File: test_resampler.cpp

package info (click to toggle)
firefox 147.0.2-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 4,683,484 kB
  • sloc: cpp: 7,607,246; javascript: 6,533,185; ansic: 3,775,227; python: 1,415,393; xml: 634,561; asm: 438,951; java: 186,241; sh: 62,752; makefile: 18,079; objc: 13,092; perl: 12,808; yacc: 4,583; cs: 3,846; pascal: 3,448; lex: 1,720; ruby: 1,003; php: 436; lisp: 258; awk: 247; sql: 66; sed: 54; csh: 10; exp: 6
file content (1556 lines) | stat: -rw-r--r-- 53,031 bytes parent folder | download | duplicates (18)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
/*
 * Copyright © 2016 Mozilla Foundation
 *
 * This program is made available under an ISC-style license.  See the
 * accompanying file LICENSE for details.
 */
#ifndef NOMINMAX
#define NOMINMAX
#endif // NOMINMAX
#include "cubeb/cubeb.h"
#include "cubeb_audio_dump.h"
#include "cubeb_log.h"
#include "cubeb_resampler.h"
// #define ENABLE_NORMAL_LOG
// #define ENABLE_VERBOSE_LOG
#include "common.h"
#include "cubeb_resampler_internal.h"
#include "gtest/gtest.h"
#include <algorithm>
#include <cmath>
#include <iostream>
#include <queue>
#include <stdio.h>
#include <thread>

/* Windows cmath USE_MATH_DEFINE thing... */
const float PI = 3.14159265359f;

/* Testing all sample rates is very long, so if THOROUGH_TESTING is not defined,
 * only part of the test suite is ran. */
#ifdef THOROUGH_TESTING
/* Some standard sample rates we're testing with. */
const uint32_t sample_rates[] = {8000,  16000, 32000, 44100,
                                 48000, 88200, 96000, 192000};
/* The maximum number of channels we're resampling. */
const uint32_t max_channels = 2;
/* The minimum an maximum number of milliseconds we're resampling for. This is
 * used to simulate the fact that the audio stream is resampled in chunks,
 * because audio is delivered using callbacks. */
const uint32_t min_chunks = 10; /* ms */
const uint32_t max_chunks = 30; /* ms */
const uint32_t chunk_increment = 1;

#else

const uint32_t sample_rates[] = {
    8000,
    44100,
    48000,
};
const uint32_t max_channels = 2;
const uint32_t min_chunks = 10; /* ms */
const uint32_t max_chunks = 30; /* ms */
const uint32_t chunk_increment = 10;
#endif

// #define DUMP_ARRAYS
#ifdef DUMP_ARRAYS
/**
 * Files produced by dump(...) can be converted to .wave files using:
 *
 * sox -c <channel_count> -r <rate> -e float -b 32  file.raw file.wav
 *
 * for floating-point audio, or:
 *
 * sox -c <channel_count> -r <rate> -e unsigned -b 16  file.raw file.wav
 *
 * for 16bit integer audio.
 */

/* Use the correct implementation of fopen, depending on the platform. */
void
fopen_portable(FILE ** f, const char * name, const char * mode)
{
#ifdef WIN32
  fopen_s(f, name, mode);
#else
  *f = fopen(name, mode);
#endif
}

template <typename T>
void
dump(const char * name, T * frames, size_t count)
{
  FILE * file;
  fopen_portable(&file, name, "wb");

  if (!file) {
    fprintf(stderr, "error opening %s\n", name);
    return;
  }

  if (count != fwrite(frames, sizeof(T), count, file)) {
    fprintf(stderr, "error writing to %s\n", name);
  }
  fclose(file);
}
#else
template <typename T>
void
dump(const char * name, T * frames, size_t count)
{
}
#endif

// The more the ratio is far from 1, the more we accept a big error.
float
epsilon_tweak_ratio(float ratio)
{
  return ratio >= 1 ? ratio : 1 / ratio;
}

// Epsilon values for comparing resampled data to expected data.
// The bigger the resampling ratio is, the more lax we are about errors.
template <typename T>
T
epsilon(float ratio);

template <>
float
epsilon(float ratio)
{
  return 0.08f * epsilon_tweak_ratio(ratio);
}

template <>
int16_t
epsilon(float ratio)
{
  return static_cast<int16_t>(10 * epsilon_tweak_ratio(ratio));
}

void
test_delay_lines(uint32_t delay_frames, uint32_t channels, uint32_t chunk_ms)
{
  const size_t length_s = 2;
  const size_t rate = 44100;
  const size_t length_frames = rate * length_s;
  delay_line<float> delay(delay_frames, channels, rate);
  auto_array<float> input;
  auto_array<float> output;
  uint32_t chunk_length = channels * chunk_ms * rate / 1000;
  uint32_t output_offset = 0;
  uint32_t channel = 0;

  /** Generate diracs every 100 frames, and check they are delayed. */
  input.push_silence(length_frames * channels);
  for (uint32_t i = 0; i < input.length() - 1; i += 100) {
    input.data()[i + channel] = 0.5;
    channel = (channel + 1) % channels;
  }
  dump("input.raw", input.data(), input.length());
  while (input.length()) {
    uint32_t to_pop =
        std::min<uint32_t>(input.length(), chunk_length * channels);
    float * in = delay.input_buffer(to_pop / channels);
    input.pop(in, to_pop);
    delay.written(to_pop / channels);
    output.push_silence(to_pop);
    delay.output(output.data() + output_offset, to_pop / channels);
    output_offset += to_pop;
  }

  // Check the diracs have been shifted by `delay_frames` frames.
  for (uint32_t i = 0; i < output.length() - delay_frames * channels + 1;
       i += 100) {
    ASSERT_EQ(output.data()[i + channel + delay_frames * channels], 0.5);
    channel = (channel + 1) % channels;
  }

  dump("output.raw", output.data(), output.length());
}
/**
 * This takes sine waves with a certain `channels` count, `source_rate`, and
 * resample them, by chunk of `chunk_duration` milliseconds, to `target_rate`.
 * Then a sample-wise comparison is performed against a sine wave generated at
 * the correct rate.
 */
template <typename T>
void
test_resampler_one_way(uint32_t channels, uint32_t source_rate,
                       uint32_t target_rate, float chunk_duration)
{
  size_t chunk_duration_in_source_frames =
      static_cast<uint32_t>(ceil(chunk_duration * source_rate / 1000.));
  float resampling_ratio = static_cast<float>(source_rate) / target_rate;
  cubeb_resampler_speex_one_way<T> resampler(channels, source_rate, target_rate,
                                             3);
  auto_array<T> source(channels * source_rate * 10);
  auto_array<T> destination(channels * target_rate * 10);
  auto_array<T> expected(channels * target_rate * 10);
  uint32_t phase_index = 0;
  uint32_t offset = 0;
  const uint32_t buf_len = 2; /* seconds */

  // generate a sine wave in each channel, at the source sample rate
  source.push_silence(channels * source_rate * buf_len);
  while (offset != source.length()) {
    float p = phase_index++ / static_cast<float>(source_rate);
    for (uint32_t j = 0; j < channels; j++) {
      source.data()[offset++] = 0.5 * sin(440. * 2 * PI * p);
    }
  }

  dump("input.raw", source.data(), source.length());

  expected.push_silence(channels * target_rate * buf_len);
  // generate a sine wave in each channel, at the target sample rate.
  // Insert silent samples at the beginning to account for the resampler
  // latency.
  offset = resampler.latency() * channels;
  for (uint32_t i = 0; i < offset; i++) {
    expected.data()[i] = 0.0f;
  }
  phase_index = 0;
  while (offset != expected.length()) {
    float p = phase_index++ / static_cast<float>(target_rate);
    for (uint32_t j = 0; j < channels; j++) {
      expected.data()[offset++] = 0.5 * sin(440. * 2 * PI * p);
    }
  }

  dump("expected.raw", expected.data(), expected.length());

  // resample by chunk
  uint32_t write_offset = 0;
  destination.push_silence(channels * target_rate * buf_len);
  while (write_offset < destination.length()) {
    size_t output_frames = static_cast<uint32_t>(
        floor(chunk_duration_in_source_frames / resampling_ratio));
    uint32_t input_frames = resampler.input_needed_for_output(output_frames);
    resampler.input(source.data(), input_frames);
    source.pop(nullptr, input_frames * channels);
    resampler.output(
        destination.data() + write_offset,
        std::min(output_frames,
                 (destination.length() - write_offset) / channels));
    write_offset += output_frames * channels;
  }

  dump("output.raw", destination.data(), expected.length());

  // compare, taking the latency into account
  bool fuzzy_equal = true;
  for (uint32_t i = resampler.latency() + 1; i < expected.length(); i++) {
    float diff = fabs(expected.data()[i] - destination.data()[i]);
    if (diff > epsilon<T>(resampling_ratio)) {
      fprintf(stderr, "divergence at %d: %f %f (delta %f)\n", i,
              expected.data()[i], destination.data()[i], diff);
      fuzzy_equal = false;
    }
  }
  ASSERT_TRUE(fuzzy_equal);
}

template <typename T>
cubeb_sample_format
cubeb_format();

template <>
cubeb_sample_format
cubeb_format<float>()
{
  return CUBEB_SAMPLE_FLOAT32NE;
}

template <>
cubeb_sample_format
cubeb_format<short>()
{
  return CUBEB_SAMPLE_S16NE;
}

struct osc_state {
  osc_state()
      : input_phase_index(0), output_phase_index(0), output_offset(0),
        input_channels(0), output_channels(0)
  {
  }
  uint32_t input_phase_index;
  uint32_t max_output_phase_index;
  uint32_t output_phase_index;
  uint32_t output_offset;
  uint32_t input_channels;
  uint32_t output_channels;
  uint32_t output_rate;
  uint32_t target_rate;
  auto_array<float> input;
  auto_array<float> output;
};

uint32_t
fill_with_sine(float * buf, uint32_t rate, uint32_t channels, uint32_t frames,
               uint32_t initial_phase)
{
  uint32_t offset = 0;
  for (uint32_t i = 0; i < frames; i++) {
    float p = initial_phase++ / static_cast<float>(rate);
    for (uint32_t j = 0; j < channels; j++) {
      buf[offset++] = 0.5 * sin(440. * 2 * PI * p);
    }
  }
  return initial_phase;
}

long
data_cb_resampler(cubeb_stream * /*stm*/, void * user_ptr,
                  const void * input_buffer, void * output_buffer,
                  long frame_count)
{
  osc_state * state = reinterpret_cast<osc_state *>(user_ptr);
  const float * in = reinterpret_cast<const float *>(input_buffer);
  float * out = reinterpret_cast<float *>(output_buffer);

  state->input.push(in, frame_count * state->input_channels);

  /* Check how much output frames we need to write */
  uint32_t remaining =
      state->max_output_phase_index - state->output_phase_index;
  uint32_t to_write = std::min<uint32_t>(remaining, frame_count);
  state->output_phase_index =
      fill_with_sine(out, state->target_rate, state->output_channels, to_write,
                     state->output_phase_index);

  return to_write;
}

template <typename T>
bool
array_fuzzy_equal(const auto_array<T> & lhs, const auto_array<T> & rhs, T epsi)
{
  uint32_t len = std::min(lhs.length(), rhs.length());

  for (uint32_t i = 0; i < len; i++) {
    if (fabs(lhs.at(i) - rhs.at(i)) > epsi) {
      std::cout << "not fuzzy equal at index: " << i << " lhs: " << lhs.at(i)
                << " rhs: " << rhs.at(i)
                << " delta: " << fabs(lhs.at(i) - rhs.at(i))
                << " epsilon: " << epsi << std::endl;
      return false;
    }
  }
  return true;
}

template <typename T>
void
test_resampler_duplex(uint32_t input_channels, uint32_t output_channels,
                      uint32_t input_rate, uint32_t output_rate,
                      uint32_t target_rate, float chunk_duration)
{
  cubeb_stream_params input_params;
  cubeb_stream_params output_params;
  osc_state state;

  input_params.format = output_params.format = cubeb_format<T>();
  state.input_channels = input_params.channels = input_channels;
  state.output_channels = output_params.channels = output_channels;
  input_params.rate = input_rate;
  state.output_rate = output_params.rate = output_rate;
  state.target_rate = target_rate;
  input_params.prefs = output_params.prefs = CUBEB_STREAM_PREF_NONE;
  long got;

  cubeb_resampler * resampler = cubeb_resampler_create(
      (cubeb_stream *)nullptr, &input_params, &output_params, target_rate,
      data_cb_resampler, (void *)&state, CUBEB_RESAMPLER_QUALITY_VOIP,
      CUBEB_RESAMPLER_RECLOCK_NONE);

  long latency = cubeb_resampler_latency(resampler);

  const uint32_t duration_s = 2;
  int32_t duration_frames = duration_s * target_rate;
  uint32_t input_array_frame_count =
      ceil(chunk_duration * input_rate / 1000) +
      ceilf(static_cast<float>(input_rate) / target_rate) * 2;
  uint32_t output_array_frame_count = chunk_duration * output_rate / 1000;
  auto_array<float> input_buffer(input_channels * input_array_frame_count);
  auto_array<float> output_buffer(output_channels * output_array_frame_count);
  auto_array<float> expected_resampled_input(input_channels * duration_frames);
  auto_array<float> expected_resampled_output(output_channels * output_rate *
                                              duration_s);

  state.max_output_phase_index = duration_s * target_rate;

  expected_resampled_input.push_silence(input_channels * duration_frames);
  expected_resampled_output.push_silence(output_channels * output_rate *
                                         duration_s);

  /* expected output is a 440Hz sine wave at 16kHz */
  fill_with_sine(expected_resampled_input.data() + latency, target_rate,
                 input_channels, duration_frames - latency, 0);
  /* expected output is a 440Hz sine wave at 32kHz */
  fill_with_sine(expected_resampled_output.data() + latency, output_rate,
                 output_channels, output_rate * duration_s - latency, 0);

  while (state.output_phase_index != state.max_output_phase_index) {
    uint32_t leftover_samples = input_buffer.length() * input_channels;
    input_buffer.reserve(input_array_frame_count);
    state.input_phase_index = fill_with_sine(
        input_buffer.data() + leftover_samples, input_rate, input_channels,
        input_array_frame_count - leftover_samples, state.input_phase_index);
    long input_consumed = input_array_frame_count;
    input_buffer.set_length(input_array_frame_count);

    got = cubeb_resampler_fill(resampler, input_buffer.data(), &input_consumed,
                               output_buffer.data(), output_array_frame_count);

    /* handle leftover input */
    if (input_array_frame_count != static_cast<uint32_t>(input_consumed)) {
      input_buffer.pop(nullptr, input_consumed * input_channels);
    } else {
      input_buffer.clear();
    }

    state.output.push(output_buffer.data(), got * state.output_channels);
  }

  dump("input_expected.raw", expected_resampled_input.data(),
       expected_resampled_input.length());
  dump("output_expected.raw", expected_resampled_output.data(),
       expected_resampled_output.length());
  dump("input.raw", state.input.data(), state.input.length());
  dump("output.raw", state.output.data(), state.output.length());

  // This is disabled because the latency estimation in the resampler code is
  // slightly off so we can generate expected vectors.
  // See https://github.com/kinetiknz/cubeb/issues/93
  // ASSERT_TRUE(array_fuzzy_equal(state.input, expected_resampled_input,
  // epsilon<T>(input_rate/target_rate)));
  // ASSERT_TRUE(array_fuzzy_equal(state.output, expected_resampled_output,
  // epsilon<T>(output_rate/target_rate)));

  cubeb_resampler_destroy(resampler);
}

#define array_size(x) (sizeof(x) / sizeof(x[0]))

TEST(cubeb, resampler_one_way)
{
  /* Test one way resamplers */
  for (uint32_t channels = 1; channels <= max_channels; channels++) {
    for (uint32_t source_rate = 0; source_rate < array_size(sample_rates);
         source_rate++) {
      for (uint32_t dest_rate = 0; dest_rate < array_size(sample_rates);
           dest_rate++) {
        for (uint32_t chunk_duration = min_chunks; chunk_duration < max_chunks;
             chunk_duration += chunk_increment) {
          fprintf(stderr,
                  "one_way: channels: %d, source_rate: %d, dest_rate: %d, "
                  "chunk_duration: %d\n",
                  channels, sample_rates[source_rate], sample_rates[dest_rate],
                  chunk_duration);
          test_resampler_one_way<float>(channels, sample_rates[source_rate],
                                        sample_rates[dest_rate],
                                        chunk_duration);
        }
      }
    }
  }
}

TEST(cubeb, DISABLED_resampler_duplex)
{
  for (uint32_t input_channels = 1; input_channels <= max_channels;
       input_channels++) {
    for (uint32_t output_channels = 1; output_channels <= max_channels;
         output_channels++) {
      for (uint32_t source_rate_input = 0;
           source_rate_input < array_size(sample_rates); source_rate_input++) {
        for (uint32_t source_rate_output = 0;
             source_rate_output < array_size(sample_rates);
             source_rate_output++) {
          for (uint32_t dest_rate = 0; dest_rate < array_size(sample_rates);
               dest_rate++) {
            for (uint32_t chunk_duration = min_chunks;
                 chunk_duration < max_chunks;
                 chunk_duration += chunk_increment) {
              fprintf(stderr,
                      "input channels:%d output_channels:%d input_rate:%d "
                      "output_rate:%d target_rate:%d chunk_ms:%d\n",
                      input_channels, output_channels,
                      sample_rates[source_rate_input],
                      sample_rates[source_rate_output], sample_rates[dest_rate],
                      chunk_duration);
              test_resampler_duplex<float>(input_channels, output_channels,
                                           sample_rates[source_rate_input],
                                           sample_rates[source_rate_output],
                                           sample_rates[dest_rate],
                                           chunk_duration);
            }
          }
        }
      }
    }
  }
}

TEST(cubeb, resampler_delay_line)
{
  for (uint32_t channel = 1; channel <= 2; channel++) {
    for (uint32_t delay_frames = 4; delay_frames <= 40;
         delay_frames += chunk_increment) {
      for (uint32_t chunk_size = 10; chunk_size <= 30; chunk_size++) {
        fprintf(stderr, "channel: %d, delay_frames: %d, chunk_size: %d\n",
                channel, delay_frames, chunk_size);
        test_delay_lines(delay_frames, channel, chunk_size);
      }
    }
  }
}

long
test_output_only_noop_data_cb(cubeb_stream * /*stm*/, void * /*user_ptr*/,
                              const void * input_buffer, void * output_buffer,
                              long frame_count)
{
  EXPECT_TRUE(output_buffer);
  EXPECT_TRUE(!input_buffer);
  return frame_count;
}

TEST(cubeb, resampler_output_only_noop)
{
  cubeb_stream_params output_params;
  int target_rate;

  output_params.rate = 44100;
  output_params.channels = 1;
  output_params.format = CUBEB_SAMPLE_FLOAT32NE;
  target_rate = output_params.rate;

  cubeb_resampler * resampler = cubeb_resampler_create(
      (cubeb_stream *)nullptr, nullptr, &output_params, target_rate,
      test_output_only_noop_data_cb, nullptr, CUBEB_RESAMPLER_QUALITY_VOIP,
      CUBEB_RESAMPLER_RECLOCK_NONE);
  const long out_frames = 128;
  float out_buffer[out_frames];
  long got;

  got =
      cubeb_resampler_fill(resampler, nullptr, nullptr, out_buffer, out_frames);

  ASSERT_EQ(got, out_frames);

  cubeb_resampler_destroy(resampler);
}

long
test_drain_data_cb(cubeb_stream * /*stm*/, void * user_ptr,
                   const void * input_buffer, void * output_buffer,
                   long frame_count)
{
  EXPECT_TRUE(output_buffer);
  EXPECT_TRUE(!input_buffer);
  auto cb_count = static_cast<int *>(user_ptr);
  (*cb_count)++;
  return frame_count - 1;
}

TEST(cubeb, resampler_drain)
{
  cubeb_stream_params output_params;
  int target_rate;

  output_params.rate = 44100;
  output_params.channels = 1;
  output_params.format = CUBEB_SAMPLE_FLOAT32NE;
  target_rate = 48000;
  int cb_count = 0;

  cubeb_resampler * resampler = cubeb_resampler_create(
      (cubeb_stream *)nullptr, nullptr, &output_params, target_rate,
      test_drain_data_cb, &cb_count, CUBEB_RESAMPLER_QUALITY_VOIP,
      CUBEB_RESAMPLER_RECLOCK_NONE);

  const long out_frames = 128;
  float out_buffer[out_frames];
  long got;

  do {
    got = cubeb_resampler_fill(resampler, nullptr, nullptr, out_buffer,
                               out_frames);
  } while (got == out_frames);

  /* The callback should be called once but not again after returning <
   * frame_count. */
  ASSERT_EQ(cb_count, 1);

  cubeb_resampler_destroy(resampler);
}

// gtest does not support using ASSERT_EQ and friend in a function that returns
// a value.
void
check_output(const void * input_buffer, void * output_buffer, long frame_count)
{
  ASSERT_EQ(input_buffer, nullptr);
  ASSERT_EQ(frame_count, 256);
  ASSERT_TRUE(!!output_buffer);
}

long
cb_passthrough_resampler_output(cubeb_stream * /*stm*/, void * /*user_ptr*/,
                                const void * input_buffer, void * output_buffer,
                                long frame_count)
{
  check_output(input_buffer, output_buffer, frame_count);
  return frame_count;
}

TEST(cubeb, resampler_passthrough_output_only)
{
  // Test that the passthrough resampler works when there is only an output
  // stream.
  cubeb_stream_params output_params;

  const size_t output_channels = 2;
  output_params.channels = output_channels;
  output_params.rate = 44100;
  output_params.format = CUBEB_SAMPLE_FLOAT32NE;
  int target_rate = output_params.rate;

  cubeb_resampler * resampler = cubeb_resampler_create(
      (cubeb_stream *)nullptr, nullptr, &output_params, target_rate,
      cb_passthrough_resampler_output, nullptr, CUBEB_RESAMPLER_QUALITY_VOIP,
      CUBEB_RESAMPLER_RECLOCK_NONE);

  float output_buffer[output_channels * 256];

  long got;
  for (uint32_t i = 0; i < 30; i++) {
    got = cubeb_resampler_fill(resampler, nullptr, nullptr, output_buffer, 256);
    ASSERT_EQ(got, 256);
  }

  cubeb_resampler_destroy(resampler);
}

// gtest does not support using ASSERT_EQ and friend in a function that returns
// a value.
void
check_input(const void * input_buffer, void * output_buffer, long frame_count)
{
  ASSERT_EQ(output_buffer, nullptr);
  ASSERT_EQ(frame_count, 256);
  ASSERT_TRUE(!!input_buffer);
}

long
cb_passthrough_resampler_input(cubeb_stream * /*stm*/, void * /*user_ptr*/,
                               const void * input_buffer, void * output_buffer,
                               long frame_count)
{
  check_input(input_buffer, output_buffer, frame_count);
  return frame_count;
}

TEST(cubeb, resampler_passthrough_input_only)
{
  // Test that the passthrough resampler works when there is only an output
  // stream.
  cubeb_stream_params input_params;

  const size_t input_channels = 2;
  input_params.channels = input_channels;
  input_params.rate = 44100;
  input_params.format = CUBEB_SAMPLE_FLOAT32NE;
  int target_rate = input_params.rate;

  cubeb_resampler * resampler = cubeb_resampler_create(
      (cubeb_stream *)nullptr, &input_params, nullptr, target_rate,
      cb_passthrough_resampler_input, nullptr, CUBEB_RESAMPLER_QUALITY_VOIP,
      CUBEB_RESAMPLER_RECLOCK_NONE);

  float input_buffer[input_channels * 256];

  long got;
  for (uint32_t i = 0; i < 30; i++) {
    long int frames = 256;
    got = cubeb_resampler_fill(resampler, input_buffer, &frames, nullptr, 0);
    ASSERT_EQ(got, 256);
  }

  cubeb_resampler_destroy(resampler);
}

template <typename T>
long
seq(T * array, int stride, long start, long count)
{
  uint32_t output_idx = 0;
  for (int i = 0; i < count; i++) {
    for (int j = 0; j < stride; j++) {
      array[output_idx + j] = static_cast<T>(start + i);
    }
    output_idx += stride;
  }
  return start + count;
}

template <typename T>
void
is_seq(T * array, int stride, long count, long expected_start)
{
  uint32_t output_index = 0;
  for (long i = 0; i < count; i++) {
    for (int j = 0; j < stride; j++) {
      ASSERT_EQ(array[output_index + j], expected_start + i);
    }
    output_index += stride;
  }
}

template <typename T>
void
is_not_seq(T * array, int stride, long count, long expected_start)
{
  uint32_t output_index = 0;
  for (long i = 0; i < count; i++) {
    for (int j = 0; j < stride; j++) {
      ASSERT_NE(array[output_index + j], expected_start + i);
    }
    output_index += stride;
  }
}

struct closure {
  int input_channel_count;
};

// gtest does not support using ASSERT_EQ and friend in a function that returns
// a value.
template <typename T>
void
check_duplex(const T * input_buffer, T * output_buffer, long frame_count,
             int input_channel_count)
{
  ASSERT_EQ(frame_count, 256);
  // Silence scan-build warning.
  ASSERT_TRUE(!!output_buffer);
  assert(output_buffer);
  ASSERT_TRUE(!!input_buffer);
  assert(input_buffer);

  int output_index = 0;
  int input_index = 0;
  for (int i = 0; i < frame_count; i++) {
    // output is two channels, input one or two channels.
    if (input_channel_count == 1) {
      output_buffer[output_index] = output_buffer[output_index + 1] =
          input_buffer[i];
    } else if (input_channel_count == 2) {
      output_buffer[output_index] = input_buffer[input_index];
      output_buffer[output_index + 1] = input_buffer[input_index + 1];
    }
    output_index += 2;
    input_index += input_channel_count;
  }
}

long
cb_passthrough_resampler_duplex(cubeb_stream * /*stm*/, void * user_ptr,
                                const void * input_buffer, void * output_buffer,
                                long frame_count)
{
  closure * c = reinterpret_cast<closure *>(user_ptr);
  check_duplex<float>(static_cast<const float *>(input_buffer),
                      static_cast<float *>(output_buffer), frame_count,
                      c->input_channel_count);
  return frame_count;
}

TEST(cubeb, resampler_passthrough_duplex_callback_reordering)
{
  // Test that when pre-buffering on resampler creation, we can survive an input
  // callback being delayed.

  cubeb_stream_params input_params;
  cubeb_stream_params output_params;

  const int input_channels = 1;
  const int output_channels = 2;

  input_params.channels = input_channels;
  input_params.rate = 44100;
  input_params.format = CUBEB_SAMPLE_FLOAT32NE;

  output_params.channels = output_channels;
  output_params.rate = input_params.rate;
  output_params.format = CUBEB_SAMPLE_FLOAT32NE;

  int target_rate = input_params.rate;

  closure c;
  c.input_channel_count = input_channels;

  cubeb_resampler * resampler = cubeb_resampler_create(
      (cubeb_stream *)nullptr, &input_params, &output_params, target_rate,
      cb_passthrough_resampler_duplex, &c, CUBEB_RESAMPLER_QUALITY_VOIP,
      CUBEB_RESAMPLER_RECLOCK_NONE);

  const long BUF_BASE_SIZE = 256;
  float input_buffer_prebuffer[input_channels * BUF_BASE_SIZE * 2];
  float input_buffer_glitch[input_channels * BUF_BASE_SIZE * 2];
  float input_buffer_normal[input_channels * BUF_BASE_SIZE];
  float output_buffer[output_channels * BUF_BASE_SIZE];

  long seq_idx = 0;
  long output_seq_idx = 0;

  long prebuffer_frames =
      ARRAY_LENGTH(input_buffer_prebuffer) / input_params.channels;
  seq_idx =
      seq(input_buffer_prebuffer, input_channels, seq_idx, prebuffer_frames);

  long got =
      cubeb_resampler_fill(resampler, input_buffer_prebuffer, &prebuffer_frames,
                           output_buffer, BUF_BASE_SIZE);

  output_seq_idx += BUF_BASE_SIZE;

  // prebuffer_frames will hold the frames used by the resampler.
  ASSERT_EQ(prebuffer_frames, BUF_BASE_SIZE);
  ASSERT_EQ(got, BUF_BASE_SIZE);

  for (uint32_t i = 0; i < 300; i++) {
    long int frames = BUF_BASE_SIZE;
    // Simulate that sometimes, we don't have the input callback on time
    if (i != 0 && (i % 100) == 0) {
      long zero = 0;
      got =
          cubeb_resampler_fill(resampler, input_buffer_normal /* unused here */,
                               &zero, output_buffer, BUF_BASE_SIZE);
      is_seq(output_buffer, 2, BUF_BASE_SIZE, output_seq_idx);
      output_seq_idx += BUF_BASE_SIZE;
    } else if (i != 0 && (i % 100) == 1) {
      // if this is the case, the on the next iteration, we'll have twice the
      // amount of input frames
      seq_idx =
          seq(input_buffer_glitch, input_channels, seq_idx, BUF_BASE_SIZE * 2);
      frames = 2 * BUF_BASE_SIZE;
      got = cubeb_resampler_fill(resampler, input_buffer_glitch, &frames,
                                 output_buffer, BUF_BASE_SIZE);
      is_seq(output_buffer, 2, BUF_BASE_SIZE, output_seq_idx);
      output_seq_idx += BUF_BASE_SIZE;
    } else {
      // normal case
      seq_idx =
          seq(input_buffer_normal, input_channels, seq_idx, BUF_BASE_SIZE);
      long normal_input_frame_count = 256;
      got = cubeb_resampler_fill(resampler, input_buffer_normal,
                                 &normal_input_frame_count, output_buffer,
                                 BUF_BASE_SIZE);
      is_seq(output_buffer, 2, BUF_BASE_SIZE, output_seq_idx);
      output_seq_idx += BUF_BASE_SIZE;
    }
    ASSERT_EQ(got, BUF_BASE_SIZE);
  }

  cubeb_resampler_destroy(resampler);
}

// Artificially simulate output thread underruns,
// by building up artificial delay in the input.
// Check that the frame drop logic kicks in.
TEST(cubeb, resampler_drift_drop_data)
{
  for (uint32_t input_channels = 1; input_channels < 3; input_channels++) {
    cubeb_stream_params input_params;
    cubeb_stream_params output_params;

    const int output_channels = 2;
    const int sample_rate = 44100;

    input_params.channels = input_channels;
    input_params.rate = sample_rate;
    input_params.format = CUBEB_SAMPLE_FLOAT32NE;

    output_params.channels = output_channels;
    output_params.rate = sample_rate;
    output_params.format = CUBEB_SAMPLE_FLOAT32NE;

    int target_rate = input_params.rate;

    closure c;
    c.input_channel_count = input_channels;

    cubeb_resampler * resampler = cubeb_resampler_create(
        (cubeb_stream *)nullptr, &input_params, &output_params, target_rate,
        cb_passthrough_resampler_duplex, &c, CUBEB_RESAMPLER_QUALITY_VOIP,
        CUBEB_RESAMPLER_RECLOCK_NONE);

    const long BUF_BASE_SIZE = 256;

    // The factor by which the deadline is missed. This is intentionally
    // kind of large to trigger the frame drop quickly. In real life, multiple
    // smaller under-runs would accumulate.
    const long UNDERRUN_FACTOR = 10;
    // Number buffer used for pre-buffering, that some backends do.
    const long PREBUFFER_FACTOR = 2;

    std::vector<float> input_buffer_prebuffer(input_channels * BUF_BASE_SIZE *
                                              PREBUFFER_FACTOR);
    std::vector<float> input_buffer_glitch(input_channels * BUF_BASE_SIZE *
                                           UNDERRUN_FACTOR);
    std::vector<float> input_buffer_normal(input_channels * BUF_BASE_SIZE);
    std::vector<float> output_buffer(output_channels * BUF_BASE_SIZE);

    long seq_idx = 0;
    long output_seq_idx = 0;

    long prebuffer_frames =
        input_buffer_prebuffer.size() / input_params.channels;
    seq_idx = seq(input_buffer_prebuffer.data(), input_channels, seq_idx,
                  prebuffer_frames);

    long got = cubeb_resampler_fill(resampler, input_buffer_prebuffer.data(),
                                    &prebuffer_frames, output_buffer.data(),
                                    BUF_BASE_SIZE);

    output_seq_idx += BUF_BASE_SIZE;

    // prebuffer_frames will hold the frames used by the resampler.
    ASSERT_EQ(prebuffer_frames, BUF_BASE_SIZE);
    ASSERT_EQ(got, BUF_BASE_SIZE);

    for (uint32_t i = 0; i < 300; i++) {
      long int frames = BUF_BASE_SIZE;
      if (i != 0 && (i % 100) == 1) {
        // Once in a while, the output thread misses its deadline.
        // The input thread still produces data, so it ends up accumulating.
        // Simulate this by providing a much bigger input buffer. Check that the
        // sequence is now unaligned, meaning we've dropped data to keep
        // everything in sync.
        seq_idx = seq(input_buffer_glitch.data(), input_channels, seq_idx,
                      BUF_BASE_SIZE * UNDERRUN_FACTOR);
        frames = BUF_BASE_SIZE * UNDERRUN_FACTOR;
        got =
            cubeb_resampler_fill(resampler, input_buffer_glitch.data(), &frames,
                                 output_buffer.data(), BUF_BASE_SIZE);
        is_seq(output_buffer.data(), 2, BUF_BASE_SIZE, output_seq_idx);
        output_seq_idx += BUF_BASE_SIZE;
      } else if (i != 0 && (i % 100) == 2) {
        // On the next iteration, the sequence should be broken
        seq_idx = seq(input_buffer_normal.data(), input_channels, seq_idx,
                      BUF_BASE_SIZE);
        long normal_input_frame_count = 256;
        got = cubeb_resampler_fill(resampler, input_buffer_normal.data(),
                                   &normal_input_frame_count,
                                   output_buffer.data(), BUF_BASE_SIZE);
        is_not_seq(output_buffer.data(), output_channels, BUF_BASE_SIZE,
                   output_seq_idx);
        // Reclock so that we can use is_seq again.
        output_seq_idx = output_buffer[BUF_BASE_SIZE * output_channels - 1] + 1;
      } else {
        // normal case
        seq_idx = seq(input_buffer_normal.data(), input_channels, seq_idx,
                      BUF_BASE_SIZE);
        long normal_input_frame_count = 256;
        got = cubeb_resampler_fill(resampler, input_buffer_normal.data(),
                                   &normal_input_frame_count,
                                   output_buffer.data(), BUF_BASE_SIZE);
        is_seq(output_buffer.data(), output_channels, BUF_BASE_SIZE,
               output_seq_idx);
        output_seq_idx += BUF_BASE_SIZE;
      }
      ASSERT_EQ(got, BUF_BASE_SIZE);
    }

    cubeb_resampler_destroy(resampler);
  }
}

static long
passthrough_resampler_fill_eq_input(cubeb_stream * stream, void * user_ptr,
                                    void const * input_buffer,
                                    void * output_buffer, long nframes)
{
  // gtest does not support using ASSERT_EQ and friends in a
  // function that returns a value.
  [nframes, input_buffer]() {
    ASSERT_EQ(nframes, 32);
    const float * input = static_cast<const float *>(input_buffer);
    for (int i = 0; i < 64; ++i) {
      ASSERT_FLOAT_EQ(input[i], 0.01 * i);
    }
  }();
  return nframes;
}

TEST(cubeb, passthrough_resampler_fill_eq_input)
{
  uint32_t channels = 2;
  uint32_t sample_rate = 44100;
  passthrough_resampler<float> resampler =
      passthrough_resampler<float>(nullptr, passthrough_resampler_fill_eq_input,
                                   nullptr, channels, sample_rate);

  long input_frame_count = 32;
  long output_frame_count = 32;
  float input[64] = {};
  float output[64] = {};
  for (uint32_t i = 0; i < input_frame_count * channels; ++i) {
    input[i] = 0.01 * i;
  }
  long got =
      resampler.fill(input, &input_frame_count, output, output_frame_count);
  ASSERT_EQ(got, output_frame_count);
  // Input frames used must be equal to output frames.
  ASSERT_EQ(input_frame_count, output_frame_count);
}

static long
passthrough_resampler_fill_short_input(cubeb_stream * stream, void * user_ptr,
                                       void const * input_buffer,
                                       void * output_buffer, long nframes)
{
  // gtest does not support using ASSERT_EQ and friends in a
  // function that returns a value.
  [nframes, input_buffer]() {
    ASSERT_EQ(nframes, 32);
    const float * input = static_cast<const float *>(input_buffer);
    // First part contains the input
    for (int i = 0; i < 32; ++i) {
      ASSERT_FLOAT_EQ(input[i], 0.01 * i);
    }
    // missing part contains silence
    for (int i = 32; i < 64; ++i) {
      ASSERT_FLOAT_EQ(input[i], 0.0);
    }
  }();
  return nframes;
}

TEST(cubeb, passthrough_resampler_fill_short_input)
{
  uint32_t channels = 2;
  uint32_t sample_rate = 44100;
  passthrough_resampler<float> resampler = passthrough_resampler<float>(
      nullptr, passthrough_resampler_fill_short_input, nullptr, channels,
      sample_rate);

  long input_frame_count = 16;
  long output_frame_count = 32;
  float input[64] = {};
  float output[64] = {};
  for (uint32_t i = 0; i < input_frame_count * channels; ++i) {
    input[i] = 0.01 * i;
  }
  long got =
      resampler.fill(input, &input_frame_count, output, output_frame_count);
  ASSERT_EQ(got, output_frame_count);
  // Input frames used are less than the output frames due to glitch.
  ASSERT_EQ(input_frame_count, output_frame_count - 16);
}

static long
passthrough_resampler_fill_input_left(cubeb_stream * stream, void * user_ptr,
                                      void const * input_buffer,
                                      void * output_buffer, long nframes)
{
  // gtest does not support using ASSERT_EQ and friends in a
  // function that returns a value.
  int iteration = *static_cast<int *>(user_ptr);
  if (iteration == 1) {
    [nframes, input_buffer]() {
      ASSERT_EQ(nframes, 32);
      const float * input = static_cast<const float *>(input_buffer);
      for (int i = 0; i < 64; ++i) {
        ASSERT_FLOAT_EQ(input[i], 0.01 * i);
      }
    }();
  } else if (iteration == 2) {
    [nframes, input_buffer]() {
      ASSERT_EQ(nframes, 32);
      const float * input = static_cast<const float *>(input_buffer);
      for (int i = 0; i < 32; ++i) {
        // First part contains the reamaining input samples from previous
        // iteration (since they were more).
        ASSERT_FLOAT_EQ(input[i], 0.01 * (i + 64));
        // next part contains the new buffer
        ASSERT_FLOAT_EQ(input[i + 32], 0.01 * i);
      }
    }();
  } else if (iteration == 3) {
    [nframes, input_buffer]() {
      ASSERT_EQ(nframes, 32);
      const float * input = static_cast<const float *>(input_buffer);
      for (int i = 0; i < 32; ++i) {
        // First part (16 frames) contains the reamaining input samples
        // from previous iteration (since they were more).
        ASSERT_FLOAT_EQ(input[i], 0.01 * (i + 32));
      }
      for (int i = 0; i < 16; ++i) {
        // next part (8 frames) contains the new input buffer.
        ASSERT_FLOAT_EQ(input[i + 32], 0.01 * i);
        // last part (8 frames) contains silence.
        ASSERT_FLOAT_EQ(input[i + 32 + 16], 0.0);
      }
    }();
  }
  return nframes;
}

TEST(cubeb, passthrough_resampler_fill_input_left)
{
  const uint32_t channels = 2;
  const uint32_t sample_rate = 44100;
  int iteration = 0;
  passthrough_resampler<float> resampler = passthrough_resampler<float>(
      nullptr, passthrough_resampler_fill_input_left, &iteration, channels,
      sample_rate);

  long input_frame_count = 48; // 32 + 16
  const long output_frame_count = 32;
  float input[96] = {};
  float output[64] = {};
  for (uint32_t i = 0; i < input_frame_count * channels; ++i) {
    input[i] = 0.01 * i;
  }

  // 1st iteration, add the extra input.
  iteration = 1;
  long got =
      resampler.fill(input, &input_frame_count, output, output_frame_count);
  ASSERT_EQ(got, output_frame_count);
  // Input frames used must be equal to output frames.
  ASSERT_EQ(input_frame_count, output_frame_count);

  // 2st iteration, use the extra input from previous iteration,
  // 16 frames are remaining in the input buffer.
  input_frame_count = 32; // we need 16 input frames but we get more;
  iteration = 2;
  got = resampler.fill(input, &input_frame_count, output, output_frame_count);
  ASSERT_EQ(got, output_frame_count);
  // Input frames used must be equal to output frames.
  ASSERT_EQ(input_frame_count, output_frame_count);

  // 3rd iteration, use the extra input from previous iteration.
  // 16 frames are remaining in the input buffer.
  input_frame_count = 16 - 8; // We need 16 more input frames but we only get 8.
  iteration = 3;
  got = resampler.fill(input, &input_frame_count, output, output_frame_count);
  ASSERT_EQ(got, output_frame_count);
  // Input frames used are less than the output frames due to glitch.
  ASSERT_EQ(input_frame_count, output_frame_count - 8);
}

TEST(cubeb, individual_methods)
{
  const uint32_t channels = 2;
  const uint32_t sample_rate = 44100;
  const uint32_t frames = 256;

  delay_line<float> dl(10, channels, sample_rate);
  uint32_t frames_needed1 = dl.input_needed_for_output(0);
  ASSERT_EQ(frames_needed1, 0u);

  cubeb_resampler_speex_one_way<float> one_way(
      channels, sample_rate, sample_rate, CUBEB_RESAMPLER_QUALITY_DEFAULT);
  float buffer[channels * frames] = {0.0};
  // Add all frames in the resampler's internal buffer.
  one_way.input(buffer, frames);
  // Ask for less than the existing frames, this would create a uint overlflow
  // without the fix.
  uint32_t frames_needed2 = one_way.input_needed_for_output(0);
  ASSERT_EQ(frames_needed2, 0u);
}

struct sine_wave_state {
  float frequency;
  int sample_rate;
  size_t count = 0;
  sine_wave_state(float freq, int rate) : frequency(freq), sample_rate(rate) {}
};

long
data_cb(cubeb_stream * stream, void * user_ptr, void const * input_buffer,
        void * output_buffer, long nframes)
{
  sine_wave_state * state = static_cast<sine_wave_state *>(user_ptr);
  float * out = static_cast<float *>(output_buffer);
  double phase_increment = 2.0f * M_PI * state->frequency / state->sample_rate;

  for (int i = 0; i < nframes; i++) {
    float sample = sin(phase_increment * state->count);
    state->count++;
    out[i] = sample * 0.8;
  }
  return nframes;
}

// This implements 4.6.2 from "Standard for Digitizing Waveform Recorders"
// (in particular Annex A), then returns the estimated amplitude, phase, and the
// sum of squared error relative to a sine wave sampled at `sample_rate` and of
// frequency `frequency`. This is also described in "Numerical methods for
// engineers" chapter 19.1, and explained at
// https://www.youtube.com/watch?v=afQszl_OwKo and videos of the same series.
// In practice here we're sending a perfect 1khz sine wave into a good
// resampler, and despite the resampling ratio being quite extreme sometimes,
// we're expecting a very good fit.
float
fit_sine(const std::vector<float> & signal, float sample_rate, float frequency,
         float & out_amplitude, float & out_phase)
{
  // The formulation below is exact for samples spanning an integer number of
  // periods. It can be important for `signal` to be trimmed to an integer
  // number of periods if it doesn't contain a lot of periods.
  double phase_incr = 2.0 * M_PI * frequency / sample_rate;

  double sum_cos = 0.0;
  double sum_sin = 0.0;
  for (size_t i = 0; i < signal.size(); ++i) {
    double c = std::cos(phase_incr * static_cast<double>(i));
    double s = std::sin(phase_incr * static_cast<double>(i));
    sum_cos += signal[i] * c;
    sum_sin += signal[i] * s;
  }

  double amplitude = 2.0f * std::sqrt(sum_cos * sum_cos + sum_sin * sum_sin) /
                     static_cast<double>(signal.size());
  double phi = std::atan2(sum_cos, sum_sin);

  out_amplitude = amplitude;
  out_phase = phi;

  // Compute sum of squared errors relative to the fitted sine wave
  double sse = 0.0;
  for (size_t i = 0; i < signal.size(); ++i) {
    // Use known amplitude here instead instead of the from the fitted function.
    double fit = 0.8 * std::sin(phase_incr * i + phi);
    double diff = signal[i] - fit;
    sse += diff * diff;
  }

  return sse;
}

// Finds the offset of the start of an input_freq sine wave sampled at
// target_rate in data. Remove the leading silence from data.
size_t
find_sine_start(const std::vector<float> & data, float input_freq,
                float target_rate)
{
  const size_t POINTS = 10;
  size_t skipped = 0;

  while (skipped + POINTS < data.size()) {
    double phase = 0;
    double phase_increment = 2.0f * M_PI * input_freq / target_rate;
    bool fits_sine = true;

    for (size_t i = 0; i < POINTS; i++) {
      float expected = sin(phase) * 0.8;
      float actual = data[skipped + i];
      if (fabs(expected - actual) > 0.1) {
        // doesn't fit a sine, skip to next start point
        fits_sine = false;
        break;
      }
      phase += phase_increment;
      if (phase > 2.0f * M_PI) {
        phase -= 2.0f * M_PI;
      }
    }

    if (!fits_sine) {
      skipped++;
      continue;
    }

    // Found the start of the sine wave
    size_t sine_start = skipped;
    return sine_start;
  }

  return skipped;
}

// This class tracks the monotonicity of a certain value, and reports if it
// increases too much monotonically.
struct monotonic_state {
  explicit monotonic_state(const char * what, int source_rate, int target_rate,
                           int block_size)
      : what(what), source_rate(source_rate), target_rate(target_rate),
        block_size(block_size)
  {
  }
  ~monotonic_state()
  {
    float ratio =
        static_cast<float>(source_rate) / static_cast<float>(target_rate);
    // Only report if there has been a meaningful increase in buffering. Do
    // not warn if the buffering was constant and small.
    if (monotonic && max_value && max_value != max_step) {
      printf("%s is monotonically increasing, max: %zu, max_step: %zu, "
             "in: %dHz, out: "
             "%dHz, block_size: %d, ratio: %lf\n",
             what, max_value, max_step, source_rate, target_rate, block_size,
             ratio);
    }
    // Arbitrary limit: if more than this number of frames has been buffered,
    // print a message.
    constexpr int BUFFER_SIZE_THRESHOLD = 20;
    if (max_value > BUFFER_SIZE_THRESHOLD) {
      printf("%s, unexpected large max buffering value, max: %zu, max_step: "
             "%zu, in: %dHz, out: %dHz, block_size: %d, ratio: %lf\n",
             what, max_value, max_step, source_rate, target_rate, block_size,
             ratio);
    }
  }
  void set_new_value(size_t new_value)
  {
    if (new_value < value) {
      monotonic = false;
    } else {
      max_step = std::max(max_step, new_value - value);
    }
    value = new_value;
    max_value = std::max(value, max_value);
  }
  // Textual representation of this measurement
  const char * what;
  // Resampler parameters for this test case
  int source_rate = 0;
  int target_rate = 0;
  int block_size = 0;
  // Current buffering value
  size_t value = 0;
  // Max buffering value increment
  size_t max_step = 0;
  // Max buffering value observerd
  size_t max_value = 0;
  // Whether the value has only increased or not
  bool monotonic = true;
};

// Setting this to 1 dumps a bunch of wave file to the local directory for
// manual inspection of the resampled output
constexpr int DUMP_OUTPUT = 0;

// Source and target sample-rates in Hz, typical values.
const int rates[] = {16000, 32000, 44100, 48000, 96000, 192000, 384000};
// Block size in frames, except the first element, that is in millisecond
// Power of two are typical on Windows WASAPI IAudioClient3, macOS,
// Linux Pipewire and Jack. 10ms is typical on Windows IAudioClient and
// IAudioClient2. 96, 192 are not uncommon on some Android devices.
constexpr int WASAPI_MS_BLOCK = 10;
const int block_sizes[] = {WASAPI_MS_BLOCK, 96, 128, 192, 256, 512, 1024, 2048};
// Enough iterations to catch rounding/drift issues, but not too many to avoid
// having a test that is too long to run.
constexpr int ITERATION_COUNT = 1000;
// 1 kHz input sine wave
const float input_freq = 1000.0f;

struct ThreadPool {
  std::vector<std::thread> workers;
  std::queue<std::function<void()>> tasks;
  std::mutex queue_mutex;
  std::condition_variable condition;
  bool stop;

  ThreadPool(size_t threads) : stop(false)
  {
    for (size_t i = 0; i < threads; ++i) {
      workers.emplace_back([this] {
        while (true) {
          std::function<void()> task;
          {
            std::unique_lock<std::mutex> lock(queue_mutex);
            condition.wait(lock, [this] { return stop || !tasks.empty(); });
            if (stop && tasks.empty())
              return;
            task = std::move(tasks.front());
            tasks.pop();
          }
          task();
        }
      });
    }
  }

  void enqueue(std::function<void()> task)
  {
    {
      std::unique_lock<std::mutex> lock(queue_mutex);
      tasks.push(std::move(task));
    }
    condition.notify_one();
  }

  ~ThreadPool()
  {
    {
      std::unique_lock<std::mutex> lock(queue_mutex);
      stop = true;
    }
    condition.notify_all();
    for (std::thread & worker : workers) {
      worker.join();
    }
  }
};

static void
run_test(int source_rate, int target_rate, int block_size)
{
  int effective_block_size = block_size;
  // special case: Windows/WASAPI works in blocks of 10ms regardless of
  // the rate.
  if (effective_block_size == WASAPI_MS_BLOCK) {
    effective_block_size = target_rate / 100; // 10ms
  }
  sine_wave_state state(input_freq, source_rate);
  cubeb_stream_params out_params = {};
  out_params.channels = 1;
  out_params.rate = target_rate;
  out_params.format = CUBEB_SAMPLE_FLOAT32NE;

  cubeb_audio_dump_session_t session = nullptr;
  cubeb_audio_dump_stream_t dump_stream = nullptr;
  if constexpr (DUMP_OUTPUT) {
    cubeb_audio_dump_init(&session);
    char buf[256];
    snprintf(buf, 256, "test-%dHz-to-%dhz-%d-block.wav", source_rate,
             target_rate, effective_block_size);
    cubeb_audio_dump_stream_init(session, &dump_stream, out_params, buf);
    cubeb_audio_dump_start(session);
  }
  cubeb_resampler * resampler = cubeb_resampler_create(
      nullptr, nullptr, &out_params, source_rate, data_cb, &state,
      CUBEB_RESAMPLER_QUALITY_DEFAULT, CUBEB_RESAMPLER_RECLOCK_NONE);
  ASSERT_NE(resampler, nullptr);

  std::vector<float> data(effective_block_size * out_params.channels);
  int i = ITERATION_COUNT;
  // For now this only tests the output side (out_... measurements).
  //  We could expect the resampler to be symmetrical, but we could
  //  test both sides at once.
  // - ..._in is the input buffer of the resampler, containing
  // unresampled  frames
  // - ..._out is the output buffer, containing resampled frames.
  monotonic_state in_in_max("in_in", source_rate, target_rate,
                            effective_block_size);
  monotonic_state in_out_max("in_out", source_rate, target_rate,
                             effective_block_size);
  monotonic_state out_in_max("out_in", source_rate, target_rate,
                             effective_block_size);
  monotonic_state out_out_max("out_out", source_rate, target_rate,
                              effective_block_size);

  std::vector<float> resampled;
  resampled.reserve(ITERATION_COUNT * effective_block_size *
                    out_params.channels);
  while (i--) {
    int64_t got = cubeb_resampler_fill(resampler, nullptr, nullptr, data.data(),
                                       effective_block_size);
    ASSERT_EQ(got, effective_block_size);
    cubeb_resampler_stats stats = cubeb_resampler_stats_get(resampler);

    resampled.insert(resampled.end(), data.begin(), data.end());

    in_in_max.set_new_value(stats.input_input_buffer_size);
    in_out_max.set_new_value(stats.input_output_buffer_size);
    out_in_max.set_new_value(stats.output_input_buffer_size);
    out_out_max.set_new_value(stats.output_output_buffer_size);
  }

  cubeb_resampler_destroy(resampler);

  // Example of an error, off by one every block or so, resulting in a
  // silent sample. This is enough to make all the tests fail.
  //
  // for (uint32_t i = 0; i < resampled.size(); i++) {
  //   if (!(i % (effective_block_size))) {
  //     resampled[i] = 0.0;
  //   }
  // }

  // This roughly finds the start of the sine wave and strips it from
  // data.
  size_t skipped = 0;
  skipped = find_sine_start(resampled, input_freq, target_rate);

  resampled.erase(resampled.begin(), resampled.begin() + skipped);

  if constexpr (DUMP_OUTPUT) {
    cubeb_audio_dump_write(dump_stream, resampled.data(), resampled.size());
  }

  float amplitude = 0;
  float phase = 0;

  // Fit our resampled sine wave, get an MSE value
  double sse = fit_sine(resampled, target_rate, input_freq, amplitude, phase);
  double mse = sse / resampled.size();

  // Code to print JSON to plot externally
  // printf("\t[%d,%d,%d,%.10e,%lf,%lf],\n", source_rate, target_rate,
  //        effective_block_size, mse, amplitude, phase);

  // Value found after running the tests on Linux x64
  ASSERT_LT(mse, 3.22e-07);

  if constexpr (DUMP_OUTPUT) {
    cubeb_audio_dump_stop(session);
    cubeb_audio_dump_stream_shutdown(session, dump_stream);
    cubeb_audio_dump_shutdown(session);
  }
}

// This tests checks three things:
// - Whenever resampling from a source rate to a target rate with a certain
//  block size, the correct number of frames is provided back from the
//  resampler, to the backend.
// - While resampling, internal buffers are kept under control and aren't
// growing unbounded.
// - The output signal is a 1khz sine (as is the input)
TEST(cubeb, resampler_typical_uses)
{
  cubeb * ctx;
  common_init(&ctx, "Cubeb resampler test");

  size_t concurrency = std::max(1u, std::thread::hardware_concurrency());
  std::condition_variable cv;
  std::mutex mutex;
  size_t task_count = 0;
  ThreadPool pool(concurrency);

  for (int source_rate : rates) {
    for (int target_rate : rates) {
      for (int block_size : block_sizes) {
        {
          std::unique_lock<std::mutex> lock(mutex);
          ++task_count;
        }
        pool.enqueue([&, source_rate, target_rate, block_size] {
          run_test(source_rate, target_rate, block_size);
          {
            std::unique_lock<std::mutex> lock(mutex);
            --task_count;
          }
          cv.notify_one();
        });
      }
    }
  }

  std::unique_lock<std::mutex> lock(mutex);
  cv.wait(lock, [&] { return task_count == 0; });
  cubeb_destroy(ctx);
}
#undef NOMINMAX
#undef DUMP_ARRAYS