1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#define MOZ_MEMORY_IMPL
#include "mozmemory_wrap.h"
#ifdef _WIN32
# include <windows.h>
# include <io.h>
typedef intptr_t ssize_t;
#else
# include <sys/mman.h>
# include <unistd.h>
#endif
#ifdef XP_LINUX
# include <fcntl.h>
# include <stdlib.h>
#endif
#include <algorithm>
#include <cmath>
#include <cstdio>
#include <cstring>
#include "mozilla/Assertions.h"
#include "mozilla/MathAlgorithms.h"
#include "mozilla/Maybe.h"
#include "FdPrintf.h"
using namespace mozilla;
static void die(const char* message) {
/* Here, it doesn't matter that fprintf may allocate memory. */
fprintf(stderr, "%s\n", message);
exit(1);
}
#ifdef XP_LINUX
MOZ_RUNINIT static size_t sPageSize = []() { return sysconf(_SC_PAGESIZE); }();
#endif
/* We don't want to be using malloc() to allocate our internal tracking
* data, because that would change the parameters of what is being measured,
* so we want to use data types that directly use mmap/VirtualAlloc. */
template <typename T, size_t Len>
class MappedArray {
public:
MappedArray() : mPtr(nullptr) {
#ifdef XP_LINUX
MOZ_RELEASE_ASSERT(!((sizeof(T) * Len) & (sPageSize - 1)),
"MappedArray size must be a multiple of the page size");
#endif
}
~MappedArray() {
if (mPtr) {
#ifdef _WIN32
VirtualFree(mPtr, sizeof(T) * Len, MEM_RELEASE);
#elif defined(XP_LINUX)
munmap(reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(mPtr) -
sPageSize),
sizeof(T) * Len + sPageSize * 2);
#else
munmap(mPtr, sizeof(T) * Len);
#endif
}
}
T& operator[](size_t aIndex) const {
if (mPtr) {
return mPtr[aIndex];
}
#ifdef _WIN32
mPtr = reinterpret_cast<T*>(VirtualAlloc(
nullptr, sizeof(T) * Len, MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE));
if (mPtr == nullptr) {
die("VirtualAlloc error");
}
#else
size_t data_size = sizeof(T) * Len;
size_t size = data_size;
# ifdef XP_LINUX
// See below
size += sPageSize * 2;
# endif
mPtr = reinterpret_cast<T*>(mmap(nullptr, size, PROT_READ | PROT_WRITE,
MAP_ANON | MAP_PRIVATE, -1, 0));
if (mPtr == MAP_FAILED) {
die("Mmap error");
}
# ifdef XP_LINUX
// On Linux we request a page on either side of the allocation and
// mprotect them. This prevents mappings in /proc/self/smaps from being
// merged and allows us to parse this file to calculate the allocator's RSS.
MOZ_ASSERT(0 == mprotect(mPtr, sPageSize, 0));
MOZ_ASSERT(0 == mprotect(reinterpret_cast<void*>(
reinterpret_cast<uintptr_t>(mPtr) + data_size +
sPageSize),
sPageSize, 0));
mPtr = reinterpret_cast<T*>(reinterpret_cast<uintptr_t>(mPtr) + sPageSize);
# endif
#endif
return mPtr[aIndex];
}
bool ownsMapping(uintptr_t addr) const { return addr == (uintptr_t)mPtr; }
bool allocated() const { return !!mPtr; }
private:
mutable T* mPtr;
};
/* Type for records of allocations. */
struct MemSlot {
void* mPtr;
// mRequest is only valid if mPtr is non-null. It doesn't need to be cleared
// when memory is freed or realloc()ed.
size_t mRequest;
};
/* An almost infinite list of slots.
* In essence, this is a linked list of arrays of groups of slots.
* Each group is 1MB. On 64-bits, one group allows to store 64k allocations.
* Each MemSlotList instance can store 1023 such groups, which means more
* than 67M allocations. In case more would be needed, we chain to another
* MemSlotList, and so on.
* Using 1023 groups makes the MemSlotList itself page sized on 32-bits
* and 2 pages-sized on 64-bits.
*/
class MemSlotList {
static constexpr size_t kGroups = 1024 - 1;
static constexpr size_t kGroupSize = (1024 * 1024) / sizeof(MemSlot);
MappedArray<MemSlot, kGroupSize> mSlots[kGroups];
MappedArray<MemSlotList, 1> mNext;
public:
MemSlot& operator[](size_t aIndex) const {
if (aIndex < kGroupSize * kGroups) {
return mSlots[aIndex / kGroupSize][aIndex % kGroupSize];
}
aIndex -= kGroupSize * kGroups;
return mNext[0][aIndex];
}
// Ask if any of the memory-mapped buffers use this range.
bool ownsMapping(uintptr_t aStart) const {
for (const auto& slot : mSlots) {
if (slot.allocated() && slot.ownsMapping(aStart)) {
return true;
}
}
return mNext.ownsMapping(aStart) ||
(mNext.allocated() && mNext[0].ownsMapping(aStart));
}
};
/* Helper class for memory buffers */
class Buffer {
public:
Buffer() : mBuf(nullptr), mLength(0) {}
Buffer(const void* aBuf, size_t aLength)
: mBuf(reinterpret_cast<const char*>(aBuf)), mLength(aLength) {}
/* Constructor for string literals. */
template <size_t Size>
explicit Buffer(const char (&aStr)[Size]) : mBuf(aStr), mLength(Size - 1) {}
/* Returns a sub-buffer up-to but not including the given aNeedle character.
* The "parent" buffer itself is altered to begin after the aNeedle
* character.
* If the aNeedle character is not found, return the entire buffer, and empty
* the "parent" buffer. */
Buffer SplitChar(char aNeedle) {
char* buf = const_cast<char*>(mBuf);
char* c = reinterpret_cast<char*>(memchr(buf, aNeedle, mLength));
if (!c) {
return Split(mLength);
}
Buffer result = Split(c - buf);
// Remove the aNeedle character itself.
Split(1);
return result;
}
// Advance to the position after aNeedle. This is like SplitChar but does not
// return the skipped portion.
void Skip(char aNeedle, unsigned nTimes = 1) {
for (unsigned i = 0; i < nTimes; i++) {
SplitChar(aNeedle);
}
}
void SkipWhitespace() {
while (mLength > 0) {
if (!IsSpace(mBuf[0])) {
break;
}
mBuf++;
mLength--;
}
}
static bool IsSpace(char c) {
switch (c) {
case ' ':
case '\t':
case '\n':
case '\v':
case '\f':
case '\r':
return true;
}
return false;
}
/* Returns a sub-buffer of at most aLength characters. The "parent" buffer is
* amputated of those aLength characters. If the "parent" buffer is smaller
* than aLength, then its length is used instead. */
Buffer Split(size_t aLength) {
Buffer result(mBuf, std::min(aLength, mLength));
mLength -= result.mLength;
mBuf += result.mLength;
return result;
}
/* Move the buffer (including its content) to the memory address of the aOther
* buffer. */
void Slide(Buffer aOther) {
memmove(const_cast<char*>(aOther.mBuf), mBuf, mLength);
mBuf = aOther.mBuf;
}
/* Returns whether the two involved buffers have the same content. */
bool operator==(Buffer aOther) {
return mLength == aOther.mLength &&
(mBuf == aOther.mBuf || !strncmp(mBuf, aOther.mBuf, mLength));
}
bool operator!=(Buffer aOther) { return !(*this == aOther); }
/* Returns true if the buffer is not empty. */
explicit operator bool() { return mLength; }
char operator[](size_t n) const { return mBuf[n]; }
/* Returns the memory location of the buffer. */
const char* get() { return mBuf; }
/* Returns the memory location of the end of the buffer (technically, the
* first byte after the buffer). */
const char* GetEnd() { return mBuf + mLength; }
/* Extend the buffer over the content of the other buffer, assuming it is
* adjacent. */
void Extend(Buffer aOther) {
MOZ_ASSERT(aOther.mBuf == GetEnd());
mLength += aOther.mLength;
}
size_t Length() const { return mLength; }
private:
const char* mBuf;
size_t mLength;
};
/* Helper class to read from a file descriptor line by line. */
class FdReader {
public:
explicit FdReader(int aFd, bool aNeedClose = false)
: mFd(aFd),
mNeedClose(aNeedClose),
mData(&mRawBuf, 0),
mBuf(&mRawBuf, sizeof(mRawBuf)) {}
FdReader(FdReader&& aOther) noexcept
: mFd(aOther.mFd),
mNeedClose(aOther.mNeedClose),
mData(&mRawBuf, 0),
mBuf(&mRawBuf, sizeof(mRawBuf)) {
memcpy(mRawBuf, aOther.mRawBuf, sizeof(mRawBuf));
aOther.mFd = -1;
aOther.mNeedClose = false;
aOther.mData = Buffer();
aOther.mBuf = Buffer();
}
FdReader& operator=(const FdReader&) = delete;
FdReader(const FdReader&) = delete;
~FdReader() {
if (mNeedClose) {
close(mFd);
}
}
/* Read a line from the file descriptor and returns it as a Buffer instance */
Buffer ReadLine() {
while (true) {
Buffer result = mData.SplitChar('\n');
/* There are essentially three different cases here:
* - '\n' was found "early". In this case, the end of the result buffer
* is before the beginning of the mData buffer (since SplitChar
* amputated it).
* - '\n' was found as the last character of mData. In this case, mData
* is empty, but still points at the end of mBuf. result points to what
* used to be in mData, without the last character.
* - '\n' was not found. In this case too, mData is empty and points at
* the end of mBuf. But result points to the entire buffer that used to
* be pointed by mData.
* Only in the latter case do both result and mData's end match, and it's
* the only case where we need to refill the buffer.
*/
if (result.GetEnd() != mData.GetEnd()) {
return result;
}
/* Since SplitChar emptied mData, make it point to what it had before. */
mData = result;
/* And move it to the beginning of the read buffer. */
mData.Slide(mBuf);
FillBuffer();
if (!mData) {
return Buffer();
}
}
}
private:
/* Fill the read buffer. */
void FillBuffer() {
size_t size = mBuf.GetEnd() - mData.GetEnd();
Buffer remainder(mData.GetEnd(), size);
ssize_t len = 1;
while (remainder && len > 0) {
len = ::read(mFd, const_cast<char*>(remainder.get()), size);
if (len < 0) {
die("Read error");
}
size -= len;
mData.Extend(remainder.Split(len));
}
}
/* File descriptor to read from. */
int mFd;
bool mNeedClose;
/* Part of data that was read from the file descriptor but not returned with
* ReadLine yet. */
Buffer mData;
/* Buffer representation of mRawBuf */
Buffer mBuf;
/* read() buffer */
char mRawBuf[4096];
};
MOZ_BEGIN_EXTERN_C
/* Function declarations for all the replace_malloc _impl functions.
* See memory/build/replace_malloc.c */
#define MALLOC_DECL(name, return_type, ...) \
return_type name##_impl(__VA_ARGS__);
#define MALLOC_FUNCS MALLOC_FUNCS_MALLOC
#include "malloc_decls.h"
#define MALLOC_DECL(name, return_type, ...) return_type name(__VA_ARGS__);
#define MALLOC_FUNCS MALLOC_FUNCS_JEMALLOC
#include "malloc_decls.h"
MOZ_END_EXTERN_C
template <unsigned Base = 10>
size_t parseNumber(Buffer aBuf) {
if (!aBuf) {
die("Malformed input");
}
size_t result = 0;
for (const char *c = aBuf.get(), *end = aBuf.GetEnd(); c < end; c++) {
result *= Base;
if ((*c >= '0' && *c <= '9')) {
result += *c - '0';
} else if (Base == 16 && *c >= 'a' && *c <= 'f') {
result += *c - 'a' + 10;
} else if (Base == 16 && *c >= 'A' && *c <= 'F') {
result += *c - 'A' + 10;
} else {
die("Malformed input");
}
}
return result;
}
static size_t percent(size_t a, size_t b) {
if (!b) {
return 0;
}
return size_t(round(double(a) / double(b) * 100.0));
}
class Distribution {
public:
// Default constructor used for array initialisation.
Distribution()
: mMaxSize(0),
mNextSmallest(0),
mShift(0),
mArrayOffset(0),
mArraySlots(0),
mTotalRequests(0),
mRequests{0} {}
Distribution(size_t max_size, size_t next_smallest, size_t bucket_size)
: mMaxSize(max_size),
mNextSmallest(next_smallest),
mShift(CeilingLog2(bucket_size)),
mArrayOffset(1 + next_smallest),
mArraySlots((max_size - next_smallest) >> mShift),
mTotalRequests(0),
mRequests{
0,
} {
MOZ_ASSERT(mMaxSize);
MOZ_RELEASE_ASSERT(mArraySlots <= MAX_NUM_BUCKETS);
}
Distribution& operator=(const Distribution& aOther) = default;
void addRequest(size_t request) {
MOZ_ASSERT(mMaxSize);
mRequests[(request - mArrayOffset) >> mShift]++;
mTotalRequests++;
}
void printDist(platform_handle_t std_err) {
MOZ_ASSERT(mMaxSize);
// The translation to turn a slot index into a memory request size.
const size_t array_offset_add = (1 << mShift) + mNextSmallest;
FdPrintf(std_err, "\n%zu-bin Distribution:\n", mMaxSize);
FdPrintf(std_err, " request : count percent\n");
size_t range_start = mNextSmallest + 1;
for (size_t j = 0; j < mArraySlots; j++) {
size_t range_end = (j << mShift) + array_offset_add;
FdPrintf(std_err, "%5zu - %5zu: %6zu %6zu%%\n", range_start, range_end,
mRequests[j], percent(mRequests[j], mTotalRequests));
range_start = range_end + 1;
}
}
size_t maxSize() const { return mMaxSize; }
private:
static constexpr size_t MAX_NUM_BUCKETS = 16;
// If size is zero this distribution is uninitialised.
size_t mMaxSize;
size_t mNextSmallest;
// Parameters to convert a size into a slot number.
unsigned mShift;
unsigned mArrayOffset;
// The number of slots.
unsigned mArraySlots;
size_t mTotalRequests;
size_t mRequests[MAX_NUM_BUCKETS];
};
#ifdef XP_LINUX
struct MemoryMap {
uintptr_t mStart;
uintptr_t mEnd;
bool mReadable;
bool mPrivate;
bool mAnon;
bool mIsStack;
bool mIsSpecial;
size_t mRSS;
bool IsCandidate() const {
// Candidates mappings are:
// * anonymous
// * they are private (not shared),
// * anonymous or "[heap]" (not another area such as stack),
//
// The only mappings we're falsely including are the .bss segments for
// shared libraries.
return mReadable && mPrivate && mAnon && !mIsStack && !mIsSpecial;
}
};
class SMapsReader : private FdReader {
private:
explicit SMapsReader(FdReader&& reader) : FdReader(std::move(reader)) {}
public:
static Maybe<SMapsReader> open() {
int fd = ::open(FILENAME, O_RDONLY);
if (fd < 0) {
perror(FILENAME);
return mozilla::Nothing();
}
return Some(SMapsReader(FdReader(fd, true)));
}
Maybe<MemoryMap> readMap(platform_handle_t aStdErr) {
// This is not very tolerant of format changes because things like
// parseNumber will crash if they get a bad value. TODO: make this
// soft-fail.
Buffer line = ReadLine();
if (!line) {
return Nothing();
}
// We're going to be at the start of an entry, start tokenising the first
// line.
// Range
Buffer range = line.SplitChar(' ');
uintptr_t range_start = parseNumber<16>(range.SplitChar('-'));
uintptr_t range_end = parseNumber<16>(range);
// Mode.
Buffer mode = line.SplitChar(' ');
if (mode.Length() != 4) {
FdPrintf(aStdErr, "Couldn't parse SMAPS file\n");
return Nothing();
}
bool readable = mode[0] == 'r';
bool private_ = mode[3] == 'p';
// Offset, device and inode.
line.SkipWhitespace();
bool zero_offset = !parseNumber<16>(line.SplitChar(' '));
line.SkipWhitespace();
bool no_device = line.SplitChar(' ') == Buffer("00:00");
line.SkipWhitespace();
bool zero_inode = !parseNumber(line.SplitChar(' '));
bool is_anon = zero_offset && no_device && zero_inode;
// Filename, or empty for anon mappings.
line.SkipWhitespace();
Buffer filename = line.SplitChar(' ');
bool is_stack;
bool is_special;
if (filename && filename[0] == '[') {
is_stack = filename == Buffer("[stack]");
is_special = filename == Buffer("[vdso]") ||
filename == Buffer("[vvar]") ||
filename == Buffer("[vsyscall]");
} else {
is_stack = false;
is_special = false;
}
size_t rss = 0;
while ((line = ReadLine())) {
Buffer field = line.SplitChar(':');
if (field == Buffer("VmFlags")) {
// This is the last field, at least in the current format. Break this
// loop to read the next mapping.
break;
}
if (field == Buffer("Rss")) {
line.SkipWhitespace();
Buffer value = line.SplitChar(' ');
rss = parseNumber(value) * 1024;
}
}
return Some(MemoryMap({range_start, range_end, readable, private_, is_anon,
is_stack, is_special, rss}));
}
static constexpr char FILENAME[] = "/proc/self/smaps";
};
#endif // XP_LINUX
/* Class to handle dispatching the replay function calls to replace-malloc. */
class Replay {
public:
Replay() {
#ifdef _WIN32
// See comment in FdPrintf.h as to why native win32 handles are used.
mStdErr = GetStdHandle(STD_ERROR_HANDLE);
#else
mStdErr = fileno(stderr);
#endif
#ifdef XP_LINUX
BuildInitialMapInfo();
#endif
}
void enableSlopCalculation() { mCalculateSlop = true; }
void enableMemset() { mDoMemset = true; }
MemSlot& operator[](size_t index) const { return mSlots[index]; }
void malloc(Buffer& aArgs, Buffer& aResult) {
MemSlot& aSlot = SlotForResult(aResult);
mOps++;
size_t size = parseNumber(aArgs);
aSlot.mPtr = ::malloc_impl(size);
if (aSlot.mPtr) {
aSlot.mRequest = size;
MaybeCommit(aSlot);
if (mCalculateSlop) {
mTotalRequestedSize += size;
mTotalAllocatedSize += ::malloc_usable_size_impl(aSlot.mPtr);
}
}
}
void posix_memalign(Buffer& aArgs, Buffer& aResult) {
MemSlot& aSlot = SlotForResult(aResult);
mOps++;
size_t alignment = parseNumber(aArgs.SplitChar(','));
size_t size = parseNumber(aArgs);
void* ptr;
if (::posix_memalign_impl(&ptr, alignment, size) == 0) {
aSlot.mPtr = ptr;
aSlot.mRequest = size;
MaybeCommit(aSlot);
if (mCalculateSlop) {
mTotalRequestedSize += size;
mTotalAllocatedSize += ::malloc_usable_size_impl(aSlot.mPtr);
}
} else {
aSlot.mPtr = nullptr;
}
}
void aligned_alloc(Buffer& aArgs, Buffer& aResult) {
MemSlot& aSlot = SlotForResult(aResult);
mOps++;
size_t alignment = parseNumber(aArgs.SplitChar(','));
size_t size = parseNumber(aArgs);
aSlot.mPtr = ::aligned_alloc_impl(alignment, size);
if (aSlot.mPtr) {
aSlot.mRequest = size;
MaybeCommit(aSlot);
if (mCalculateSlop) {
mTotalRequestedSize += size;
mTotalAllocatedSize += ::malloc_usable_size_impl(aSlot.mPtr);
}
}
}
void calloc(Buffer& aArgs, Buffer& aResult) {
MemSlot& aSlot = SlotForResult(aResult);
mOps++;
size_t num = parseNumber(aArgs.SplitChar(','));
size_t size = parseNumber(aArgs);
aSlot.mPtr = ::calloc_impl(num, size);
if (aSlot.mPtr) {
aSlot.mRequest = num * size;
MaybeCommit(aSlot);
if (mCalculateSlop) {
mTotalRequestedSize += num * size;
mTotalAllocatedSize += ::malloc_usable_size_impl(aSlot.mPtr);
}
}
}
void realloc(Buffer& aArgs, Buffer& aResult) {
MemSlot& aSlot = SlotForResult(aResult);
mOps++;
Buffer dummy = aArgs.SplitChar('#');
if (dummy) {
die("Malformed input");
}
size_t slot_id = parseNumber(aArgs.SplitChar(','));
size_t size = parseNumber(aArgs);
MemSlot& old_slot = (*this)[slot_id];
void* old_ptr = old_slot.mPtr;
old_slot.mPtr = nullptr;
aSlot.mPtr = ::realloc_impl(old_ptr, size);
if (aSlot.mPtr) {
aSlot.mRequest = size;
MaybeCommit(aSlot);
if (mCalculateSlop) {
mTotalRequestedSize += size;
mTotalAllocatedSize += ::malloc_usable_size_impl(aSlot.mPtr);
}
}
}
void free(Buffer& aArgs, Buffer& aResult) {
if (aResult) {
die("Malformed input");
}
mOps++;
Buffer dummy = aArgs.SplitChar('#');
if (dummy) {
die("Malformed input");
}
size_t slot_id = parseNumber(aArgs);
MemSlot& slot = (*this)[slot_id];
::free_impl(slot.mPtr);
slot.mPtr = nullptr;
}
void memalign(Buffer& aArgs, Buffer& aResult) {
MemSlot& aSlot = SlotForResult(aResult);
mOps++;
size_t alignment = parseNumber(aArgs.SplitChar(','));
size_t size = parseNumber(aArgs);
aSlot.mPtr = ::memalign_impl(alignment, size);
if (aSlot.mPtr) {
aSlot.mRequest = size;
MaybeCommit(aSlot);
if (mCalculateSlop) {
mTotalRequestedSize += size;
mTotalAllocatedSize += ::malloc_usable_size_impl(aSlot.mPtr);
}
}
}
void valloc(Buffer& aArgs, Buffer& aResult) {
MemSlot& aSlot = SlotForResult(aResult);
mOps++;
size_t size = parseNumber(aArgs);
aSlot.mPtr = ::valloc_impl(size);
if (aSlot.mPtr) {
aSlot.mRequest = size;
MaybeCommit(aSlot);
if (mCalculateSlop) {
mTotalRequestedSize += size;
mTotalAllocatedSize += ::malloc_usable_size_impl(aSlot.mPtr);
}
}
}
void jemalloc_stats(Buffer& aArgs, Buffer& aResult) {
if (aArgs || aResult) {
die("Malformed input");
}
mOps++;
jemalloc_stats_t stats;
// Using a variable length array here is a GCC & Clang extension. But it
// allows us to place this on the stack and not alter jemalloc's profiling.
const size_t num_bins = ::jemalloc_stats_num_bins();
const size_t MAX_NUM_BINS = 100;
if (num_bins > MAX_NUM_BINS) {
die("Exceeded maximum number of jemalloc stats bins");
}
jemalloc_bin_stats_t bin_stats[MAX_NUM_BINS] = {{0}};
::jemalloc_stats_internal(&stats, bin_stats);
#ifdef XP_LINUX
size_t rss = get_rss();
#endif
size_t num_objects = 0;
size_t num_sloppy_objects = 0;
size_t total_allocated = 0;
size_t total_slop = 0;
size_t large_slop = 0;
size_t large_used = 0;
size_t huge_slop = 0;
size_t huge_used = 0;
size_t bin_slop[MAX_NUM_BINS] = {0};
for (size_t slot_id = 0; slot_id < mNumUsedSlots; slot_id++) {
MemSlot& slot = mSlots[slot_id];
if (slot.mPtr) {
size_t used = ::malloc_usable_size_impl(slot.mPtr);
size_t slop = used - slot.mRequest;
total_allocated += used;
total_slop += slop;
num_objects++;
if (slop) {
num_sloppy_objects++;
}
if (used <=
(stats.subpage_max ? stats.subpage_max : stats.quantum_wide_max)) {
// We know that this is an inefficient linear search, but there's a
// small number of bins and this is simple.
for (unsigned i = 0; i < num_bins; i++) {
auto& bin = bin_stats[i];
if (used == bin.size) {
bin_slop[i] += slop;
break;
}
}
} else if (used <= stats.large_max) {
large_slop += slop;
large_used += used;
} else {
huge_slop += slop;
huge_used += used;
}
}
}
// This formula corresponds to the calculation of wasted (from committed and
// the other parameters) within jemalloc_stats()
size_t committed = stats.allocated + stats.waste + stats.pages_dirty +
stats.bookkeeping + stats.bin_unused;
FdPrintf(mStdErr, "\n");
FdPrintf(mStdErr, "Objects: %9zu\n", num_objects);
FdPrintf(mStdErr, "Slots: %9zu\n", mNumUsedSlots);
FdPrintf(mStdErr, "Ops: %9zu\n", mOps);
FdPrintf(mStdErr, "mapped: %9zu\n", stats.mapped);
FdPrintf(mStdErr, "committed: %9zu\n", committed);
#ifdef XP_LINUX
if (rss) {
FdPrintf(mStdErr, "rss: %9zu\n", rss);
}
#endif
FdPrintf(mStdErr, "allocated: %9zu\n", stats.allocated);
FdPrintf(mStdErr, "waste: %9zu\n", stats.waste);
FdPrintf(mStdErr, "dirty: %9zu\n", stats.pages_dirty);
FdPrintf(mStdErr, "fresh: %9zu\n", stats.pages_fresh);
FdPrintf(mStdErr, "madvised: %9zu\n", stats.pages_madvised);
FdPrintf(mStdErr, "bookkeep: %9zu\n", stats.bookkeeping);
FdPrintf(mStdErr, "bin-unused: %9zu\n", stats.bin_unused);
FdPrintf(mStdErr, "quantum-max: %9zu\n", stats.quantum_max);
FdPrintf(mStdErr, "quantum-wide-max: %9zu\n", stats.quantum_wide_max);
FdPrintf(mStdErr, "subpage-max: %9zu\n", stats.subpage_max);
FdPrintf(mStdErr, "large-max: %9zu\n", stats.large_max);
if (mCalculateSlop) {
size_t slop = mTotalAllocatedSize - mTotalRequestedSize;
FdPrintf(mStdErr,
"Total slop for all allocations: %zuKiB/%zuKiB (%zu%%)\n",
slop / 1024, mTotalAllocatedSize / 1024,
percent(slop, mTotalAllocatedSize));
}
FdPrintf(mStdErr, "Live sloppy objects: %zu/%zu (%zu%%)\n",
num_sloppy_objects, num_objects,
percent(num_sloppy_objects, num_objects));
FdPrintf(mStdErr, "Live sloppy bytes: %zuKiB/%zuKiB (%zu%%)\n",
total_slop / 1024, total_allocated / 1024,
percent(total_slop, total_allocated));
FdPrintf(mStdErr, "\n%8s %11s %10s %8s %9s %9s %8s\n", "bin-size",
"unused (c)", "total (c)", "used (c)", "non-full (r)", "total (r)",
"used (r)");
for (unsigned i = 0; i < num_bins; i++) {
auto& bin = bin_stats[i];
MOZ_ASSERT(bin.size);
FdPrintf(mStdErr, "%8zu %8zuKiB %7zuKiB %7zu%% %12zu %9zu %7zu%%\n",
bin.size, bin.bytes_unused / 1024, bin.bytes_total / 1024,
percent(bin.bytes_total - bin.bytes_unused, bin.bytes_total),
bin.num_non_full_runs, bin.num_runs,
percent(bin.num_runs - bin.num_non_full_runs, bin.num_runs));
}
FdPrintf(mStdErr, "\n%5s %8s %9s %7s\n", "bin", "slop", "used", "percent");
for (unsigned i = 0; i < num_bins; i++) {
auto& bin = bin_stats[i];
size_t used = bin.bytes_total - bin.bytes_unused;
FdPrintf(mStdErr, "%5zu %8zu %9zu %6zu%%\n", bin.size, bin_slop[i], used,
percent(bin_slop[i], used));
}
FdPrintf(mStdErr, "%5s %8zu %9zu %6zu%%\n", "large", large_slop, large_used,
percent(large_slop, large_used));
FdPrintf(mStdErr, "%5s %8zu %9zu %6zu%%\n", "huge", huge_slop, huge_used,
percent(huge_slop, huge_used));
print_distributions(stats, bin_stats);
}
private:
/*
* Create and print frequency distributions of memory requests.
*/
void print_distributions(jemalloc_stats_t& stats,
jemalloc_bin_stats_t* bin_stats) {
const size_t num_bins = ::jemalloc_stats_num_bins();
// We compute distributions for all of the bins for small allocations
// (num_bins) plus two more distributions for larger allocations.
Distribution dists[num_bins + 2];
unsigned last_size = 0;
unsigned num_dists = 0;
for (unsigned i = 0; i < num_bins; i++) {
auto& bin = bin_stats[i];
auto& dist = dists[num_dists++];
MOZ_ASSERT(bin.size);
if (bin.size <= 16) {
// 1 byte buckets.
dist = Distribution(bin.size, last_size, 1);
} else if (bin.size <= stats.quantum_max) {
// 4 buckets, (4 bytes per bucket with a 16 byte quantum).
dist = Distribution(bin.size, last_size, stats.quantum / 4);
} else if (bin.size <= stats.quantum_wide_max) {
// 8 buckets, (32 bytes per bucket with a 256 byte quantum-wide).
dist = Distribution(bin.size, last_size, stats.quantum_wide / 8);
} else {
// 16 buckets.
dist = Distribution(bin.size, last_size, (bin.size - last_size) / 16);
}
last_size = bin.size;
}
// 16 buckets.
dists[num_dists] = Distribution(stats.page_size, last_size,
(stats.page_size - last_size) / 16);
num_dists++;
// Buckets are 1/4 of the page size (12 buckets).
dists[num_dists] =
Distribution(stats.page_size * 4, stats.page_size, stats.page_size / 4);
num_dists++;
MOZ_RELEASE_ASSERT(num_dists <= num_bins + 2);
for (size_t slot_id = 0; slot_id < mNumUsedSlots; slot_id++) {
MemSlot& slot = mSlots[slot_id];
if (slot.mPtr) {
for (size_t i = 0; i < num_dists; i++) {
if (slot.mRequest <= dists[i].maxSize()) {
dists[i].addRequest(slot.mRequest);
break;
}
}
}
}
for (unsigned i = 0; i < num_dists; i++) {
dists[i].printDist(mStdErr);
}
}
#ifdef XP_LINUX
size_t get_rss() {
if (mGetRSSFailed) {
return 0;
}
// On Linux we can determine the RSS of the heap area by examining the
// smaps file.
mozilla::Maybe<SMapsReader> reader = SMapsReader::open();
if (!reader) {
mGetRSSFailed = true;
return 0;
}
size_t rss = 0;
while (Maybe<MemoryMap> map = reader->readMap(mStdErr)) {
if (map->IsCandidate() && !mSlots.ownsMapping(map->mStart) &&
!InitialMapsContains(map->mStart)) {
rss += map->mRSS;
}
}
return rss;
}
bool InitialMapsContains(uintptr_t aRangeStart) {
for (unsigned i = 0; i < mNumInitialMaps; i++) {
MOZ_ASSERT(i < MAX_INITIAL_MAPS);
if (mInitialMaps[i] == aRangeStart) {
return true;
}
}
return false;
}
public:
void BuildInitialMapInfo() {
if (mGetRSSFailed) {
return;
}
Maybe<SMapsReader> reader = SMapsReader::open();
if (!reader) {
mGetRSSFailed = true;
return;
}
while (Maybe<MemoryMap> map = reader->readMap(mStdErr)) {
if (map->IsCandidate()) {
if (mNumInitialMaps >= MAX_INITIAL_MAPS) {
FdPrintf(mStdErr, "Too many initial mappings, can't compute RSS\n");
mGetRSSFailed = false;
return;
}
mInitialMaps[mNumInitialMaps++] = map->mStart;
}
}
}
#endif
private:
MemSlot& SlotForResult(Buffer& aResult) {
/* Parse result value and get the corresponding slot. */
Buffer dummy = aResult.SplitChar('=');
Buffer dummy2 = aResult.SplitChar('#');
if (dummy || dummy2) {
die("Malformed input");
}
size_t slot_id = parseNumber(aResult);
mNumUsedSlots = std::max(mNumUsedSlots, slot_id + 1);
return mSlots[slot_id];
}
void MaybeCommit(MemSlot& aSlot) {
if (mDoMemset) {
// Write any byte, 0x55 isn't significant.
memset(aSlot.mPtr, 0x55, aSlot.mRequest);
}
}
platform_handle_t mStdErr;
size_t mOps = 0;
// The number of slots that have been used. It is used to iterate over slots
// without accessing those we haven't initialised.
size_t mNumUsedSlots = 0;
MemSlotList mSlots;
size_t mTotalRequestedSize = 0;
size_t mTotalAllocatedSize = 0;
// Whether to calculate slop for all allocations over the runtime of a
// process.
bool mCalculateSlop = false;
bool mDoMemset = false;
#ifdef XP_LINUX
// If we have a failure reading smaps info then this is used to disable that
// feature.
bool mGetRSSFailed = false;
// The initial memory mappings are recorded here at start up. We exclude
// memory in these mappings when computing RSS. We assume they do not grow
// and that no regions are allocated near them, this is true because they'll
// only record the .bss and .data segments from our binary and shared objects
// or regions that logalloc-replay has created for MappedArrays.
//
// 64 should be enough for anybody.
static constexpr unsigned MAX_INITIAL_MAPS = 64;
uintptr_t mInitialMaps[MAX_INITIAL_MAPS];
unsigned mNumInitialMaps = 0;
#endif // XP_LINUX
};
MOZ_RUNINIT static Replay replay;
int main(int argc, const char* argv[]) {
size_t first_pid = 0;
FdReader reader(0);
for (int i = 1; i < argc; i++) {
const char* option = argv[i];
if (strcmp(option, "-s") == 0) {
// Do accounting to calculate allocation slop.
replay.enableSlopCalculation();
} else if (strcmp(option, "-c") == 0) {
// Touch memory as we allocate it.
replay.enableMemset();
} else {
fprintf(stderr, "Unknown command line option: %s\n", option);
return EXIT_FAILURE;
}
}
/* Read log from stdin and dispatch function calls to the Replay instance.
* The log format is essentially:
* <pid> <tid> <function>([<args>])[=<result>]
* <args> is a comma separated list of arguments.
*
* The logs are expected to be preprocessed so that allocations are
* attributed a tracking slot. The input is trusted not to have crazy
* values for these slot numbers.
*
* <result>, as well as some of the args to some of the function calls are
* such slot numbers.
*/
while (true) {
Buffer line = reader.ReadLine();
if (!line) {
break;
}
size_t pid = parseNumber(line.SplitChar(' '));
if (!first_pid) {
first_pid = pid;
}
/* The log may contain data for several processes, only entries for the
* very first that appears are treated. */
if (first_pid != pid) {
continue;
}
/* The log contains thread ids for manual analysis, but we just ignore them
* for now. */
parseNumber(line.SplitChar(' '));
Buffer func = line.SplitChar('(');
Buffer args = line.SplitChar(')');
if (func == Buffer("jemalloc_stats")) {
replay.jemalloc_stats(args, line);
} else if (func == Buffer("free")) {
replay.free(args, line);
} else if (func == Buffer("malloc")) {
replay.malloc(args, line);
} else if (func == Buffer("posix_memalign")) {
replay.posix_memalign(args, line);
} else if (func == Buffer("aligned_alloc")) {
replay.aligned_alloc(args, line);
} else if (func == Buffer("calloc")) {
replay.calloc(args, line);
} else if (func == Buffer("realloc")) {
replay.realloc(args, line);
} else if (func == Buffer("memalign")) {
replay.memalign(args, line);
} else if (func == Buffer("valloc")) {
replay.valloc(args, line);
} else {
die("Malformed input");
}
}
return 0;
}
|