullptr, &input_params, &output_params, target_rate,
cb_passthrough_resampler_duplex, &c, CUBEB_RESAMPLER_QUALITY_VOIP,
CUBEB_RESAMPLER_RECLOCK_NONE);
const long BUF_BASE_SIZE = 256;
float input_buffer_prebuffer[input_channels * BUF_BASE_SIZE * 2];
float input_buffer_glitch[input_channels * BUF_BASE_SIZE * 2];
float input_buffer_normal[input_channels * BUF_BASE_SIZE];
float output_buffer[output_channels * BUF_BASE_SIZE];
long seq_idx = 0;
long output_seq_idx = 0;
long prebuffer_frames =
ARRAY_LENGTH(input_buffer_prebuffer) / input_params.channels;
seq_idx =
seq(input_buffer_prebuffer, input_channels, seq_idx, prebuffer_frames);
long got =
cubeb_resampler_fill(resampler, input_buffer_prebuffer, &prebuffer_frames,
output_buffer, BUF_BASE_SIZE);
output_seq_idx += BUF_BASE_SIZE;
// prebuffer_frames will hold the frames used by the resampler.
ASSERT_EQ(prebuffer_frames, BUF_BASE_SIZE);
ASSERT_EQ(got, BUF_BASE_SIZE);
for (uint32_t i = 0; i < 300; i++) {
long int frames = BUF_BASE_SIZE;
// Simulate that sometimes, we don't have the input callback on time
if (i != 0 && (i % 100) == 0) {
long zero = 0;
got =
cubeb_resampler_fill(resampler, input_buffer_normal /* unused here */,
&zero, output_buffer, BUF_BASE_SIZE);
is_seq(output_buffer, 2, BUF_BASE_SIZE, output_seq_idx);
output_seq_idx += BUF_BASE_SIZE;
} else if (i != 0 && (i % 100) == 1) {
// if this is the case, the on the next iteration, we'll have twice the
// amount of input frames
seq_idx =
seq(input_buffer_glitch, input_channels, seq_idx, BUF_BASE_SIZE * 2);
frames = 2 * BUF_BASE_SIZE;
got = cubeb_resampler_fill(resampler, input_buffer_glitch, &frames,
output_buffer, BUF_BASE_SIZE);
is_seq(output_buffer, 2, BUF_BASE_SIZE, output_seq_idx);
output_seq_idx += BUF_BASE_SIZE;
} else {
// normal case
seq_idx =
seq(input_buffer_normal, input_channels, seq_idx, BUF_BASE_SIZE);
long normal_input_frame_count = 256;
got = cubeb_resampler_fill(resampler, input_buffer_normal,
&normal_input_frame_count, output_buffer,
BUF_BASE_SIZE);
is_seq(output_buffer, 2, BUF_BASE_SIZE, output_seq_idx);
output_seq_idx += BUF_BASE_SIZE;
}
ASSERT_EQ(got, BUF_BASE_SIZE);
}
cubeb_resampler_destroy(resampler);
}
// Artificially simulate output thread underruns,
// by building up artificial delay in the input.
// Check that the frame drop logic kicks in.
TEST(cubeb, resampler_drift_drop_data)
{
for (uint32_t input_channels = 1; input_channels < 3; input_channels++) {
cubeb_stream_params input_params;
cubeb_stream_params output_params;
const int output_channels = 2;
const int sample_rate = 44100;
input_params.channels = input_channels;
input_params.rate = sample_rate;
input_params.format = CUBEB_SAMPLE_FLOAT32NE;
output_params.channels = output_channels;
output_params.rate = sample_rate;
output_params.format = CUBEB_SAMPLE_FLOAT32NE;
int target_rate = input_params.rate;
closure c;
c.input_channel_count = input_channels;
cubeb_resampler * resampler = cubeb_resampler_create(
(cubeb_stream *)nullptr, &input_params, &output_params, target_rate,
cb_passthrough_resampler_duplex, &c, CUBEB_RESAMPLER_QUALITY_VOIP,
CUBEB_RESAMPLER_RECLOCK_NONE);
const long BUF_BASE_SIZE = 256;
// The factor by which the deadline is missed. This is intentionally
// kind of large to trigger the frame drop quickly. In real life, multiple
// smaller under-runs would accumulate.
const long UNDERRUN_FACTOR = 10;
// Number buffer used for pre-buffering, that some backends do.
const long PREBUFFER_FACTOR = 2;
std::vector<float> input_buffer_prebuffer(input_channels * BUF_BASE_SIZE *
PREBUFFER_FACTOR);
std::vector<float> input_buffer_glitch(input_channels * BUF_BASE_SIZE *
UNDERRUN_FACTOR);
std::vector<float> input_buffer_normal(input_channels * BUF_BASE_SIZE);
std::vector<float> output_buffer(output_channels * BUF_BASE_SIZE);
long seq_idx = 0;
long output_seq_idx = 0;
long prebuffer_frames =
input_buffer_prebuffer.size() / input_params.channels;
seq_idx = seq(input_buffer_prebuffer.data(), input_channels, seq_idx,
prebuffer_frames);
long got = cubeb_resampler_fill(resampler, input_buffer_prebuffer.data(),
&prebuffer_frames, output_buffer.data(),
BUF_BASE_SIZE);
output_seq_idx += BUF_BASE_SIZE;
// prebuffer_frames will hold the frames used by the resampler.
ASSERT_EQ(prebuffer_frames, BUF_BASE_SIZE);
ASSERT_EQ(got, BUF_BASE_SIZE);
for (uint32_t i = 0; i < 300; i++) {
long int frames = BUF_BASE_SIZE;
if (i != 0 && (i % 100) == 1) {
// Once in a while, the output thread misses its deadline.
// The input thread still produces data, so it ends up accumulating.
// Simulate this by providing a much bigger input buffer. Check that the
// sequence is now unaligned, meaning we've dropped data to keep
// everything in sync.
seq_idx = seq(input_buffer_glitch.data(), input_channels, seq_idx,
BUF_BASE_SIZE * UNDERRUN_FACTOR);
frames = BUF_BASE_SIZE * UNDERRUN_FACTOR;
got =
cubeb_resampler_fill(resampler, input_buffer_glitch.data(), &frames,
output_buffer.data(), BUF_BASE_SIZE);
is_seq(output_buffer.data(), 2, BUF_BASE_SIZE, output_seq_idx);
output_seq_idx += BUF_BASE_SIZE;
} else if (i != 0 && (i % 100) == 2) {
// On the next iteration, the sequence should be broken
seq_idx = seq(input_buffer_normal.data(), input_channels, seq_idx,
BUF_BASE_SIZE);
long normal_input_frame_count = 256;
got = cubeb_resampler_fill(resampler, input_buffer_normal.data(),
&normal_input_frame_count,
output_buffer.data(), BUF_BASE_SIZE);
is_not_seq(output_buffer.data(), output_channels, BUF_BASE_SIZE,
output_seq_idx);
// Reclock so that we can use is_seq again.
output_seq_idx = output_buffer[BUF_BASE_SIZE * output_channels - 1] + 1;
} else {
// normal case
seq_idx = seq(input_buffer_normal.data(), input_channels, seq_idx,
BUF_BASE_SIZE);
long normal_input_frame_count = 256;
got = cubeb_resampler_fill(resampler, input_buffer_normal.data(),
&normal_input_frame_count,
output_buffer.data(), BUF_BASE_SIZE);
is_seq(output_buffer.data(), output_channels, BUF_BASE_SIZE,
output_seq_idx);
output_seq_idx += BUF_BASE_SIZE;
}
ASSERT_EQ(got, BUF_BASE_SIZE);
}
cubeb_resampler_destroy(resampler);
}
}
static long
passthrough_resampler_fill_eq_input(cubeb_stream * stream, void * user_ptr,
void const * input_buffer,
void * output_buffer, long nframes)
{
// gtest does not support using ASSERT_EQ and friends in a
// function that returns a value.
[nframes, input_buffer]() {
ASSERT_EQ(nframes, 32);
const float * input = static_cast<const float *>(input_buffer);
for (int i = 0; i < 64; ++i) {
ASSERT_FLOAT_EQ(input[i], 0.01 * i);
}
}();
return nframes;
}
TEST(cubeb, passthrough_resampler_fill_eq_input)
{
uint32_t channels = 2;
uint32_t sample_rate = 44100;
passthrough_resampler<float> resampler =
passthrough_resampler<float>(nullptr, passthrough_resampler_fill_eq_input,
nullptr, channels, sample_rate);
long input_frame_count = 32;
long output_frame_count = 32;
float input[64] = {};
float output[64] = {};
for (uint32_t i = 0; i < input_frame_count * channels; ++i) {
input[i] = 0.01 * i;
}
long got =
resampler.fill(input, &input_frame_count, output, output_frame_count);
ASSERT_EQ(got, output_frame_count);
// Input frames used must be equal to output frames.
ASSERT_EQ(input_frame_count, output_frame_count);
}
static long
passthrough_resampler_fill_short_input(cubeb_stream * stream, void * user_ptr,
void const * input_buffer,
void * output_buffer, long nframes)
{
// gtest does not support using ASSERT_EQ and friends in a
// function that returns a value.
[nframes, input_buffer]() {
ASSERT_EQ(nframes, 32);
const float * input = static_cast<const float *>(input_buffer);
// First part contains the input
for (int i = 0; i < 32; ++i) {
ASSERT_FLOAT_EQ(input[i], 0.01 * i);
}
// missing part contains silence
for (int i = 32; i < 64; ++i) {
ASSERT_FLOAT_EQ(input[i], 0.0);
}
}();
return nframes;
}
TEST(cubeb, passthrough_resampler_fill_short_input)
{
uint32_t channels = 2;
uint32_t sample_rate = 44100;
passthrough_resampler<float> resampler = passthrough_resampler<float>(
nullptr, passthrough_resampler_fill_short_input, nullptr, channels,
sample_rate);
long input_frame_count = 16;
long output_frame_count = 32;
float input[64] = {};
float output[64] = {};
for (uint32_t i = 0; i < input_frame_count * channels; ++i) {
input[i] = 0.01 * i;
}
long got =
resampler.fill(input, &input_frame_count, output, output_frame_count);
ASSERT_EQ(got, output_frame_count);
// Input frames used are less than the output frames due to glitch.
ASSERT_EQ(input_frame_count, output_frame_count - 16);
}
static long
passthrough_resampler_fill_input_left(cubeb_stream * stream, void * user_ptr,
void const * input_buffer,
void * output_buffer, long nframes)
{
// gtest does not support using ASSERT_EQ and friends in a
// function that returns a value.
int iteration = *static_cast<int *>(user_ptr);
if (iteration == 1) {
[nframes, input_buffer]() {
ASSERT_EQ(nframes, 32);
const float * input = static_cast<const float *>(input_buffer);
for (int i = 0; i < 64; ++i) {
ASSERT_FLOAT_EQ(input[i], 0.01 * i);
}
}();
} else if (iteration == 2) {
[nframes, input_buffer]() {
ASSERT_EQ(nframes, 32);
const float * input = static_cast<const float *>(input_buffer);
for (int i = 0; i < 32; ++i) {
// First part contains the reamaining input samples from previous
// iteration (since they were more).
ASSERT_FLOAT_EQ(input[i], 0.01 * (i + 64));
// next part contains the new buffer
ASSERT_FLOAT_EQ(input[i + 32], 0.01 * i);
}
}();
} else if (iteration == 3) {
[nframes, input_buffer]() {
ASSERT_EQ(nframes, 32);
const float * input = static_cast<const float *>(input_buffer);
for (int i = 0; i < 32; ++i) {
// First part (16 frames) contains the reamaining input samples
// from previous iteration (since they were more).
ASSERT_FLOAT_EQ(input[i], 0.01 * (i + 32));
}
for (int i = 0; i < 16; ++i) {
// next part (8 frames) contains the new input buffer.
ASSERT_FLOAT_EQ(input[i + 32], 0.01 * i);
// last part (8 frames) contains silence.
ASSERT_FLOAT_EQ(input[i + 32 + 16], 0.0);
}
}();
}
return nframes;
}
TEST(cubeb, passthrough_resampler_fill_input_left)
{
const uint32_t channels = 2;
const uint32_t sample_rate = 44100;
int iteration = 0;
passthrough_resampler<float> resampler = passthrough_resampler<float>(
nullptr, passthrough_resampler_fill_input_left, &iteration, channels,
sample_rate);
long input_frame_count = 48; // 32 + 16
const long output_frame_count = 32;
float input[96] = {};
float output[64] = {};
for (uint32_t i = 0; i < input_frame_count * channels; ++i) {
input[i] = 0.01 * i;
}
// 1st iteration, add the extra input.
iteration = 1;
long got =
resampler.fill(input, &input_frame_count, output, output_frame_count);
ASSERT_EQ(got, output_frame_count);
// Input frames used must be equal to output frames.
ASSERT_EQ(input_frame_count, output_frame_count);
// 2st iteration, use the extra input from previous iteration,
// 16 frames are remaining in the input buffer.
input_frame_count = 32; // we need 16 input frames but we get more;
iteration = 2;
got = resampler.fill(input, &input_frame_count, output, output_frame_count);
ASSERT_EQ(got, output_frame_count);
// Input frames used must be equal to output frames.
ASSERT_EQ(input_frame_count, output_frame_count);
// 3rd iteration, use the extra input from previous iteration.
// 16 frames are remaining in the input buffer.
input_frame_count = 16 - 8; // We need 16 more input frames but we only get 8.
iteration = 3;
got = resampler.fill(input, &input_frame_count, output, output_frame_count);
ASSERT_EQ(got, output_frame_count);
// Input frames used are less than the output frames due to glitch.
ASSERT_EQ(input_frame_count, output_frame_count - 8);
}
TEST(cubeb, individual_methods)
{
const uint32_t channels = 2;
const uint32_t sample_rate = 44100;
const uint32_t frames = 256;
delay_line<float> dl(10, channels, sample_rate);
uint32_t frames_needed1 = dl.input_needed_for_output(0);
ASSERT_EQ(frames_needed1, 0u);
cubeb_resampler_speex_one_way<float> one_way(
channels, sample_rate, sample_rate, CUBEB_RESAMPLER_QUALITY_DEFAULT);
float buffer[channels * frames] = {0.0};
// Add all frames in the resampler's internal buffer.
one_way.input(buffer, frames);
// Ask for less than the existing frames, this would create a uint overlflow
// without the fix.
uint32_t frames_needed2 = one_way.input_needed_for_output(0);
ASSERT_EQ(frames_needed2, 0u);
}
struct sine_wave_state {
float frequency;
int sample_rate;
size_t count = 0;
sine_wave_state(float freq, int rate) : frequency(freq), sample_rate(rate) {}
};
long
data_cb(cubeb_stream * stream, void * user_ptr, void const * input_buffer,
void * output_buffer, long nframes)
{
sine_wave_state * state = static_cast<sine_wave_state *>(user_ptr);
float * out = static_cast<float *>(output_buffer);
double phase_increment = 2.0f * M_PI * state->frequency / state->sample_rate;
for (int i = 0; i < nframes; i++) {
float sample = sin(phase_increment * state->count);
state->count++;
out[i] = sample * 0.8;
}
return nframes;
}
// This implements 4.6.2 from "Standard for Digitizing Waveform Recorders"
// (in particular Annex A), then returns the estimated amplitude, phase, and the
// sum of squared error relative to a sine wave sampled at `sample_rate` and of
// frequency `frequency`. This is also described in "Numerical methods for
// engineers" chapter 19.1, and explained at
// https://www.youtube.com/watch?v=afQszl_OwKo and videos of the same series.
// In practice here we're sending a perfect 1khz sine wave into a good
// resampler, and despite the resampling ratio being quite extreme sometimes,
// we're expecting a very good fit.
float
fit_sine(const std::vector<float> & signal, float sample_rate, float frequency,
float & out_amplitude, float & out_phase)
{
// The formulation below is exact for samples spanning an integer number of
// periods. It can be important for `signal` to be trimmed to an integer
// number of periods if it doesn't contain a lot of periods.
double phase_incr = 2.0 * M_PI * frequency / sample_rate;
double sum_cos = 0.0;
double sum_sin = 0.0;
for (size_t i = 0; i < signal.size(); ++i) {
double c = std::cos(phase_incr * static_cast<double>(i));
double s = std::sin(phase_incr * static_cast<double>(i));
sum_cos += signal[i] * c;
sum_sin += signal[i] * s;
}
double amplitude = 2.0f * std::sqrt(sum_cos * sum_cos + sum_sin * sum_sin) /
static_cast<double>(signal.size());
double phi = std::atan2(sum_cos, sum_sin);
out_amplitude = amplitude;
out_phase = phi;
// Compute sum of squared errors relative to the fitted sine wave
double sse = 0.0;
for (size_t i = 0; i < signal.size(); ++i) {
// Use known amplitude here instead instead of the from the fitted function.
double fit = 0.8 * std::sin(phase_incr * i + phi);
double diff = signal[i] - fit;
sse += diff * diff;
}
return sse;
}
// Finds the offset of the start of an input_freq sine wave sampled at
// target_rate in data. Remove the leading silence from data.
size_t
find_sine_start(const std::vector<float> & data, float input_freq,
float target_rate)
{
const size_t POINTS = 10;
size_t skipped = 0;
while (skipped + POINTS < data.size()) {
double phase = 0;
double phase_increment = 2.0f * M_PI * input_freq / target_rate;
bool fits_sine = true;
for (size_t i = 0; i < POINTS; i++) {
float expected = sin(phase) * 0.8;
float actual = data[skipped + i];
if (fabs(expected - actual) > 0.1) {
// doesn't fit a sine, skip to next start point
fits_sine = false;
break;
}
phase += phase_increment;
if (phase > 2.0f * M_PI) {
phase -= 2.0f * M_PI;
}
}
if (!fits_sine) {
skipped++;
continue;
}
// Found the start of the sine wave
size_t sine_start = skipped;
return sine_start;
}
return skipped;
}
// This class tracks the monotonicity of a certain value, and reports if it
// increases too much monotonically.
struct monotonic_state {
explicit monotonic_state(const char * what, int source_rate, int target_rate,
int block_size)
: what(what), source_rate(source_rate), target_rate(target_rate),
block_size(block_size)
{
}
~monotonic_state()
{
float ratio =
static_cast<float>(source_rate) / static_cast<float>(target_rate);
// Only report if there has been a meaningful increase in buffering. Do
// not warn if the buffering was constant and small.
if (monotonic && max_value && max_value != max_step) {
printf("%s is monotonically increasing, max: %zu, max_step: %zu, "
"in: %dHz, out: "
"%dHz, block_size: %d, ratio: %lf\n",
what, max_value, max_step, source_rate, target_rate, block_size,
ratio);
}
// Arbitrary limit: if more than this number of frames has been buffered,
// print a message.
constexpr int BUFFER_SIZE_THRESHOLD = 20;
if (max_value > BUFFER_SIZE_THRESHOLD) {
printf("%s, unexpected large max buffering value, max: %zu, max_step: "
"%zu, in: %dHz, out: %dHz, block_size: %d, ratio: %lf\n",
what, max_value, max_step, source_rate, target_rate, block_size,
ratio);
}
}
void set_new_value(size_t new_value)
{
if (new_value < value) {
monotonic = false;
} else {
max_step = std::max(max_step, new_value - value);
}
value = new_value;
max_value = std::max(value, max_value);
}
// Textual representation of this measurement
const char * what;
// Resampler parameters for this test case
int source_rate = 0;
int target_rate = 0;
int block_size = 0;
// Current buffering value
size_t value = 0;
// Max buffering value increment
size_t max_step = 0;
// Max buffering value observerd
size_t max_value = 0;
// Whether the value has only increased or not
bool monotonic = true;
};
// Setting this to 1 dumps a bunch of wave file to the local directory for
// manual inspection of the resampled output
constexpr int DUMP_OUTPUT = 0;
// Source and target sample-rates in Hz, typical values.
const int rates[] = {16000, 32000, 44100, 48000, 96000, 192000, 384000};
// Block size in frames, except the first element, that is in millisecond
// Power of two are typical on Windows WASAPI IAudioClient3, macOS,
// Linux Pipewire and Jack. 10ms is typical on Windows IAudioClient and
// IAudioClient2. 96, 192 are not uncommon on some Android devices.
constexpr int WASAPI_MS_BLOCK = 10;
const int block_sizes[] = {WASAPI_MS_BLOCK, 96, 128, 192, 256, 512, 1024, 2048};
// Enough iterations to catch rounding/drift issues, but not too many to avoid
// having a test that is too long to run.
constexpr int ITERATION_COUNT = 1000;
// 1 kHz input sine wave
const float input_freq = 1000.0f;
struct ThreadPool {
std::vector<std::thread> workers;
std::queue<std::function<void()>> tasks;
std::mutex queue_mutex;
std::condition_variable condition;
bool stop;
ThreadPool(size_t threads) : stop(false)
{
for (size_t i = 0; i < threads; ++i) {
workers.emplace_back([this] {
while (true) {
std::function<void()> task;
{
std::unique_lock<std::mutex> lock(queue_mutex);
condition.wait(lock, [this] { return stop || !tasks.empty(); });
if (stop && tasks.empty())
return;
task = std::move(tasks.front());
tasks.pop();
}
task();
}
});
}
}
void enqueue(std::function<void()> task)
{
{
std::unique_lock<std::mutex> lock(queue_mutex);
tasks.push(std::move(task));
}
condition.notify_one();
}
~ThreadPool()
{
{
std::unique_lock<std::mutex> lock(queue_mutex);
stop = true;
}
condition.notify_all();
for (std::thread & worker : workers) {
worker.join();
}
}
};
static void
run_test(int source_rate, int target_rate, int block_size)
{
int effective_block_size = block_size;
// special case: Windows/WASAPI works in blocks of 10ms regardless of
// the rate.
if (effective_block_size == WASAPI_MS_BLOCK) {
effective_block_size = target_rate / 100; // 10ms
}
sine_wave_state state(input_freq, source_rate);
cubeb_stream_params out_params = {};
out_params.channels = 1;
out_params.rate = target_rate;
out_params.format = CUBEB_SAMPLE_FLOAT32NE;
cubeb_audio_dump_session_t session = nullptr;
cubeb_audio_dump_stream_t dump_stream = nullptr;
if constexpr (DUMP_OUTPUT) {
cubeb_audio_dump_init(&session);
char buf[256];
snprintf(buf, 256, "test-%dHz-to-%dhz-%d-block.wav", source_rate,
target_rate, effective_block_size);
cubeb_audio_dump_stream_init(session, &dump_stream, out_params, buf);
cubeb_audio_dump_start(session);
}
cubeb_resampler * resampler = cubeb_resampler_create(
nullptr, nullptr, &out_params, source_rate, data_cb, &state,
CUBEB_RESAMPLER_QUALITY_DEFAULT, CUBEB_RESAMPLER_RECLOCK_NONE);
ASSERT_NE(resampler, nullptr);
std::vector<float> data(effective_block_size * out_params.channels);
int i = ITERATION_COUNT;
// For now this only tests the output side (out_... measurements).
// We could expect the resampler to be symmetrical, but we could
// test both sides at once.
// - ..._in is the input buffer of the resampler, containing
// unresampled frames
// - ..._out is the output buffer, containing resampled frames.
monotonic_state in_in_max("in_in", source_rate, target_rate,
effective_block_size);
monotonic_state in_out_max("in_out", source_rate, target_rate,
effective_block_size);
monotonic_state out_in_max("out_in", source_rate, target_rate,
effective_block_size);
monotonic_state out_out_max("out_out", source_rate, target_rate,
effective_block_size);
std::vector<float> resampled;
resampled.reserve(ITERATION_COUNT * effective_block_size *
out_params.channels);
while (i--) {
int64_t got = cubeb_resampler_fill(resampler, nullptr, nullptr, data.data(),
effective_block_size);
ASSERT_EQ(got, effective_block_size);
cubeb_resampler_stats stats = cubeb_resampler_stats_get(resampler);
resampled.insert(resampled.end(), data.begin(), data.end());
in_in_max.set_new_value(stats.input_input_buffer_size);
in_out_max.set_new_value(stats.input_output_buffer_size);
out_in_max.set_new_value(stats.output_input_buffer_size);
out_out_max.set_new_value(stats.output_output_buffer_size);
}
cubeb_resampler_destroy(resampler);
// Example of an error, off by one every block or so, resulting in a
// silent sample. This is enough to make all the tests fail.
//
// for (uint32_t i = 0; i < resampled.size(); i++) {
// if (!(i % (effective_block_size))) {
// resampled[i] = 0.0;
// }
// }
// This roughly finds the start of the sine wave and strips it from
// data.
size_t skipped = 0;
skipped = find_sine_start(resampled, input_freq, target_rate);
resampled.erase(resampled.begin(), resampled.begin() + skipped);
if constexpr (DUMP_OUTPUT) {
cubeb_audio_dump_write(dump_stream, resampled.data(), resampled.size());
}
float amplitude = 0;
float phase = 0;
// Fit our resampled sine wave, get an MSE value
double sse = fit_sine(resampled, target_rate, input_freq, amplitude, phase);
double mse = sse / resampled.size();
// Code to print JSON to plot externally
// printf("\t[%d,%d,%d,%.10e,%lf,%lf],\n", source_rate, target_rate,
// effective_block_size, mse, amplitude, phase);
// Value found after running the tests on Linux x64
ASSERT_LT(mse, 3.22e-07);
if constexpr (DUMP_OUTPUT) {
cubeb_audio_dump_stop(session);
cubeb_audio_dump_stream_shutdown(session, dump_stream);
cubeb_audio_dump_shutdown(session);
}
}
// This tests checks three things:
// - Whenever resampling from a source rate to a target rate with a certain
// block size, the correct number of frames is provided back from the
// resampler, to the backend.
// - While resampling, internal buffers are kept under control and aren't
// growing unbounded.
// - The output signal is a 1khz sine (as is the input)
TEST(cubeb, resampler_typical_uses)
{
cubeb * ctx;
common_init(&ctx, "Cubeb resampler test");
size_t concurrency = std::max(1u, std::thread::hardware_concurrency());
std::condition_variable cv;
std::mutex mutex;
size_t task_count = 0;
ThreadPool pool(concurrency);
for (int source_rate : rates) {
for (int target_rate : rates) {
for (int block_size : block_sizes) {
{
std::unique_lock<std::mutex> lock(mutex);
++task_count;
}
pool.enqueue([&, source_rate, target_rate, block_size] {
run_test(source_rate, target_rate, block_size);
{
std::unique_lock<std::mutex> lock(mutex);
--task_count;
}
cv.notify_one();
});
}
}
}
std::unique_lock<std::mutex> lock(mutex);
cv.wait(lock, [&] { return task_count == 0; });
cubeb_destroy(ctx);
}
#undef NOMINMAX
#undef DUMP_ARRAYS
|