1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
// Copyright (c) 2010 Google Inc. All Rights Reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// CFI reader author: Jim Blandy <jimb@mozilla.com> <jimb@red-bean.com>
// Original author: Jim Blandy <jimb@mozilla.com> <jimb@red-bean.com>
// Implementation of dwarf2reader::LineInfo, dwarf2reader::CompilationUnit,
// and dwarf2reader::CallFrameInfo. See dwarf2reader.h for details.
// This file is derived from the following files in
// toolkit/crashreporter/google-breakpad:
// src/common/dwarf/bytereader.cc
// src/common/dwarf/dwarf2reader.cc
// src/common/dwarf_cfi_to_module.cc
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <stack>
#include <string>
#include "mozilla/Assertions.h"
#include "mozilla/Attributes.h"
#include "mozilla/Sprintf.h"
#include "mozilla/Vector.h"
#include "LulCommonExt.h"
#include "LulDwarfInt.h"
// Set this to 1 for verbose logging
#define DEBUG_DWARF 0
namespace lul {
using std::pair;
using std::string;
ByteReader::ByteReader(enum Endianness endian)
: offset_reader_(NULL),
address_reader_(NULL),
endian_(endian),
address_size_(0),
offset_size_(0),
have_section_base_(),
have_text_base_(),
have_data_base_(),
have_function_base_() {}
ByteReader::~ByteReader() {}
void ByteReader::SetOffsetSize(uint8 size) {
offset_size_ = size;
MOZ_ASSERT(size == 4 || size == 8);
if (size == 4) {
this->offset_reader_ = &ByteReader::ReadFourBytes;
} else {
this->offset_reader_ = &ByteReader::ReadEightBytes;
}
}
void ByteReader::SetAddressSize(uint8 size) {
address_size_ = size;
MOZ_ASSERT(size == 4 || size == 8);
if (size == 4) {
this->address_reader_ = &ByteReader::ReadFourBytes;
} else {
this->address_reader_ = &ByteReader::ReadEightBytes;
}
}
uint64 ByteReader::ReadInitialLength(const char* start, size_t* len) {
const uint64 initial_length = ReadFourBytes(start);
start += 4;
// In DWARF2/3, if the initial length is all 1 bits, then the offset
// size is 8 and we need to read the next 8 bytes for the real length.
if (initial_length == 0xffffffff) {
SetOffsetSize(8);
*len = 12;
return ReadOffset(start);
} else {
SetOffsetSize(4);
*len = 4;
}
return initial_length;
}
bool ByteReader::ValidEncoding(DwarfPointerEncoding encoding) const {
if (encoding == DW_EH_PE_omit) return true;
if (encoding == DW_EH_PE_aligned) return true;
if ((encoding & 0x7) > DW_EH_PE_udata8) return false;
if ((encoding & 0x70) > DW_EH_PE_funcrel) return false;
return true;
}
bool ByteReader::UsableEncoding(DwarfPointerEncoding encoding) const {
switch (encoding & 0x70) {
case DW_EH_PE_absptr:
return true;
case DW_EH_PE_pcrel:
return have_section_base_;
case DW_EH_PE_textrel:
return have_text_base_;
case DW_EH_PE_datarel:
return have_data_base_;
case DW_EH_PE_funcrel:
return have_function_base_;
default:
return false;
}
}
uint64 ByteReader::ReadEncodedPointer(const char* buffer,
DwarfPointerEncoding encoding,
size_t* len) const {
// UsableEncoding doesn't approve of DW_EH_PE_omit, so we shouldn't
// see it here.
MOZ_ASSERT(encoding != DW_EH_PE_omit);
// The Linux Standards Base 4.0 does not make this clear, but the
// GNU tools (gcc/unwind-pe.h; readelf/dwarf.c; gdb/dwarf2-frame.c)
// agree that aligned pointers are always absolute, machine-sized,
// machine-signed pointers.
if (encoding == DW_EH_PE_aligned) {
MOZ_ASSERT(have_section_base_);
// We don't need to align BUFFER in *our* address space. Rather, we
// need to find the next position in our buffer that would be aligned
// when the .eh_frame section the buffer contains is loaded into the
// program's memory. So align assuming that buffer_base_ gets loaded at
// address section_base_, where section_base_ itself may or may not be
// aligned.
// First, find the offset to START from the closest prior aligned
// address.
uint64 skew = section_base_ & (AddressSize() - 1);
// Now find the offset from that aligned address to buffer.
uint64 offset = skew + (buffer - buffer_base_);
// Round up to the next boundary.
uint64 aligned = (offset + AddressSize() - 1) & -AddressSize();
// Convert back to a pointer.
const char* aligned_buffer = buffer_base_ + (aligned - skew);
// Finally, store the length and actually fetch the pointer.
*len = aligned_buffer - buffer + AddressSize();
return ReadAddress(aligned_buffer);
}
// Extract the value first, ignoring whether it's a pointer or an
// offset relative to some base.
uint64 offset;
switch (encoding & 0x0f) {
case DW_EH_PE_absptr:
// DW_EH_PE_absptr is weird, as it is used as a meaningful value for
// both the high and low nybble of encoding bytes. When it appears in
// the high nybble, it means that the pointer is absolute, not an
// offset from some base address. When it appears in the low nybble,
// as here, it means that the pointer is stored as a normal
// machine-sized and machine-signed address. A low nybble of
// DW_EH_PE_absptr does not imply that the pointer is absolute; it is
// correct for us to treat the value as an offset from a base address
// if the upper nybble is not DW_EH_PE_absptr.
offset = ReadAddress(buffer);
*len = AddressSize();
break;
case DW_EH_PE_uleb128:
offset = ReadUnsignedLEB128(buffer, len);
break;
case DW_EH_PE_udata2:
offset = ReadTwoBytes(buffer);
*len = 2;
break;
case DW_EH_PE_udata4:
offset = ReadFourBytes(buffer);
*len = 4;
break;
case DW_EH_PE_udata8:
offset = ReadEightBytes(buffer);
*len = 8;
break;
case DW_EH_PE_sleb128:
offset = ReadSignedLEB128(buffer, len);
break;
case DW_EH_PE_sdata2:
offset = ReadTwoBytes(buffer);
// Sign-extend from 16 bits.
offset = (offset ^ 0x8000) - 0x8000;
*len = 2;
break;
case DW_EH_PE_sdata4:
offset = ReadFourBytes(buffer);
// Sign-extend from 32 bits.
offset = (offset ^ 0x80000000ULL) - 0x80000000ULL;
*len = 4;
break;
case DW_EH_PE_sdata8:
// No need to sign-extend; this is the full width of our type.
offset = ReadEightBytes(buffer);
*len = 8;
break;
default:
abort();
}
// Find the appropriate base address.
uint64 base;
switch (encoding & 0x70) {
case DW_EH_PE_absptr:
base = 0;
break;
case DW_EH_PE_pcrel:
MOZ_ASSERT(have_section_base_);
base = section_base_ + (buffer - buffer_base_);
break;
case DW_EH_PE_textrel:
MOZ_ASSERT(have_text_base_);
base = text_base_;
break;
case DW_EH_PE_datarel:
MOZ_ASSERT(have_data_base_);
base = data_base_;
break;
case DW_EH_PE_funcrel:
MOZ_ASSERT(have_function_base_);
base = function_base_;
break;
default:
abort();
}
uint64 pointer = base + offset;
// Remove inappropriate upper bits.
if (AddressSize() == 4)
pointer = pointer & 0xffffffff;
else
MOZ_ASSERT(AddressSize() == sizeof(uint64));
return pointer;
}
// A DWARF rule for recovering the address or value of a register, or
// computing the canonical frame address. This is an 8-way sum-of-products
// type. Excluding the INVALID variant, there is one subclass of this for
// each '*Rule' member function in CallFrameInfo::Handler.
//
// This could logically be nested within State, but then the qualified names
// get horrendous.
class CallFrameInfo::Rule final {
public:
enum Tag {
INVALID,
Undefined,
SameValue,
Offset,
ValOffset,
Register,
Expression,
ValExpression
};
private:
// tag_ (below) indicates the form of the expression. There are 7 forms
// plus INVALID. All non-INVALID expressions denote a machine-word-sized
// value at unwind time. The description below assumes the presence of, at
// unwind time:
//
// * a function R, which takes a Dwarf register number and returns its value
// in the callee frame (the one we are unwinding out of).
//
// * a function EvalDwarfExpr, which evaluates a Dwarf expression.
//
// Register numbers are encoded using the target ABI's Dwarf
// register-numbering conventions. Except where otherwise noted, a register
// value may also be the special value CallFrameInfo::Handler::kCFARegister
// ("the CFA").
//
// The expression forms are represented using tag_, word1_ and word2_. The
// forms and denoted values are as follows:
//
// * INVALID: not a valid expression.
// valid fields: (none)
// denotes: no value
//
// * Undefined: denotes no value. This is used for a register whose value
// cannot be recovered.
// valid fields: (none)
// denotes: no value
//
// * SameValue: the register's value is the same as in the callee.
// valid fields: (none)
// denotes: R(the register that this Rule is associated with,
// not stored here)
//
// * Offset: the register's value is in memory at word2_ bytes away from
// Dwarf register number word1_. word2_ is interpreted as a *signed*
// offset.
// valid fields: word1_=DwarfReg, word2=Offset
// denotes: *(R(word1_) + word2_)
//
// * ValOffset: same as Offset, without the dereference.
// valid fields: word1_=DwarfReg, word2=Offset
// denotes: R(word1_) + word2_
//
// * Register: the register's value is in some other register,
// which may not be the CFA.
// valid fields: word1_=DwarfReg
// denotes: R(word1_)
//
// * Expression: the register's value is in memory at a location that can be
// computed from the Dwarf expression contained in the word2_ bytes
// starting at word1_. Note these locations are into the area of the .so
// temporarily mmaped info for debuginfo reading and have no validity once
// debuginfo reading has finished.
// valid fields: ExprStart=word1_, ExprLen=word2_
// denotes: *(EvalDwarfExpr(word1_, word2_))
//
// * ValExpression: same as Expression, without the dereference.
// valid fields: ExprStart=word1_, ExprLen=word2_
// denotes: EvalDwarfExpr(word1_, word2_)
//
// 3 words (or less) for representation. Unused word1_/word2_ fields must
// be set to zero.
Tag tag_;
uintptr_t word1_;
uintptr_t word2_;
// To ensure that word1_ can hold a pointer to an expression string.
static_assert(sizeof(const char*) <= sizeof(word1_));
// To ensure that word2_ can hold any string length or memory offset.
static_assert(sizeof(size_t) <= sizeof(word2_));
// This class denotes an 8-way sum-of-product type, and accessing invalid
// fields is meaningless. The accessors and constructors below enforce
// that.
bool isCanonical() const {
switch (tag_) {
case Tag::INVALID:
case Tag::Undefined:
case Tag::SameValue:
return word1_ == 0 && word2_ == 0;
case Tag::Offset:
case Tag::ValOffset:
return true;
case Tag::Register:
return word2_ == 0;
case Tag::Expression:
case Tag::ValExpression:
return true;
default:
MOZ_CRASH();
}
}
public:
Tag tag() const { return tag_; }
int dwreg() const {
switch (tag_) {
case Tag::Offset:
case Tag::ValOffset:
case Tag::Register:
return (int)word1_;
default:
MOZ_CRASH();
}
}
intptr_t offset() const {
switch (tag_) {
case Tag::Offset:
case Tag::ValOffset:
return (intptr_t)word2_;
default:
MOZ_CRASH();
}
}
ImageSlice expr() const {
switch (tag_) {
case Tag::Expression:
case Tag::ValExpression:
return ImageSlice((const char*)word1_, (size_t)word2_);
default:
MOZ_CRASH();
}
}
// Constructor-y stuff
Rule() {
tag_ = Tag::INVALID;
word1_ = 0;
word2_ = 0;
}
static Rule mkINVALID() {
Rule r; // is initialised by Rule()
return r;
}
static Rule mkUndefinedRule() {
Rule r;
r.tag_ = Tag::Undefined;
r.word1_ = 0;
r.word2_ = 0;
return r;
}
static Rule mkSameValueRule() {
Rule r;
r.tag_ = Tag::SameValue;
r.word1_ = 0;
r.word2_ = 0;
return r;
}
static Rule mkOffsetRule(int dwreg, intptr_t offset) {
Rule r;
r.tag_ = Tag::Offset;
r.word1_ = (uintptr_t)dwreg;
r.word2_ = (uintptr_t)offset;
return r;
}
static Rule mkValOffsetRule(int dwreg, intptr_t offset) {
Rule r;
r.tag_ = Tag::ValOffset;
r.word1_ = (uintptr_t)dwreg;
r.word2_ = (uintptr_t)offset;
return r;
}
static Rule mkRegisterRule(int dwreg) {
Rule r;
r.tag_ = Tag::Register;
r.word1_ = (uintptr_t)dwreg;
r.word2_ = 0;
return r;
}
static Rule mkExpressionRule(ImageSlice expr) {
Rule r;
r.tag_ = Tag::Expression;
r.word1_ = (uintptr_t)expr.start_;
r.word2_ = (uintptr_t)expr.length_;
return r;
}
static Rule mkValExpressionRule(ImageSlice expr) {
Rule r;
r.tag_ = Tag::ValExpression;
r.word1_ = (uintptr_t)expr.start_;
r.word2_ = (uintptr_t)expr.length_;
return r;
}
// Misc
inline bool isVALID() const { return tag_ != Tag::INVALID; }
bool operator==(const Rule& rhs) const {
MOZ_ASSERT(isVALID() && rhs.isVALID());
MOZ_ASSERT(isCanonical());
MOZ_ASSERT(rhs.isCanonical());
if (tag_ != rhs.tag_) {
return false;
}
switch (tag_) {
case Tag::INVALID:
MOZ_CRASH();
case Tag::Undefined:
case Tag::SameValue:
return true;
case Tag::Offset:
case Tag::ValOffset:
return word1_ == rhs.word1_ && word2_ == rhs.word2_;
case Tag::Register:
return word1_ == rhs.word1_;
case Tag::Expression:
case Tag::ValExpression:
return expr() == rhs.expr();
default:
MOZ_CRASH();
}
}
bool operator!=(const Rule& rhs) const { return !(*this == rhs); }
// Tell HANDLER that, at ADDRESS in the program, REG can be
// recovered using this rule. If REG is kCFARegister, then this rule
// describes how to compute the canonical frame address. Return what the
// HANDLER member function returned.
bool Handle(Handler* handler, uint64 address, int reg) const {
MOZ_ASSERT(isVALID());
MOZ_ASSERT(isCanonical());
switch (tag_) {
case Tag::Undefined:
return handler->UndefinedRule(address, reg);
case Tag::SameValue:
return handler->SameValueRule(address, reg);
case Tag::Offset:
return handler->OffsetRule(address, reg, word1_, word2_);
case Tag::ValOffset:
return handler->ValOffsetRule(address, reg, word1_, word2_);
case Tag::Register:
return handler->RegisterRule(address, reg, word1_);
case Tag::Expression:
return handler->ExpressionRule(
address, reg, ImageSlice((const char*)word1_, (size_t)word2_));
case Tag::ValExpression:
return handler->ValExpressionRule(
address, reg, ImageSlice((const char*)word1_, (size_t)word2_));
default:
MOZ_CRASH();
}
}
void SetBaseRegister(unsigned reg) {
MOZ_ASSERT(isVALID());
MOZ_ASSERT(isCanonical());
switch (tag_) {
case Tag::ValOffset:
word1_ = reg;
break;
case Tag::Offset:
// We don't actually need SetBaseRegister or SetOffset here, since they
// are only ever applied to CFA rules, for DW_CFA_def_cfa_offset, and it
// doesn't make sense to use OffsetRule for computing the CFA: it
// computes the address at which a register is saved, not a value.
// (fallthrough)
case Tag::Undefined:
case Tag::SameValue:
case Tag::Register:
case Tag::Expression:
case Tag::ValExpression:
// Do nothing
break;
default:
MOZ_CRASH();
}
}
void SetOffset(long long offset) {
MOZ_ASSERT(isVALID());
MOZ_ASSERT(isCanonical());
switch (tag_) {
case Tag::ValOffset:
word2_ = offset;
break;
case Tag::Offset:
// Same comment as in SetBaseRegister applies
// (fallthrough)
case Tag::Undefined:
case Tag::SameValue:
case Tag::Register:
case Tag::Expression:
case Tag::ValExpression:
// Do nothing
break;
default:
MOZ_CRASH();
}
}
// For debugging only
string show() const {
char buf[100];
string s = "";
switch (tag_) {
case Tag::INVALID:
s = "INVALID";
break;
case Tag::Undefined:
s = "Undefined";
break;
case Tag::SameValue:
s = "SameValue";
break;
case Tag::Offset:
s = "Offset{..}";
break;
case Tag::ValOffset:
sprintf(buf, "ValOffset{reg=%d offs=%lld}", (int)word1_,
(long long int)word2_);
s = string(buf);
break;
case Tag::Register:
s = "Register{..}";
break;
case Tag::Expression:
s = "Expression{..}";
break;
case Tag::ValExpression:
s = "ValExpression{..}";
break;
default:
MOZ_CRASH();
}
return s;
}
};
// `RuleMapLowLevel` is a simple class that maps from `int` (register numbers)
// to `Rule`. This is implemented as a vector of `<int, Rule>` pairs, with a
// 12-element inline capacity. From a big-O perspective this is obviously a
// terrible way to implement an associative map. This workload is however
// quite special in that the maximum number of elements is normally 7 (on
// x86_64-linux), and so this implementation is much faster than one based on
// std::map with its attendant R-B-tree node allocation and balancing
// overheads.
//
// An iterator that enumerates the mapping in increasing order of the `int`
// keys is provided. This ordered iteration facility is required by
// CallFrameInfo::RuleMap::HandleTransitionTo, which needs to iterate through
// two such maps simultaneously and in-order so as to compare them.
// All `Rule`s in the map must satisfy `isVALID()`. That conveniently means
// that `Rule::mkINVALID()` can be used to indicate "not found` in `get()`.
class CallFrameInfo::RuleMapLowLevel {
using Entry = pair<int, Rule>;
// The inline capacity of 12 is carefully chosen. It would be wise to make
// careful measurements of time, instruction count, allocation count and
// allocated bytes before changing it. For x86_64-linux, a value of 8 is
// marginally better; using 12 increases the total heap bytes allocated by
// around 20%. For arm64-linux, a value of 24 is better; using 12 increases
// the total blocks allocated by around 20%. But it's a not bad tradeoff
// for both targets, and in any case is vastly superior to the previous
// scheme of using `std::map`.
mozilla::Vector<Entry, 12> entries_;
public:
void clear() { entries_.clear(); }
RuleMapLowLevel() { clear(); }
RuleMapLowLevel& operator=(const RuleMapLowLevel& rhs) {
entries_.clear();
for (size_t i = 0; i < rhs.entries_.length(); i++) {
bool ok = entries_.append(rhs.entries_[i]);
MOZ_RELEASE_ASSERT(ok);
}
return *this;
}
void set(int reg, Rule rule) {
MOZ_ASSERT(rule.isVALID());
// Find the place where it should go, if any
size_t i = 0;
size_t nEnt = entries_.length();
while (i < nEnt && entries_[i].first < reg) {
i++;
}
if (i == nEnt) {
// No entry exists, and all the existing ones are for lower register
// numbers. So just add it at the end.
bool ok = entries_.append(Entry(reg, rule));
MOZ_RELEASE_ASSERT(ok);
} else {
// It needs to live at location `i`, and ..
MOZ_ASSERT(i < nEnt);
if (entries_[i].first == reg) {
// .. there's already an old entry, so just update it.
entries_[i].second = rule;
} else {
// .. there's no previous entry, so shift `i` and all those following
// it one place to the right, and put the new entry at `i`. Doing it
// manually is measurably cheaper than using `Vector::insert`.
MOZ_ASSERT(entries_[i].first > reg);
bool ok = entries_.append(Entry(999999, Rule::mkINVALID()));
MOZ_RELEASE_ASSERT(ok);
for (size_t j = nEnt; j >= i + 1; j--) {
entries_[j] = entries_[j - 1];
}
entries_[i] = Entry(reg, rule);
}
}
// Check in-order-ness and validity.
for (size_t i = 0; i < entries_.length(); i++) {
MOZ_ASSERT(entries_[i].second.isVALID());
MOZ_ASSERT_IF(i > 0, entries_[i - 1].first < entries_[i].first);
}
MOZ_ASSERT(get(reg).isVALID());
}
// Find the entry for `reg`, or return `Rule::mkINVALID()` if not found.
Rule get(int reg) const {
size_t nEnt = entries_.length();
// "early exit" in the case where `entries_[i].first > reg` was tested on
// x86_64 and found to be slightly slower than just testing all entries,
// presumably because the reduced amount of searching was not offset by
// the cost of an extra test per iteration.
for (size_t i = 0; i < nEnt; i++) {
if (entries_[i].first == reg) {
CallFrameInfo::Rule ret = entries_[i].second;
MOZ_ASSERT(ret.isVALID());
return ret;
}
}
return CallFrameInfo::Rule::mkINVALID();
}
// A very simple in-order iteration facility.
class Iter {
const RuleMapLowLevel* rmll_;
size_t nextIx_;
public:
explicit Iter(const RuleMapLowLevel* rmll) : rmll_(rmll), nextIx_(0) {}
bool avail() const { return nextIx_ < rmll_->entries_.length(); }
bool finished() const { return !avail(); }
// Move the iterator to the next entry.
void step() {
MOZ_RELEASE_ASSERT(nextIx_ < rmll_->entries_.length());
nextIx_++;
}
// Get the value at the current iteration point, but don't advance to the
// next entry.
pair<int, Rule> peek() {
MOZ_RELEASE_ASSERT(nextIx_ < rmll_->entries_.length());
return rmll_->entries_[nextIx_];
}
};
};
// A map from register numbers to rules. This is a wrapper around
// `RuleMapLowLevel`, with added logic for dealing with the "special" CFA
// rule, and with `HandleTransitionTo`, which effectively computes the
// difference between two `RuleMaps`.
class CallFrameInfo::RuleMap {
public:
RuleMap() : cfa_rule_(Rule::mkINVALID()) {}
RuleMap(const RuleMap& rhs) : cfa_rule_(Rule::mkINVALID()) { *this = rhs; }
~RuleMap() { Clear(); }
RuleMap& operator=(const RuleMap& rhs);
// Set the rule for computing the CFA to RULE.
void SetCFARule(Rule rule) { cfa_rule_ = rule; }
// Return the current CFA rule. Be careful not to modify it -- it's returned
// by value. If you want to modify the CFA rule, use CFARuleRef() instead.
// We use these two for DW_CFA_def_cfa_offset and DW_CFA_def_cfa_register,
// and for detecting references to the CFA before a rule for it has been
// established.
Rule CFARule() const { return cfa_rule_; }
Rule* CFARuleRef() { return &cfa_rule_; }
// Return the rule for REG, or the INVALID rule if there is none.
Rule RegisterRule(int reg) const;
// Set the rule for computing REG to RULE.
void SetRegisterRule(int reg, Rule rule);
// Make all the appropriate calls to HANDLER as if we were changing from
// this RuleMap to NEW_RULES at ADDRESS. We use this to implement
// DW_CFA_restore_state, where lots of rules can change simultaneously.
// Return true if all handlers returned true; otherwise, return false.
bool HandleTransitionTo(Handler* handler, uint64 address,
const RuleMap& new_rules) const;
private:
// Remove all register rules and clear cfa_rule_.
void Clear();
// The rule for computing the canonical frame address.
Rule cfa_rule_;
// A map from register numbers to postfix expressions to recover
// their values.
RuleMapLowLevel registers_;
};
CallFrameInfo::RuleMap& CallFrameInfo::RuleMap::operator=(const RuleMap& rhs) {
Clear();
if (rhs.cfa_rule_.isVALID()) cfa_rule_ = rhs.cfa_rule_;
registers_ = rhs.registers_;
return *this;
}
CallFrameInfo::Rule CallFrameInfo::RuleMap::RegisterRule(int reg) const {
MOZ_ASSERT(reg != Handler::kCFARegister);
return registers_.get(reg);
}
void CallFrameInfo::RuleMap::SetRegisterRule(int reg, Rule rule) {
MOZ_ASSERT(reg != Handler::kCFARegister);
MOZ_ASSERT(rule.isVALID());
registers_.set(reg, rule);
}
bool CallFrameInfo::RuleMap::HandleTransitionTo(
Handler* handler, uint64 address, const RuleMap& new_rules) const {
// Transition from cfa_rule_ to new_rules.cfa_rule_.
if (cfa_rule_.isVALID() && new_rules.cfa_rule_.isVALID()) {
if (cfa_rule_ != new_rules.cfa_rule_ &&
!new_rules.cfa_rule_.Handle(handler, address, Handler::kCFARegister)) {
return false;
}
} else if (cfa_rule_.isVALID()) {
// this RuleMap has a CFA rule but new_rules doesn't.
// CallFrameInfo::Handler has no way to handle this --- and shouldn't;
// it's garbage input. The instruction interpreter should have
// detected this and warned, so take no action here.
} else if (new_rules.cfa_rule_.isVALID()) {
// This shouldn't be possible: NEW_RULES is some prior state, and
// there's no way to remove entries.
MOZ_ASSERT(0);
} else {
// Both CFA rules are empty. No action needed.
}
// Traverse the two maps in order by register number, and report
// whatever differences we find.
RuleMapLowLevel::Iter old_it(®isters_);
RuleMapLowLevel::Iter new_it(&new_rules.registers_);
while (!old_it.finished() && !new_it.finished()) {
pair<int, Rule> old_pair = old_it.peek();
pair<int, Rule> new_pair = new_it.peek();
if (old_pair.first < new_pair.first) {
// This RuleMap has an entry for old.first, but NEW_RULES doesn't.
//
// This isn't really the right thing to do, but since CFI generally
// only mentions callee-saves registers, and GCC's convention for
// callee-saves registers is that they are unchanged, it's a good
// approximation.
if (!handler->SameValueRule(address, old_pair.first)) {
return false;
}
old_it.step();
} else if (old_pair.first > new_pair.first) {
// NEW_RULES has an entry for new_pair.first, but this RuleMap
// doesn't. This shouldn't be possible: NEW_RULES is some prior
// state, and there's no way to remove entries.
MOZ_ASSERT(0);
} else {
// Both maps have an entry for this register. Report the new
// rule if it is different.
if (old_pair.second != new_pair.second &&
!new_pair.second.Handle(handler, address, new_pair.first)) {
return false;
}
new_it.step();
old_it.step();
}
}
// Finish off entries from this RuleMap with no counterparts in new_rules.
while (!old_it.finished()) {
pair<int, Rule> old_pair = old_it.peek();
if (!handler->SameValueRule(address, old_pair.first)) return false;
old_it.step();
}
// Since we only make transitions from a rule set to some previously
// saved rule set, and we can only add rules to the map, NEW_RULES
// must have fewer rules than *this.
MOZ_ASSERT(new_it.finished());
return true;
}
// Remove all register rules and clear cfa_rule_.
void CallFrameInfo::RuleMap::Clear() {
cfa_rule_ = Rule::mkINVALID();
registers_.clear();
}
// The state of the call frame information interpreter as it processes
// instructions from a CIE and FDE.
class CallFrameInfo::State {
public:
// Create a call frame information interpreter state with the given
// reporter, reader, handler, and initial call frame info address.
State(ByteReader* reader, Handler* handler, Reporter* reporter,
uint64 address)
: reader_(reader),
handler_(handler),
reporter_(reporter),
address_(address),
entry_(NULL),
cursor_(NULL),
saved_rules_(NULL) {}
~State() {
if (saved_rules_) delete saved_rules_;
}
// Interpret instructions from CIE, save the resulting rule set for
// DW_CFA_restore instructions, and return true. On error, report
// the problem to reporter_ and return false.
bool InterpretCIE(const CIE& cie);
// Interpret instructions from FDE, and return true. On error,
// report the problem to reporter_ and return false.
bool InterpretFDE(const FDE& fde);
private:
// The operands of a CFI instruction, for ParseOperands.
struct Operands {
unsigned register_number; // A register number.
uint64 offset; // An offset or address.
long signed_offset; // A signed offset.
ImageSlice expression; // A DWARF expression.
};
// Parse CFI instruction operands from STATE's instruction stream as
// described by FORMAT. On success, populate OPERANDS with the
// results, and return true. On failure, report the problem and
// return false.
//
// Each character of FORMAT should be one of the following:
//
// 'r' unsigned LEB128 register number (OPERANDS->register_number)
// 'o' unsigned LEB128 offset (OPERANDS->offset)
// 's' signed LEB128 offset (OPERANDS->signed_offset)
// 'a' machine-size address (OPERANDS->offset)
// (If the CIE has a 'z' augmentation string, 'a' uses the
// encoding specified by the 'R' argument.)
// '1' a one-byte offset (OPERANDS->offset)
// '2' a two-byte offset (OPERANDS->offset)
// '4' a four-byte offset (OPERANDS->offset)
// '8' an eight-byte offset (OPERANDS->offset)
// 'e' a DW_FORM_block holding a (OPERANDS->expression)
// DWARF expression
bool ParseOperands(const char* format, Operands* operands);
// Interpret one CFI instruction from STATE's instruction stream, update
// STATE, report any rule changes to handler_, and return true. On
// failure, report the problem and return false.
MOZ_ALWAYS_INLINE bool DoInstruction();
// Repeatedly call `DoInstruction`, until either:
// * it returns `false`, which indicates some kind of failure,
// in which case return `false` from here too, or
// * we've run out of instructions (that is, `cursor_ >= entry_->end`),
// in which case return `true`.
// This is marked as never-inline because it is the only place that
// `DoInstruction` is called from, and we want to maximise the chances that
// `DoInstruction` is inlined into this routine.
MOZ_NEVER_INLINE bool DoInstructions();
// The following Do* member functions are subroutines of DoInstruction,
// factoring out the actual work of operations that have several
// different encodings.
// Set the CFA rule to be the value of BASE_REGISTER plus OFFSET, and
// return true. On failure, report and return false. (Used for
// DW_CFA_def_cfa and DW_CFA_def_cfa_sf.)
bool DoDefCFA(unsigned base_register, long offset);
// Change the offset of the CFA rule to OFFSET, and return true. On
// failure, report and return false. (Subroutine for
// DW_CFA_def_cfa_offset and DW_CFA_def_cfa_offset_sf.)
bool DoDefCFAOffset(long offset);
// Specify that REG can be recovered using RULE, and return true. On
// failure, report and return false.
bool DoRule(unsigned reg, Rule rule);
// Specify that REG can be found at OFFSET from the CFA, and return true.
// On failure, report and return false. (Subroutine for DW_CFA_offset,
// DW_CFA_offset_extended, and DW_CFA_offset_extended_sf.)
bool DoOffset(unsigned reg, long offset);
// Specify that the caller's value for REG is the CFA plus OFFSET,
// and return true. On failure, report and return false. (Subroutine
// for DW_CFA_val_offset and DW_CFA_val_offset_sf.)
bool DoValOffset(unsigned reg, long offset);
// Restore REG to the rule established in the CIE, and return true. On
// failure, report and return false. (Subroutine for DW_CFA_restore and
// DW_CFA_restore_extended.)
bool DoRestore(unsigned reg);
// Return the section offset of the instruction at cursor. For use
// in error messages.
uint64 CursorOffset() { return entry_->offset + (cursor_ - entry_->start); }
// Report that entry_ is incomplete, and return false. For brevity.
bool ReportIncomplete() {
reporter_->Incomplete(entry_->offset, entry_->kind);
return false;
}
// For reading multi-byte values with the appropriate endianness.
ByteReader* reader_;
// The handler to which we should report the data we find.
Handler* handler_;
// For reporting problems in the info we're parsing.
Reporter* reporter_;
// The code address to which the next instruction in the stream applies.
uint64 address_;
// The entry whose instructions we are currently processing. This is
// first a CIE, and then an FDE.
const Entry* entry_;
// The next instruction to process.
const char* cursor_;
// The current set of rules.
RuleMap rules_;
// The set of rules established by the CIE, used by DW_CFA_restore
// and DW_CFA_restore_extended. We set this after interpreting the
// CIE's instructions.
RuleMap cie_rules_;
// A stack of saved states, for DW_CFA_remember_state and
// DW_CFA_restore_state.
std::stack<RuleMap>* saved_rules_;
};
bool CallFrameInfo::State::InterpretCIE(const CIE& cie) {
entry_ = &cie;
cursor_ = entry_->instructions;
if (!DoInstructions()) {
return false;
}
// Note the rules established by the CIE, for use by DW_CFA_restore
// and DW_CFA_restore_extended.
cie_rules_ = rules_;
return true;
}
bool CallFrameInfo::State::InterpretFDE(const FDE& fde) {
entry_ = &fde;
cursor_ = entry_->instructions;
return DoInstructions();
}
bool CallFrameInfo::State::ParseOperands(const char* format,
Operands* operands) {
size_t len;
const char* operand;
for (operand = format; *operand; operand++) {
size_t bytes_left = entry_->end - cursor_;
switch (*operand) {
case 'r':
operands->register_number = reader_->ReadUnsignedLEB128(cursor_, &len);
if (len > bytes_left) return ReportIncomplete();
cursor_ += len;
break;
case 'o':
operands->offset = reader_->ReadUnsignedLEB128(cursor_, &len);
if (len > bytes_left) return ReportIncomplete();
cursor_ += len;
break;
case 's':
operands->signed_offset = reader_->ReadSignedLEB128(cursor_, &len);
if (len > bytes_left) return ReportIncomplete();
cursor_ += len;
break;
case 'a':
operands->offset = reader_->ReadEncodedPointer(
cursor_, entry_->cie->pointer_encoding, &len);
if (len > bytes_left) return ReportIncomplete();
cursor_ += len;
break;
case '1':
if (1 > bytes_left) return ReportIncomplete();
operands->offset = static_cast<unsigned char>(*cursor_++);
break;
case '2':
if (2 > bytes_left) return ReportIncomplete();
operands->offset = reader_->ReadTwoBytes(cursor_);
cursor_ += 2;
break;
case '4':
if (4 > bytes_left) return ReportIncomplete();
operands->offset = reader_->ReadFourBytes(cursor_);
cursor_ += 4;
break;
case '8':
if (8 > bytes_left) return ReportIncomplete();
operands->offset = reader_->ReadEightBytes(cursor_);
cursor_ += 8;
break;
case 'e': {
size_t expression_length = reader_->ReadUnsignedLEB128(cursor_, &len);
if (len > bytes_left || expression_length > bytes_left - len)
return ReportIncomplete();
cursor_ += len;
operands->expression = ImageSlice(cursor_, expression_length);
cursor_ += expression_length;
break;
}
default:
MOZ_ASSERT(0);
}
}
return true;
}
MOZ_ALWAYS_INLINE
bool CallFrameInfo::State::DoInstruction() {
CIE* cie = entry_->cie;
Operands ops;
// Our entry's kind should have been set by now.
MOZ_ASSERT(entry_->kind != kUnknown);
// We shouldn't have been invoked unless there were more
// instructions to parse.
MOZ_ASSERT(cursor_ < entry_->end);
unsigned opcode = *cursor_++;
if ((opcode & 0xc0) != 0) {
switch (opcode & 0xc0) {
// Advance the address.
case DW_CFA_advance_loc: {
size_t code_offset = opcode & 0x3f;
address_ += code_offset * cie->code_alignment_factor;
break;
}
// Find a register at an offset from the CFA.
case DW_CFA_offset:
if (!ParseOperands("o", &ops) ||
!DoOffset(opcode & 0x3f, ops.offset * cie->data_alignment_factor))
return false;
break;
// Restore the rule established for a register by the CIE.
case DW_CFA_restore:
if (!DoRestore(opcode & 0x3f)) return false;
break;
// The 'if' above should have excluded this possibility.
default:
MOZ_ASSERT(0);
}
// Return here, so the big switch below won't be indented.
return true;
}
switch (opcode) {
// Set the address.
case DW_CFA_set_loc:
if (!ParseOperands("a", &ops)) return false;
address_ = ops.offset;
break;
// Advance the address.
case DW_CFA_advance_loc1:
if (!ParseOperands("1", &ops)) return false;
address_ += ops.offset * cie->code_alignment_factor;
break;
// Advance the address.
case DW_CFA_advance_loc2:
if (!ParseOperands("2", &ops)) return false;
address_ += ops.offset * cie->code_alignment_factor;
break;
// Advance the address.
case DW_CFA_advance_loc4:
if (!ParseOperands("4", &ops)) return false;
address_ += ops.offset * cie->code_alignment_factor;
break;
// Advance the address.
case DW_CFA_MIPS_advance_loc8:
if (!ParseOperands("8", &ops)) return false;
address_ += ops.offset * cie->code_alignment_factor;
break;
// Compute the CFA by adding an offset to a register.
case DW_CFA_def_cfa:
if (!ParseOperands("ro", &ops) ||
!DoDefCFA(ops.register_number, ops.offset))
return false;
break;
// Compute the CFA by adding an offset to a register.
case DW_CFA_def_cfa_sf:
if (!ParseOperands("rs", &ops) ||
!DoDefCFA(ops.register_number,
ops.signed_offset * cie->data_alignment_factor))
return false;
break;
// Change the base register used to compute the CFA.
case DW_CFA_def_cfa_register: {
Rule* cfa_rule = rules_.CFARuleRef();
if (!cfa_rule->isVALID()) {
reporter_->NoCFARule(entry_->offset, entry_->kind, CursorOffset());
return false;
}
if (!ParseOperands("r", &ops)) return false;
cfa_rule->SetBaseRegister(ops.register_number);
if (!cfa_rule->Handle(handler_, address_, Handler::kCFARegister))
return false;
break;
}
// Change the offset used to compute the CFA.
case DW_CFA_def_cfa_offset:
if (!ParseOperands("o", &ops) || !DoDefCFAOffset(ops.offset))
return false;
break;
// Change the offset used to compute the CFA.
case DW_CFA_def_cfa_offset_sf:
if (!ParseOperands("s", &ops) ||
!DoDefCFAOffset(ops.signed_offset * cie->data_alignment_factor))
return false;
break;
// Specify an expression whose value is the CFA.
case DW_CFA_def_cfa_expression: {
if (!ParseOperands("e", &ops)) return false;
Rule rule = Rule::mkValExpressionRule(ops.expression);
rules_.SetCFARule(rule);
if (!rule.Handle(handler_, address_, Handler::kCFARegister)) return false;
break;
}
// The register's value cannot be recovered.
case DW_CFA_undefined: {
if (!ParseOperands("r", &ops) ||
!DoRule(ops.register_number, Rule::mkUndefinedRule()))
return false;
break;
}
// The register's value is unchanged from its value in the caller.
case DW_CFA_same_value: {
if (!ParseOperands("r", &ops) ||
!DoRule(ops.register_number, Rule::mkSameValueRule()))
return false;
break;
}
// Find a register at an offset from the CFA.
case DW_CFA_offset_extended:
if (!ParseOperands("ro", &ops) ||
!DoOffset(ops.register_number,
ops.offset * cie->data_alignment_factor))
return false;
break;
// The register is saved at an offset from the CFA.
case DW_CFA_offset_extended_sf:
if (!ParseOperands("rs", &ops) ||
!DoOffset(ops.register_number,
ops.signed_offset * cie->data_alignment_factor))
return false;
break;
// The register is saved at an offset from the CFA.
case DW_CFA_GNU_negative_offset_extended:
if (!ParseOperands("ro", &ops) ||
!DoOffset(ops.register_number,
-ops.offset * cie->data_alignment_factor))
return false;
break;
// The register's value is the sum of the CFA plus an offset.
case DW_CFA_val_offset:
if (!ParseOperands("ro", &ops) ||
!DoValOffset(ops.register_number,
ops.offset * cie->data_alignment_factor))
return false;
break;
// The register's value is the sum of the CFA plus an offset.
case DW_CFA_val_offset_sf:
if (!ParseOperands("rs", &ops) ||
!DoValOffset(ops.register_number,
ops.signed_offset * cie->data_alignment_factor))
return false;
break;
// The register has been saved in another register.
case DW_CFA_register: {
if (!ParseOperands("ro", &ops) ||
!DoRule(ops.register_number, Rule::mkRegisterRule(ops.offset)))
return false;
break;
}
// An expression yields the address at which the register is saved.
case DW_CFA_expression: {
if (!ParseOperands("re", &ops) ||
!DoRule(ops.register_number, Rule::mkExpressionRule(ops.expression)))
return false;
break;
}
// An expression yields the caller's value for the register.
case DW_CFA_val_expression: {
if (!ParseOperands("re", &ops) ||
!DoRule(ops.register_number,
Rule::mkValExpressionRule(ops.expression)))
return false;
break;
}
// Restore the rule established for a register by the CIE.
case DW_CFA_restore_extended:
if (!ParseOperands("r", &ops) || !DoRestore(ops.register_number))
return false;
break;
// Save the current set of rules on a stack.
case DW_CFA_remember_state:
if (!saved_rules_) {
saved_rules_ = new std::stack<RuleMap>();
}
saved_rules_->push(rules_);
break;
// Pop the current set of rules off the stack.
case DW_CFA_restore_state: {
if (!saved_rules_ || saved_rules_->empty()) {
reporter_->EmptyStateStack(entry_->offset, entry_->kind,
CursorOffset());
return false;
}
const RuleMap& new_rules = saved_rules_->top();
if (rules_.CFARule().isVALID() && !new_rules.CFARule().isVALID()) {
reporter_->ClearingCFARule(entry_->offset, entry_->kind,
CursorOffset());
return false;
}
rules_.HandleTransitionTo(handler_, address_, new_rules);
rules_ = new_rules;
saved_rules_->pop();
break;
}
// No operation. (Padding instruction.)
case DW_CFA_nop:
break;
// A SPARC register window save: Registers 8 through 15 (%o0-%o7)
// are saved in registers 24 through 31 (%i0-%i7), and registers
// 16 through 31 (%l0-%l7 and %i0-%i7) are saved at CFA offsets
// (0-15 * the register size). The register numbers must be
// hard-coded. A GNU extension, and not a pretty one.
case DW_CFA_GNU_window_save: {
// Save %o0-%o7 in %i0-%i7.
for (int i = 8; i < 16; i++)
if (!DoRule(i, Rule::mkRegisterRule(i + 16))) return false;
// Save %l0-%l7 and %i0-%i7 at the CFA.
for (int i = 16; i < 32; i++)
// Assume that the byte reader's address size is the same as
// the architecture's register size. !@#%*^ hilarious.
if (!DoRule(i, Rule::mkOffsetRule(Handler::kCFARegister,
(i - 16) * reader_->AddressSize())))
return false;
break;
}
// I'm not sure what this is. GDB doesn't use it for unwinding.
case DW_CFA_GNU_args_size:
if (!ParseOperands("o", &ops)) return false;
break;
// An opcode we don't recognize.
default: {
reporter_->BadInstruction(entry_->offset, entry_->kind, CursorOffset());
return false;
}
}
return true;
}
// See declaration above for rationale re the no-inline directive.
MOZ_NEVER_INLINE
bool CallFrameInfo::State::DoInstructions() {
while (cursor_ < entry_->end) {
if (!DoInstruction()) {
return false;
}
}
return true;
}
bool CallFrameInfo::State::DoDefCFA(unsigned base_register, long offset) {
Rule rule = Rule::mkValOffsetRule(base_register, offset);
rules_.SetCFARule(rule);
return rule.Handle(handler_, address_, Handler::kCFARegister);
}
bool CallFrameInfo::State::DoDefCFAOffset(long offset) {
Rule* cfa_rule = rules_.CFARuleRef();
if (!cfa_rule->isVALID()) {
reporter_->NoCFARule(entry_->offset, entry_->kind, CursorOffset());
return false;
}
cfa_rule->SetOffset(offset);
return cfa_rule->Handle(handler_, address_, Handler::kCFARegister);
}
bool CallFrameInfo::State::DoRule(unsigned reg, Rule rule) {
rules_.SetRegisterRule(reg, rule);
return rule.Handle(handler_, address_, reg);
}
bool CallFrameInfo::State::DoOffset(unsigned reg, long offset) {
if (!rules_.CFARule().isVALID()) {
reporter_->NoCFARule(entry_->offset, entry_->kind, CursorOffset());
return false;
}
Rule rule = Rule::mkOffsetRule(Handler::kCFARegister, offset);
return DoRule(reg, rule);
}
bool CallFrameInfo::State::DoValOffset(unsigned reg, long offset) {
if (!rules_.CFARule().isVALID()) {
reporter_->NoCFARule(entry_->offset, entry_->kind, CursorOffset());
return false;
}
return DoRule(reg, Rule::mkValOffsetRule(Handler::kCFARegister, offset));
}
bool CallFrameInfo::State::DoRestore(unsigned reg) {
// DW_CFA_restore and DW_CFA_restore_extended don't make sense in a CIE.
if (entry_->kind == kCIE) {
reporter_->RestoreInCIE(entry_->offset, CursorOffset());
return false;
}
Rule rule = cie_rules_.RegisterRule(reg);
if (!rule.isVALID()) {
// This isn't really the right thing to do, but since CFI generally
// only mentions callee-saves registers, and GCC's convention for
// callee-saves registers is that they are unchanged, it's a good
// approximation.
rule = Rule::mkSameValueRule();
}
return DoRule(reg, rule);
}
bool CallFrameInfo::ReadEntryPrologue(const char* cursor, Entry* entry) {
const char* buffer_end = buffer_ + buffer_length_;
// Initialize enough of ENTRY for use in error reporting.
entry->offset = cursor - buffer_;
entry->start = cursor;
entry->kind = kUnknown;
entry->end = NULL;
// Read the initial length. This sets reader_'s offset size.
size_t length_size;
uint64 length = reader_->ReadInitialLength(cursor, &length_size);
if (length_size > size_t(buffer_end - cursor)) return ReportIncomplete(entry);
cursor += length_size;
// In a .eh_frame section, a length of zero marks the end of the series
// of entries.
if (length == 0 && eh_frame_) {
entry->kind = kTerminator;
entry->end = cursor;
return true;
}
// Validate the length.
if (length > size_t(buffer_end - cursor)) return ReportIncomplete(entry);
// The length is the number of bytes after the initial length field;
// we have that position handy at this point, so compute the end
// now. (If we're parsing 64-bit-offset DWARF on a 32-bit machine,
// and the length didn't fit in a size_t, we would have rejected it
// above.)
entry->end = cursor + length;
// Parse the next field: either the offset of a CIE or a CIE id.
size_t offset_size = reader_->OffsetSize();
if (offset_size > size_t(entry->end - cursor)) return ReportIncomplete(entry);
entry->id = reader_->ReadOffset(cursor);
// Don't advance cursor past id field yet; in .eh_frame data we need
// the id's position to compute the section offset of an FDE's CIE.
// Now we can decide what kind of entry this is.
if (eh_frame_) {
// In .eh_frame data, an ID of zero marks the entry as a CIE, and
// anything else is an offset from the id field of the FDE to the start
// of the CIE.
if (entry->id == 0) {
entry->kind = kCIE;
} else {
entry->kind = kFDE;
// Turn the offset from the id into an offset from the buffer's start.
entry->id = (cursor - buffer_) - entry->id;
}
} else {
// In DWARF CFI data, an ID of ~0 (of the appropriate width, given the
// offset size for the entry) marks the entry as a CIE, and anything
// else is the offset of the CIE from the beginning of the section.
if (offset_size == 4)
entry->kind = (entry->id == 0xffffffff) ? kCIE : kFDE;
else {
MOZ_ASSERT(offset_size == 8);
entry->kind = (entry->id == 0xffffffffffffffffULL) ? kCIE : kFDE;
}
}
// Now advance cursor past the id.
cursor += offset_size;
// The fields specific to this kind of entry start here.
entry->fields = cursor;
entry->cie = NULL;
return true;
}
bool CallFrameInfo::ReadCIEFields(CIE* cie) {
const char* cursor = cie->fields;
size_t len;
MOZ_ASSERT(cie->kind == kCIE);
// Prepare for early exit.
cie->version = 0;
cie->augmentation.clear();
cie->code_alignment_factor = 0;
cie->data_alignment_factor = 0;
cie->return_address_register = 0;
cie->has_z_augmentation = false;
cie->pointer_encoding = DW_EH_PE_absptr;
cie->instructions = 0;
// Parse the version number.
if (cie->end - cursor < 1) return ReportIncomplete(cie);
cie->version = reader_->ReadOneByte(cursor);
cursor++;
// If we don't recognize the version, we can't parse any more fields of the
// CIE. For DWARF CFI, we handle versions 1 through 4 (there was never a
// version 2 of CFI data). For .eh_frame, we handle versions 1 and 4 as well;
// the difference between those versions seems to be the same as for
// .debug_frame.
if (cie->version < 1 || cie->version > 4) {
reporter_->UnrecognizedVersion(cie->offset, cie->version);
return false;
}
const char* augmentation_start = cursor;
const void* augmentation_end =
memchr(augmentation_start, '\0', cie->end - augmentation_start);
if (!augmentation_end) return ReportIncomplete(cie);
cursor = static_cast<const char*>(augmentation_end);
cie->augmentation = string(augmentation_start, cursor - augmentation_start);
// Skip the terminating '\0'.
cursor++;
// Is this CFI augmented?
if (!cie->augmentation.empty()) {
// Is it an augmentation we recognize?
if (cie->augmentation[0] == DW_Z_augmentation_start) {
// Linux C++ ABI 'z' augmentation, used for exception handling data.
cie->has_z_augmentation = true;
} else {
// Not an augmentation we recognize. Augmentations can have arbitrary
// effects on the form of rest of the content, so we have to give up.
reporter_->UnrecognizedAugmentation(cie->offset, cie->augmentation);
return false;
}
}
if (cie->version >= 4) {
// Check that the address_size and segment_size fields are plausible.
if (cie->end - cursor < 2) {
return ReportIncomplete(cie);
}
uint8_t address_size = reader_->ReadOneByte(cursor);
cursor++;
if (address_size != sizeof(void*)) {
// This is not per-se invalid CFI. But we can reasonably expect to
// be running on a target of the same word size as the CFI is for,
// so we reject this case.
reporter_->InvalidDwarf4Artefact(cie->offset, "Invalid address_size");
return false;
}
uint8_t segment_size = reader_->ReadOneByte(cursor);
cursor++;
if (segment_size != 0) {
// This is also not per-se invalid CFI, but we don't currently handle
// the case of non-zero |segment_size|.
reporter_->InvalidDwarf4Artefact(cie->offset, "Invalid segment_size");
return false;
}
// We only continue parsing if |segment_size| is zero. If this routine
// is ever changed to allow non-zero |segment_size|, then
// ReadFDEFields() below will have to be changed to match, per comments
// there.
}
// Parse the code alignment factor.
cie->code_alignment_factor = reader_->ReadUnsignedLEB128(cursor, &len);
if (size_t(cie->end - cursor) < len) return ReportIncomplete(cie);
cursor += len;
// Parse the data alignment factor.
cie->data_alignment_factor = reader_->ReadSignedLEB128(cursor, &len);
if (size_t(cie->end - cursor) < len) return ReportIncomplete(cie);
cursor += len;
// Parse the return address register. This is a ubyte in version 1, and
// a ULEB128 in version 3.
if (cie->version == 1) {
if (cursor >= cie->end) return ReportIncomplete(cie);
cie->return_address_register = uint8(*cursor++);
} else {
cie->return_address_register = reader_->ReadUnsignedLEB128(cursor, &len);
if (size_t(cie->end - cursor) < len) return ReportIncomplete(cie);
cursor += len;
}
// If we have a 'z' augmentation string, find the augmentation data and
// use the augmentation string to parse it.
if (cie->has_z_augmentation) {
uint64_t data_size = reader_->ReadUnsignedLEB128(cursor, &len);
if (size_t(cie->end - cursor) < len + data_size)
return ReportIncomplete(cie);
cursor += len;
const char* data = cursor;
cursor += data_size;
const char* data_end = cursor;
cie->has_z_lsda = false;
cie->has_z_personality = false;
cie->has_z_signal_frame = false;
// Walk the augmentation string, and extract values from the
// augmentation data as the string directs.
for (size_t i = 1; i < cie->augmentation.size(); i++) {
switch (cie->augmentation[i]) {
case DW_Z_has_LSDA:
// The CIE's augmentation data holds the language-specific data
// area pointer's encoding, and the FDE's augmentation data holds
// the pointer itself.
cie->has_z_lsda = true;
// Fetch the LSDA encoding from the augmentation data.
if (data >= data_end) return ReportIncomplete(cie);
cie->lsda_encoding = DwarfPointerEncoding(*data++);
if (!reader_->ValidEncoding(cie->lsda_encoding)) {
reporter_->InvalidPointerEncoding(cie->offset, cie->lsda_encoding);
return false;
}
// Don't check if the encoding is usable here --- we haven't
// read the FDE's fields yet, so we're not prepared for
// DW_EH_PE_funcrel, although that's a fine encoding for the
// LSDA to use, since it appears in the FDE.
break;
case DW_Z_has_personality_routine:
// The CIE's augmentation data holds the personality routine
// pointer's encoding, followed by the pointer itself.
cie->has_z_personality = true;
// Fetch the personality routine pointer's encoding from the
// augmentation data.
if (data >= data_end) return ReportIncomplete(cie);
cie->personality_encoding = DwarfPointerEncoding(*data++);
if (!reader_->ValidEncoding(cie->personality_encoding)) {
reporter_->InvalidPointerEncoding(cie->offset,
cie->personality_encoding);
return false;
}
if (!reader_->UsableEncoding(cie->personality_encoding)) {
reporter_->UnusablePointerEncoding(cie->offset,
cie->personality_encoding);
return false;
}
// Fetch the personality routine's pointer itself from the data.
cie->personality_address = reader_->ReadEncodedPointer(
data, cie->personality_encoding, &len);
if (len > size_t(data_end - data)) return ReportIncomplete(cie);
data += len;
break;
case DW_Z_has_FDE_address_encoding:
// The CIE's augmentation data holds the pointer encoding to use
// for addresses in the FDE.
if (data >= data_end) return ReportIncomplete(cie);
cie->pointer_encoding = DwarfPointerEncoding(*data++);
if (!reader_->ValidEncoding(cie->pointer_encoding)) {
reporter_->InvalidPointerEncoding(cie->offset,
cie->pointer_encoding);
return false;
}
if (!reader_->UsableEncoding(cie->pointer_encoding)) {
reporter_->UnusablePointerEncoding(cie->offset,
cie->pointer_encoding);
return false;
}
break;
case DW_Z_is_signal_trampoline:
// Frames using this CIE are signal delivery frames.
cie->has_z_signal_frame = true;
break;
default:
// An augmentation we don't recognize.
reporter_->UnrecognizedAugmentation(cie->offset, cie->augmentation);
return false;
}
}
}
// The CIE's instructions start here.
cie->instructions = cursor;
return true;
}
bool CallFrameInfo::ReadFDEFields(FDE* fde) {
const char* cursor = fde->fields;
size_t size;
// At this point, for Dwarf 4 and above, we are assuming that the
// associated CIE has its |segment_size| field equal to zero. This is
// checked for in ReadCIEFields() above. If ReadCIEFields() is ever
// changed to allow non-zero |segment_size| CIEs then we will have to read
// the segment_selector value at this point.
fde->address =
reader_->ReadEncodedPointer(cursor, fde->cie->pointer_encoding, &size);
if (size > size_t(fde->end - cursor)) return ReportIncomplete(fde);
cursor += size;
reader_->SetFunctionBase(fde->address);
// For the length, we strip off the upper nybble of the encoding used for
// the starting address.
DwarfPointerEncoding length_encoding =
DwarfPointerEncoding(fde->cie->pointer_encoding & 0x0f);
fde->size = reader_->ReadEncodedPointer(cursor, length_encoding, &size);
if (size > size_t(fde->end - cursor)) return ReportIncomplete(fde);
cursor += size;
// If the CIE has a 'z' augmentation string, then augmentation data
// appears here.
if (fde->cie->has_z_augmentation) {
uint64_t data_size = reader_->ReadUnsignedLEB128(cursor, &size);
if (size_t(fde->end - cursor) < size + data_size)
return ReportIncomplete(fde);
cursor += size;
// In the abstract, we should walk the augmentation string, and extract
// items from the FDE's augmentation data as we encounter augmentation
// string characters that specify their presence: the ordering of items
// in the augmentation string determines the arrangement of values in
// the augmentation data.
//
// In practice, there's only ever one value in FDE augmentation data
// that we support --- the LSDA pointer --- and we have to bail if we
// see any unrecognized augmentation string characters. So if there is
// anything here at all, we know what it is, and where it starts.
if (fde->cie->has_z_lsda) {
// Check whether the LSDA's pointer encoding is usable now: only once
// we've parsed the FDE's starting address do we call reader_->
// SetFunctionBase, so that the DW_EH_PE_funcrel encoding becomes
// usable.
if (!reader_->UsableEncoding(fde->cie->lsda_encoding)) {
reporter_->UnusablePointerEncoding(fde->cie->offset,
fde->cie->lsda_encoding);
return false;
}
fde->lsda_address =
reader_->ReadEncodedPointer(cursor, fde->cie->lsda_encoding, &size);
if (size > data_size) return ReportIncomplete(fde);
// Ideally, we would also complain here if there were unconsumed
// augmentation data.
}
cursor += data_size;
}
// The FDE's instructions start after those.
fde->instructions = cursor;
return true;
}
bool CallFrameInfo::Start() {
const char* buffer_end = buffer_ + buffer_length_;
const char* cursor;
bool all_ok = true;
const char* entry_end;
bool ok;
// Traverse all the entries in buffer_, skipping CIEs and offering
// FDEs to the handler.
for (cursor = buffer_; cursor < buffer_end;
cursor = entry_end, all_ok = all_ok && ok) {
FDE fde;
// Make it easy to skip this entry with 'continue': assume that
// things are not okay until we've checked all the data, and
// prepare the address of the next entry.
ok = false;
// Read the entry's prologue.
if (!ReadEntryPrologue(cursor, &fde)) {
if (!fde.end) {
// If we couldn't even figure out this entry's extent, then we
// must stop processing entries altogether.
all_ok = false;
break;
}
entry_end = fde.end;
continue;
}
// The next iteration picks up after this entry.
entry_end = fde.end;
// Did we see an .eh_frame terminating mark?
if (fde.kind == kTerminator) {
// If there appears to be more data left in the section after the
// terminating mark, warn the user. But this is just a warning;
// we leave all_ok true.
if (fde.end < buffer_end) reporter_->EarlyEHTerminator(fde.offset);
break;
}
// In this loop, we skip CIEs. We only parse them fully when we
// parse an FDE that refers to them. This limits our memory
// consumption (beyond the buffer itself) to that needed to
// process the largest single entry.
if (fde.kind != kFDE) {
ok = true;
continue;
}
// Validate the CIE pointer.
if (fde.id > buffer_length_) {
reporter_->CIEPointerOutOfRange(fde.offset, fde.id);
continue;
}
CIE cie;
// Parse this FDE's CIE header.
if (!ReadEntryPrologue(buffer_ + fde.id, &cie)) continue;
// This had better be an actual CIE.
if (cie.kind != kCIE) {
reporter_->BadCIEId(fde.offset, fde.id);
continue;
}
if (!ReadCIEFields(&cie)) continue;
// We now have the values that govern both the CIE and the FDE.
cie.cie = &cie;
fde.cie = &cie;
// Parse the FDE's header.
if (!ReadFDEFields(&fde)) continue;
// Call Entry to ask the consumer if they're interested.
if (!handler_->Entry(fde.offset, fde.address, fde.size, cie.version,
cie.augmentation, cie.return_address_register)) {
// The handler isn't interested in this entry. That's not an error.
ok = true;
continue;
}
if (cie.has_z_augmentation) {
// Report the personality routine address, if we have one.
if (cie.has_z_personality) {
if (!handler_->PersonalityRoutine(
cie.personality_address,
IsIndirectEncoding(cie.personality_encoding)))
continue;
}
// Report the language-specific data area address, if we have one.
if (cie.has_z_lsda) {
if (!handler_->LanguageSpecificDataArea(
fde.lsda_address, IsIndirectEncoding(cie.lsda_encoding)))
continue;
}
// If this is a signal-handling frame, report that.
if (cie.has_z_signal_frame) {
if (!handler_->SignalHandler()) continue;
}
}
// Interpret the CIE's instructions, and then the FDE's instructions.
State state(reader_, handler_, reporter_, fde.address);
ok = state.InterpretCIE(cie) && state.InterpretFDE(fde);
// Tell the ByteReader that the function start address from the
// FDE header is no longer valid.
reader_->ClearFunctionBase();
// Report the end of the entry.
handler_->End();
}
return all_ok;
}
const char* CallFrameInfo::KindName(EntryKind kind) {
if (kind == CallFrameInfo::kUnknown)
return "entry";
else if (kind == CallFrameInfo::kCIE)
return "common information entry";
else if (kind == CallFrameInfo::kFDE)
return "frame description entry";
else {
MOZ_ASSERT(kind == CallFrameInfo::kTerminator);
return ".eh_frame sequence terminator";
}
}
bool CallFrameInfo::ReportIncomplete(Entry* entry) {
reporter_->Incomplete(entry->offset, entry->kind);
return false;
}
void CallFrameInfo::Reporter::Incomplete(uint64 offset,
CallFrameInfo::EntryKind kind) {
char buf[300];
SprintfLiteral(buf, "%s: CFI %s at offset 0x%llx in '%s': entry ends early\n",
filename_.c_str(), CallFrameInfo::KindName(kind), offset,
section_.c_str());
log_(buf);
}
void CallFrameInfo::Reporter::EarlyEHTerminator(uint64 offset) {
char buf[300];
SprintfLiteral(buf,
"%s: CFI at offset 0x%llx in '%s': saw end-of-data marker"
" before end of section contents\n",
filename_.c_str(), offset, section_.c_str());
log_(buf);
}
void CallFrameInfo::Reporter::CIEPointerOutOfRange(uint64 offset,
uint64 cie_offset) {
char buf[300];
SprintfLiteral(buf,
"%s: CFI frame description entry at offset 0x%llx in '%s':"
" CIE pointer is out of range: 0x%llx\n",
filename_.c_str(), offset, section_.c_str(), cie_offset);
log_(buf);
}
void CallFrameInfo::Reporter::BadCIEId(uint64 offset, uint64 cie_offset) {
char buf[300];
SprintfLiteral(buf,
"%s: CFI frame description entry at offset 0x%llx in '%s':"
" CIE pointer does not point to a CIE: 0x%llx\n",
filename_.c_str(), offset, section_.c_str(), cie_offset);
log_(buf);
}
void CallFrameInfo::Reporter::UnrecognizedVersion(uint64 offset, int version) {
char buf[300];
SprintfLiteral(buf,
"%s: CFI frame description entry at offset 0x%llx in '%s':"
" CIE specifies unrecognized version: %d\n",
filename_.c_str(), offset, section_.c_str(), version);
log_(buf);
}
void CallFrameInfo::Reporter::UnrecognizedAugmentation(uint64 offset,
const string& aug) {
char buf[300];
SprintfLiteral(buf,
"%s: CFI frame description entry at offset 0x%llx in '%s':"
" CIE specifies unrecognized augmentation: '%s'\n",
filename_.c_str(), offset, section_.c_str(), aug.c_str());
log_(buf);
}
void CallFrameInfo::Reporter::InvalidDwarf4Artefact(uint64 offset,
const char* what) {
char* what_safe = strndup(what, 100);
char buf[300];
SprintfLiteral(buf,
"%s: CFI frame description entry at offset 0x%llx in '%s':"
" CIE specifies invalid Dwarf4 artefact: %s\n",
filename_.c_str(), offset, section_.c_str(), what_safe);
log_(buf);
free(what_safe);
}
void CallFrameInfo::Reporter::InvalidPointerEncoding(uint64 offset,
uint8 encoding) {
char buf[300];
SprintfLiteral(buf,
"%s: CFI common information entry at offset 0x%llx in '%s':"
" 'z' augmentation specifies invalid pointer encoding: "
"0x%02x\n",
filename_.c_str(), offset, section_.c_str(), encoding);
log_(buf);
}
void CallFrameInfo::Reporter::UnusablePointerEncoding(uint64 offset,
uint8 encoding) {
char buf[300];
SprintfLiteral(buf,
"%s: CFI common information entry at offset 0x%llx in '%s':"
" 'z' augmentation specifies a pointer encoding for which"
" we have no base address: 0x%02x\n",
filename_.c_str(), offset, section_.c_str(), encoding);
log_(buf);
}
void CallFrameInfo::Reporter::RestoreInCIE(uint64 offset, uint64 insn_offset) {
char buf[300];
SprintfLiteral(buf,
"%s: CFI common information entry at offset 0x%llx in '%s':"
" the DW_CFA_restore instruction at offset 0x%llx"
" cannot be used in a common information entry\n",
filename_.c_str(), offset, section_.c_str(), insn_offset);
log_(buf);
}
void CallFrameInfo::Reporter::BadInstruction(uint64 offset,
CallFrameInfo::EntryKind kind,
uint64 insn_offset) {
char buf[300];
SprintfLiteral(buf,
"%s: CFI %s at offset 0x%llx in section '%s':"
" the instruction at offset 0x%llx is unrecognized\n",
filename_.c_str(), CallFrameInfo::KindName(kind), offset,
section_.c_str(), insn_offset);
log_(buf);
}
void CallFrameInfo::Reporter::NoCFARule(uint64 offset,
CallFrameInfo::EntryKind kind,
uint64 insn_offset) {
char buf[300];
SprintfLiteral(buf,
"%s: CFI %s at offset 0x%llx in section '%s':"
" the instruction at offset 0x%llx assumes that a CFA rule "
"has been set, but none has been set\n",
filename_.c_str(), CallFrameInfo::KindName(kind), offset,
section_.c_str(), insn_offset);
log_(buf);
}
void CallFrameInfo::Reporter::EmptyStateStack(uint64 offset,
CallFrameInfo::EntryKind kind,
uint64 insn_offset) {
char buf[300];
SprintfLiteral(buf,
"%s: CFI %s at offset 0x%llx in section '%s':"
" the DW_CFA_restore_state instruction at offset 0x%llx"
" should pop a saved state from the stack, but the stack "
"is empty\n",
filename_.c_str(), CallFrameInfo::KindName(kind), offset,
section_.c_str(), insn_offset);
log_(buf);
}
void CallFrameInfo::Reporter::ClearingCFARule(uint64 offset,
CallFrameInfo::EntryKind kind,
uint64 insn_offset) {
char buf[300];
SprintfLiteral(buf,
"%s: CFI %s at offset 0x%llx in section '%s':"
" the DW_CFA_restore_state instruction at offset 0x%llx"
" would clear the CFA rule in effect\n",
filename_.c_str(), CallFrameInfo::KindName(kind), offset,
section_.c_str(), insn_offset);
log_(buf);
}
unsigned int DwarfCFIToModule::RegisterNames::I386() {
/*
8 "$eax", "$ecx", "$edx", "$ebx", "$esp", "$ebp", "$esi", "$edi",
3 "$eip", "$eflags", "$unused1",
8 "$st0", "$st1", "$st2", "$st3", "$st4", "$st5", "$st6", "$st7",
2 "$unused2", "$unused3",
8 "$xmm0", "$xmm1", "$xmm2", "$xmm3", "$xmm4", "$xmm5", "$xmm6", "$xmm7",
8 "$mm0", "$mm1", "$mm2", "$mm3", "$mm4", "$mm5", "$mm6", "$mm7",
3 "$fcw", "$fsw", "$mxcsr",
8 "$es", "$cs", "$ss", "$ds", "$fs", "$gs", "$unused4", "$unused5",
2 "$tr", "$ldtr"
*/
return 8 + 3 + 8 + 2 + 8 + 8 + 3 + 8 + 2;
}
unsigned int DwarfCFIToModule::RegisterNames::X86_64() {
/*
8 "$rax", "$rdx", "$rcx", "$rbx", "$rsi", "$rdi", "$rbp", "$rsp",
8 "$r8", "$r9", "$r10", "$r11", "$r12", "$r13", "$r14", "$r15",
1 "$rip",
8 "$xmm0","$xmm1","$xmm2", "$xmm3", "$xmm4", "$xmm5", "$xmm6", "$xmm7",
8 "$xmm8","$xmm9","$xmm10","$xmm11","$xmm12","$xmm13","$xmm14","$xmm15",
8 "$st0", "$st1", "$st2", "$st3", "$st4", "$st5", "$st6", "$st7",
8 "$mm0", "$mm1", "$mm2", "$mm3", "$mm4", "$mm5", "$mm6", "$mm7",
1 "$rflags",
8 "$es", "$cs", "$ss", "$ds", "$fs", "$gs", "$unused1", "$unused2",
4 "$fs.base", "$gs.base", "$unused3", "$unused4",
2 "$tr", "$ldtr",
3 "$mxcsr", "$fcw", "$fsw"
*/
return 8 + 8 + 1 + 8 + 8 + 8 + 8 + 1 + 8 + 4 + 2 + 3;
}
// Per ARM IHI 0040A, section 3.1
unsigned int DwarfCFIToModule::RegisterNames::ARM() {
/*
8 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
8 "r8", "r9", "r10", "r11", "r12", "sp", "lr", "pc",
8 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
8 "fps", "cpsr", "", "", "", "", "", "",
8 "", "", "", "", "", "", "", "",
8 "", "", "", "", "", "", "", "",
8 "", "", "", "", "", "", "", "",
8 "", "", "", "", "", "", "", "",
8 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
8 "s8", "s9", "s10", "s11", "s12", "s13", "s14", "s15",
8 "s16", "s17", "s18", "s19", "s20", "s21", "s22", "s23",
8 "s24", "s25", "s26", "s27", "s28", "s29", "s30", "s31",
8 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7"
*/
return 13 * 8;
}
// Per ARM IHI 0057A, section 3.1
unsigned int DwarfCFIToModule::RegisterNames::ARM64() {
/*
8 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
8 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
8 "x16" "x17", "x18", "x19", "x20", "x21", "x22", "x23",
8 "x24", "x25", "x26", "x27", "x28", "x29", "x30","sp",
8 "", "", "", "", "", "", "", "",
8 "", "", "", "", "", "", "", "",
8 "", "", "", "", "", "", "", "",
8 "", "", "", "", "", "", "", "",
8 "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7",
8 "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15",
8 "v16", "v17", "v18", "v19", "v20", "v21", "v22, "v23",
8 "v24", "x25", "x26, "x27", "v28", "v29", "v30", "v31",
*/
return 12 * 8;
}
unsigned int DwarfCFIToModule::RegisterNames::MIPS() {
/*
8 "$zero", "$at", "$v0", "$v1", "$a0", "$a1", "$a2", "$a3",
8 "$t0", "$t1", "$t2", "$t3", "$t4", "$t5", "$t6", "$t7",
8 "$s0", "$s1", "$s2", "$s3", "$s4", "$s5", "$s6", "$s7",
8 "$t8", "$t9", "$k0", "$k1", "$gp", "$sp", "$fp", "$ra",
9 "$lo", "$hi", "$pc", "$f0", "$f1", "$f2", "$f3", "$f4", "$f5",
8 "$f6", "$f7", "$f8", "$f9", "$f10", "$f11", "$f12", "$f13",
7 "$f14", "$f15", "$f16", "$f17", "$f18", "$f19", "$f20",
7 "$f21", "$f22", "$f23", "$f24", "$f25", "$f26", "$f27",
6 "$f28", "$f29", "$f30", "$f31", "$fcsr", "$fir"
*/
return 8 + 8 + 8 + 8 + 9 + 8 + 7 + 7 + 6;
}
// See prototype for comments.
int32_t parseDwarfExpr(Summariser* summ, const ByteReader* reader,
ImageSlice expr, bool debug, bool pushCfaAtStart,
bool derefAtEnd) {
const char* cursor = expr.start_;
const char* end1 = cursor + expr.length_;
char buf[100];
if (debug) {
SprintfLiteral(buf, "LUL.DW << DwarfExpr, len is %d\n",
(int)(end1 - cursor));
summ->Log(buf);
}
// Add a marker for the start of this expression. In it, indicate
// whether or not the CFA should be pushed onto the stack prior to
// evaluation.
int32_t start_ix =
summ->AddPfxInstr(PfxInstr(PX_Start, pushCfaAtStart ? 1 : 0));
MOZ_ASSERT(start_ix >= 0);
while (cursor < end1) {
uint8 opc = reader->ReadOneByte(cursor);
cursor++;
const char* nm = nullptr;
PfxExprOp pxop = PX_End;
switch (opc) {
case DW_OP_lit0 ... DW_OP_lit31: {
int32_t simm32 = (int32_t)(opc - DW_OP_lit0);
if (debug) {
SprintfLiteral(buf, "LUL.DW DW_OP_lit%d\n", (int)simm32);
summ->Log(buf);
}
(void)summ->AddPfxInstr(PfxInstr(PX_SImm32, simm32));
break;
}
case DW_OP_breg0 ... DW_OP_breg31: {
size_t len;
int64_t n = reader->ReadSignedLEB128(cursor, &len);
cursor += len;
DW_REG_NUMBER reg = (DW_REG_NUMBER)(opc - DW_OP_breg0);
if (debug) {
SprintfLiteral(buf, "LUL.DW DW_OP_breg%d %lld\n", (int)reg,
(long long int)n);
summ->Log(buf);
}
// PfxInstr only allows a 32 bit signed offset. So we
// must fail if the immediate is out of range.
if (n < INT32_MIN || INT32_MAX < n) goto fail;
(void)summ->AddPfxInstr(PfxInstr(PX_DwReg, reg));
(void)summ->AddPfxInstr(PfxInstr(PX_SImm32, (int32_t)n));
(void)summ->AddPfxInstr(PfxInstr(PX_Add));
break;
}
case DW_OP_const4s: {
uint64_t u64 = reader->ReadFourBytes(cursor);
cursor += 4;
// u64 is guaranteed by |ReadFourBytes| to be in the
// range 0 .. FFFFFFFF inclusive. But to be safe:
uint32_t u32 = (uint32_t)(u64 & 0xFFFFFFFF);
int32_t s32 = (int32_t)u32;
if (debug) {
SprintfLiteral(buf, "LUL.DW DW_OP_const4s %d\n", (int)s32);
summ->Log(buf);
}
(void)summ->AddPfxInstr(PfxInstr(PX_SImm32, s32));
break;
}
case DW_OP_deref:
nm = "deref";
pxop = PX_Deref;
goto no_operands;
case DW_OP_and:
nm = "and";
pxop = PX_And;
goto no_operands;
case DW_OP_plus:
nm = "plus";
pxop = PX_Add;
goto no_operands;
case DW_OP_minus:
nm = "minus";
pxop = PX_Sub;
goto no_operands;
case DW_OP_shl:
nm = "shl";
pxop = PX_Shl;
goto no_operands;
case DW_OP_ge:
nm = "ge";
pxop = PX_CmpGES;
goto no_operands;
no_operands:
MOZ_ASSERT(nm && pxop != PX_End);
if (debug) {
SprintfLiteral(buf, "LUL.DW DW_OP_%s\n", nm);
summ->Log(buf);
}
(void)summ->AddPfxInstr(PfxInstr(pxop));
break;
default:
if (debug) {
SprintfLiteral(buf, "LUL.DW unknown opc %d\n", (int)opc);
summ->Log(buf);
}
goto fail;
} // switch (opc)
} // while (cursor < end1)
MOZ_ASSERT(cursor >= end1);
if (cursor > end1) {
// We overran the Dwarf expression. Give up.
goto fail;
}
// For DW_CFA_expression, what the expression denotes is the address
// of where the previous value is located. The caller of this routine
// may therefore request one last dereference before the end marker is
// inserted.
if (derefAtEnd) {
(void)summ->AddPfxInstr(PfxInstr(PX_Deref));
}
// Insert an end marker, and declare success.
(void)summ->AddPfxInstr(PfxInstr(PX_End));
if (debug) {
SprintfLiteral(buf,
"LUL.DW conversion of dwarf expression succeeded, "
"ix = %d\n",
(int)start_ix);
summ->Log(buf);
summ->Log("LUL.DW >>\n");
}
return start_ix;
fail:
if (debug) {
summ->Log("LUL.DW conversion of dwarf expression failed\n");
summ->Log("LUL.DW >>\n");
}
return -1;
}
bool DwarfCFIToModule::Entry(size_t offset, uint64 address, uint64 length,
uint8 version, const string& augmentation,
unsigned return_address) {
if (DEBUG_DWARF) {
char buf[100];
SprintfLiteral(buf, "LUL.DW DwarfCFIToModule::Entry 0x%llx,+%lld\n",
address, length);
summ_->Log(buf);
}
summ_->Entry(address, length);
// If dwarf2reader::CallFrameInfo can handle this version and
// augmentation, then we should be okay with that, so there's no
// need to check them here.
// Get ready to collect entries.
return_address_ = return_address;
// Breakpad STACK CFI records must provide a .ra rule, but DWARF CFI
// may not establish any rule for .ra if the return address column
// is an ordinary register, and that register holds the return
// address on entry to the function. So establish an initial .ra
// rule citing the return address register.
if (return_address_ < num_dw_regs_) {
summ_->Rule(address, return_address_, NODEREF, return_address, 0);
}
return true;
}
const UniqueString* DwarfCFIToModule::RegisterName(int i) {
if (i < 0) {
MOZ_ASSERT(i == kCFARegister);
return usu_->ToUniqueString(".cfa");
}
unsigned reg = i;
if (reg == return_address_) return usu_->ToUniqueString(".ra");
char buf[30];
SprintfLiteral(buf, "dwarf_reg_%u", reg);
return usu_->ToUniqueString(buf);
}
bool DwarfCFIToModule::UndefinedRule(uint64 address, int reg) {
reporter_->UndefinedNotSupported(entry_offset_, RegisterName(reg));
// Treat this as a non-fatal error.
return true;
}
bool DwarfCFIToModule::SameValueRule(uint64 address, int reg) {
if (DEBUG_DWARF) {
char buf[100];
SprintfLiteral(buf, "LUL.DW 0x%llx: old r%d = Same\n", address, reg);
summ_->Log(buf);
}
// reg + 0
summ_->Rule(address, reg, NODEREF, reg, 0);
return true;
}
bool DwarfCFIToModule::OffsetRule(uint64 address, int reg, int base_register,
long offset) {
if (DEBUG_DWARF) {
char buf[100];
SprintfLiteral(buf, "LUL.DW 0x%llx: old r%d = *(r%d + %ld)\n", address,
reg, base_register, offset);
summ_->Log(buf);
}
// *(base_register + offset)
summ_->Rule(address, reg, DEREF, base_register, offset);
return true;
}
bool DwarfCFIToModule::ValOffsetRule(uint64 address, int reg, int base_register,
long offset) {
if (DEBUG_DWARF) {
char buf[100];
SprintfLiteral(buf, "LUL.DW 0x%llx: old r%d = r%d + %ld\n", address, reg,
base_register, offset);
summ_->Log(buf);
}
// base_register + offset
summ_->Rule(address, reg, NODEREF, base_register, offset);
return true;
}
bool DwarfCFIToModule::RegisterRule(uint64 address, int reg,
int base_register) {
if (DEBUG_DWARF) {
char buf[100];
SprintfLiteral(buf, "LUL.DW 0x%llx: old r%d = r%d\n", address, reg,
base_register);
summ_->Log(buf);
}
// base_register + 0
summ_->Rule(address, reg, NODEREF, base_register, 0);
return true;
}
bool DwarfCFIToModule::ExpressionRule(uint64 address, int reg,
const ImageSlice& expression) {
bool debug = !!DEBUG_DWARF;
int32_t start_ix =
parseDwarfExpr(summ_, reader_, expression, debug, true /*pushCfaAtStart*/,
true /*derefAtEnd*/);
if (start_ix >= 0) {
summ_->Rule(address, reg, PFXEXPR, 0, start_ix);
} else {
// Parsing of the Dwarf expression failed. Treat this as a
// non-fatal error, hence return |true| even on this path.
reporter_->ExpressionCouldNotBeSummarised(entry_offset_, RegisterName(reg));
}
return true;
}
bool DwarfCFIToModule::ValExpressionRule(uint64 address, int reg,
const ImageSlice& expression) {
bool debug = !!DEBUG_DWARF;
int32_t start_ix =
parseDwarfExpr(summ_, reader_, expression, debug, true /*pushCfaAtStart*/,
false /*!derefAtEnd*/);
if (start_ix >= 0) {
summ_->Rule(address, reg, PFXEXPR, 0, start_ix);
} else {
// Parsing of the Dwarf expression failed. Treat this as a
// non-fatal error, hence return |true| even on this path.
reporter_->ExpressionCouldNotBeSummarised(entry_offset_, RegisterName(reg));
}
return true;
}
bool DwarfCFIToModule::End() {
// module_->AddStackFrameEntry(entry_);
if (DEBUG_DWARF) {
summ_->Log("LUL.DW DwarfCFIToModule::End()\n");
}
summ_->End();
return true;
}
void DwarfCFIToModule::Reporter::UndefinedNotSupported(
size_t offset, const UniqueString* reg) {
char buf[300];
SprintfLiteral(buf, "DwarfCFIToModule::Reporter::UndefinedNotSupported()\n");
log_(buf);
// BPLOG(INFO) << file_ << ", section '" << section_
// << "': the call frame entry at offset 0x"
// << std::setbase(16) << offset << std::setbase(10)
// << " sets the rule for register '" << FromUniqueString(reg)
// << "' to 'undefined', but the Breakpad symbol file format cannot "
// << " express this";
}
// FIXME: move this somewhere sensible
static bool is_power_of_2(uint64_t n) {
int i, nSetBits = 0;
for (i = 0; i < 8 * (int)sizeof(n); i++) {
if ((n & ((uint64_t)1) << i) != 0) nSetBits++;
}
return nSetBits <= 1;
}
void DwarfCFIToModule::Reporter::ExpressionCouldNotBeSummarised(
size_t offset, const UniqueString* reg) {
static uint64_t n_complaints = 0; // This isn't threadsafe
n_complaints++;
if (!is_power_of_2(n_complaints)) return;
char buf[300];
SprintfLiteral(buf,
"DwarfCFIToModule::Reporter::"
"ExpressionCouldNotBeSummarised(shown %llu times)\n",
(unsigned long long int)n_complaints);
log_(buf);
}
} // namespace lul
|