1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
|
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
// We are going to be doing so, so many transforms, so descriptive labels are
// critical.
#include "Colorspaces.h"
#include "nsDebug.h"
#include "qcms.h"
namespace mozilla::color {
// tf = { k * linear | linear < b
// { a * pow(linear, 1/g) - (1-a) | linear >= b
float TfFromLinear(const PiecewiseGammaDesc& desc, const float linear) {
if (linear < desc.b) {
return linear * desc.k;
}
float ret = linear;
ret = powf(ret, 1.0f / desc.g);
ret *= desc.a;
ret -= (desc.a - 1);
return ret;
}
float LinearFromTf(const PiecewiseGammaDesc& desc, const float tf) {
const auto linear_if_low = tf / desc.k;
if (linear_if_low < desc.b) {
return linear_if_low;
}
float ret = tf;
ret += (desc.a - 1);
ret /= desc.a;
ret = powf(ret, 1.0f * desc.g);
return ret;
}
// -
mat3 YuvFromRgb(const YuvLumaCoeffs& yc) {
// Y is always [0,1]
// U and V are signed, and could be either [-1,+1] or [-0.5,+0.5].
// Specs generally use [-0.5,+0.5], so we use that too.
// E.g.
// y = 0.2126*r + 0.7152*g + 0.0722*b
// u = (b - y) / (u_range = u_max - u_min) // u_min = -u_max
// = (b - y) / (u(0,0,1) - u(1,1,0))
// = (b - y) / (2 * u(0,0,1))
// = (b - y) / (2 * u.b))
// = (b - y) / (2 * (1 - 0.0722))
// = (-0.2126*r + -0.7152*g + (1-0.0722)*b) / 1.8556
// v = (r - y) / 1.5748;
// = ((1-0.2126)*r + -0.7152*g + -0.0722*b) / 1.5748
const auto y = vec3({yc.r, yc.g, yc.b});
const auto u = vec3({0, 0, 1}) - y;
const auto v = vec3({1, 0, 0}) - y;
// From rows:
return mat3({y, u / (2 * u.z()), v / (2 * v.x())});
}
mat4 YuvFromYcbcr(const YcbcrDesc& d) {
// E.g.
// y = (yy - 16) / (235 - 16); // 16->0, 235->1
// u = (cb - 128) / (240 - 16); // 16->-0.5, 128->0, 240->+0.5
// v = (cr - 128) / (240 - 16);
const auto yRange = d.y1 - d.y0;
const auto uHalfRange = d.uPlusHalf - d.u0;
const auto uRange = 2 * uHalfRange;
const auto ycbcrFromYuv = mat4{{vec4{{yRange, 0, 0, d.y0}},
{{0, uRange, 0, d.u0}},
{{0, 0, uRange, d.u0}},
{{0, 0, 0, 1}}}};
const auto yuvFromYcbcr = inverse(ycbcrFromYuv);
return yuvFromYcbcr;
}
inline vec3 CIEXYZ_from_CIExyY(const vec2 xy, const float Y = 1) {
const auto xyz = vec3(xy, 1 - xy.x() - xy.y());
const auto XYZ = xyz * (Y / xy.y());
return XYZ;
}
mat3 XyzFromLinearRgb(const Chromaticities& c) {
// http://www.brucelindbloom.com/index.html?Eqn_RGB_XYZ_Matrix.html
// Given red (xr, yr), green (xg, yg), blue (xb, yb),
// and whitepoint (XW, YW, ZW)
// [ X ] [ R ]
// [ Y ] = M x [ G ]
// [ Z ] [ B ]
// [ Sr*Xr Sg*Xg Sb*Xb ]
// M = [ Sr*Yr Sg*Yg Sb*Yb ]
// [ Sr*Zr Sg*Zg Sb*Zb ]
// Xr = xr / yr
// Yr = 1
// Zr = (1 - xr - yr) / yr
// Xg = xg / yg
// Yg = 1
// Zg = (1 - xg - yg) / yg
// Xb = xb / yb
// Yb = 1
// Zb = (1 - xb - yb) / yb
// [ Sr ] [ Xr Xg Xb ]^-1 [ XW ]
// [ Sg ] = [ Yr Yg Yb ] x [ YW ]
// [ Sb ] [ Zr Zg Zb ] [ ZW ]
const auto xrgb = vec3({c.rx, c.gx, c.bx});
const auto yrgb = vec3({c.ry, c.gy, c.by});
const auto Xrgb = xrgb / yrgb;
const auto Yrgb = vec3(1);
const auto Zrgb = (vec3(1) - xrgb - yrgb) / yrgb;
const auto XYZrgb = mat3({Xrgb, Yrgb, Zrgb});
const auto XYZrgb_inv = inverse(XYZrgb);
const auto XYZwhitepoint = vec3({c.wx, c.wy, 1 - c.wx - c.wy}) / c.wy;
const auto Srgb = XYZrgb_inv * XYZwhitepoint;
const auto M = mat3({Srgb * Xrgb, Srgb * Yrgb, Srgb * Zrgb});
return M;
}
// -
ColorspaceTransform ColorspaceTransform::Create(const ColorspaceDesc& src,
const ColorspaceDesc& dst) {
auto ct = ColorspaceTransform{src, dst};
ct.srcTf = src.tf;
ct.dstTf = dst.tf;
const auto RgbTfFrom = [&](const ColorspaceDesc& cs) {
auto rgbFrom = mat4::Identity();
if (cs.yuv) {
const auto yuvFromYcbcr = YuvFromYcbcr(cs.yuv->ycbcr);
const auto yuvFromRgb = YuvFromRgb(cs.yuv->yCoeffs);
const auto rgbFromYuv = inverse(yuvFromRgb);
const auto rgbFromYuv4 = mat4(rgbFromYuv);
const auto rgbFromYcbcr = rgbFromYuv4 * yuvFromYcbcr;
rgbFrom = rgbFromYcbcr;
}
return rgbFrom;
};
ct.srcRgbTfFromSrc = RgbTfFrom(src);
const auto dstRgbTfFromDst = RgbTfFrom(dst);
ct.dstFromDstRgbTf = inverse(dstRgbTfFromDst);
// -
ct.dstRgbLinFromSrcRgbLin = mat3::Identity();
if (!(src.chrom == dst.chrom)) {
const auto xyzFromSrcRgbLin = XyzFromLinearRgb(src.chrom);
const auto xyzFromDstRgbLin = XyzFromLinearRgb(dst.chrom);
const auto dstRgbLinFromXyz = inverse(xyzFromDstRgbLin);
ct.dstRgbLinFromSrcRgbLin = dstRgbLinFromXyz * xyzFromSrcRgbLin;
}
return ct;
}
vec3 ColorspaceTransform::DstFromSrc(const vec3 src) const {
const auto srcRgbTf = srcRgbTfFromSrc * vec4(src, 1);
auto srcRgbLin = srcRgbTf;
if (srcTf) {
srcRgbLin.x(LinearFromTf(*srcTf, srcRgbTf.x()));
srcRgbLin.y(LinearFromTf(*srcTf, srcRgbTf.y()));
srcRgbLin.z(LinearFromTf(*srcTf, srcRgbTf.z()));
}
const auto dstRgbLin = dstRgbLinFromSrcRgbLin * vec3(srcRgbLin);
auto dstRgbTf = dstRgbLin;
if (dstTf) {
dstRgbTf.x(TfFromLinear(*dstTf, dstRgbLin.x()));
dstRgbTf.y(TfFromLinear(*dstTf, dstRgbLin.y()));
dstRgbTf.z(TfFromLinear(*dstTf, dstRgbLin.z()));
}
const auto dst4 = dstFromDstRgbTf * vec4(dstRgbTf, 1);
return vec3(dst4);
}
// -
mat3 XyzAFromXyzB_BradfordLinear(const vec2 xyA, const vec2 xyB) {
// This is what ICC profiles use to do whitepoint transforms,
// because ICC also requires D50 for the Profile Connection Space.
// From https://www.color.org/specification/ICC.1-2022-05.pdf
// E.3 "Linearized Bradford transformation":
const auto M_BFD = mat3{{
vec3{{0.8951, 0.2664f, -0.1614f}},
vec3{{-0.7502f, 1.7135f, 0.0367f}},
vec3{{0.0389f, -0.0685f, 1.0296f}},
}};
// NB: They use rho/gamma/beta, but we'll use R/G/B here.
const auto XYZDst = CIEXYZ_from_CIExyY(xyA); // "XYZ_W", WP of PCS
const auto XYZSrc = CIEXYZ_from_CIExyY(xyB); // "XYZ_NAW", WP of src
const auto rgbSrc = M_BFD * XYZSrc; // "RGB_SRC"
const auto rgbDst = M_BFD * XYZDst; // "RGB_PCS"
const auto rgbDstOverSrc = rgbDst / rgbSrc;
const auto M_dstOverSrc = mat3::Scale(rgbDstOverSrc);
const auto M_adapt = inverse(M_BFD) * M_dstOverSrc * M_BFD;
return M_adapt;
}
std::optional<mat4> ColorspaceTransform::ToMat4() const {
mat4 fromSrc = srcRgbTfFromSrc;
if (srcTf) return {};
fromSrc = mat4(dstRgbLinFromSrcRgbLin) * fromSrc;
if (dstTf) return {};
fromSrc = dstFromDstRgbTf * fromSrc;
return fromSrc;
}
Lut3 ColorspaceTransform::ToLut3(const ivec3 size) const {
auto lut = Lut3::Create(size);
lut.SetMap([&](const vec3& srcVal) { return DstFromSrc(srcVal); });
return lut;
}
vec3 Lut3::Sample(const vec3 in01) const {
const auto coord = vec3(size - 1) * in01;
const auto p0 = floor(coord);
const auto dp = coord - p0;
const auto ip0 = ivec3(p0);
// Trilinear
const auto f000 = Fetch(ip0 + ivec3({0, 0, 0}));
const auto f100 = Fetch(ip0 + ivec3({1, 0, 0}));
const auto f010 = Fetch(ip0 + ivec3({0, 1, 0}));
const auto f110 = Fetch(ip0 + ivec3({1, 1, 0}));
const auto f001 = Fetch(ip0 + ivec3({0, 0, 1}));
const auto f101 = Fetch(ip0 + ivec3({1, 0, 1}));
const auto f011 = Fetch(ip0 + ivec3({0, 1, 1}));
const auto f111 = Fetch(ip0 + ivec3({1, 1, 1}));
const auto fx00 = mix(f000, f100, dp.x());
const auto fx10 = mix(f010, f110, dp.x());
const auto fx01 = mix(f001, f101, dp.x());
const auto fx11 = mix(f011, f111, dp.x());
const auto fxy0 = mix(fx00, fx10, dp.y());
const auto fxy1 = mix(fx01, fx11, dp.y());
const auto fxyz = mix(fxy0, fxy1, dp.z());
return fxyz;
}
// -
ColorProfileDesc ColorProfileDesc::From(const ColorspaceDesc& cspace) {
auto ret = ColorProfileDesc{};
if (cspace.yuv) {
const auto yuvFromYcbcr = YuvFromYcbcr(cspace.yuv->ycbcr);
const auto yuvFromRgb = YuvFromRgb(cspace.yuv->yCoeffs);
const auto rgbFromYuv = inverse(yuvFromRgb);
ret.rgbFromYcbcr = mat4(rgbFromYuv) * yuvFromYcbcr;
}
if (cspace.tf) {
const size_t tableSize = 256;
auto& tableR = ret.linearFromTf.r;
tableR.resize(tableSize);
for (size_t i = 0; i < tableR.size(); i++) {
const float tfVal = i / float(tableR.size() - 1);
const float linearVal = LinearFromTf(*cspace.tf, tfVal);
tableR[i] = linearVal;
}
ret.linearFromTf.g = tableR;
ret.linearFromTf.b = tableR;
}
ret.xyzd65FromLinearRgb = XyzFromLinearRgb(cspace.chrom);
return ret;
}
// -
template <class T>
constexpr inline T NewtonEstimateX(const T x1, const T y1, const T dydx,
const T y2 = 0) {
// Estimate x s.t. y=0
// y = y0 + x*dydx;
// y0 = y - x*dydx;
// y1 - x1*dydx = y2 - x2*dydx
// x2*dydx = y2 - y1 + x1*dydx
// x2 = (y2 - y1)/dydx + x1
return (y2 - y1) / dydx + x1;
}
float GuessGamma(const std::vector<float>& vals, float exp_guess) {
// Approximate (signed) error = 0.0.
constexpr float d_exp = 0.001;
constexpr float error_tolerance = 0.001;
struct Samples {
float y1, y2;
};
const auto Sample = [&](const float exp) {
int i = -1;
auto samples = Samples{};
for (const auto& expected : vals) {
i += 1;
const auto in = i / float(vals.size() - 1);
samples.y1 += powf(in, exp) - expected;
samples.y2 += powf(in, exp + d_exp) - expected;
}
samples.y1 /= vals.size(); // Normalize by val count.
samples.y2 /= vals.size();
return samples;
};
constexpr int MAX_ITERS = 10;
for (int i = 1;; i++) {
const auto err = Sample(exp_guess);
const auto derr = err.y2 - err.y1;
exp_guess = NewtonEstimateX(exp_guess, err.y1, derr / d_exp);
// Check if we were close before, because then this last round of estimation
// should get us pretty much right on it.
if (std::abs(err.y1) < error_tolerance) {
return exp_guess;
}
if (i >= MAX_ITERS) {
printf_stderr("GuessGamma() -> %f after %i iterations (avg err %f)\n",
exp_guess, i, err.y1);
MOZ_ASSERT(false, "GuessGamma failed.");
return exp_guess;
}
}
}
// -
ColorProfileDesc ColorProfileDesc::From(const qcms_profile& qcmsProfile) {
ColorProfileDesc ret;
qcms_profile_data data = {};
qcms_profile_get_data(&qcmsProfile, &data);
auto xyzd50FromLinearRgb = mat3{};
// X contributions from [R,G,B]
xyzd50FromLinearRgb.at(0, 0) = data.red_colorant_xyzd50[0];
xyzd50FromLinearRgb.at(1, 0) = data.green_colorant_xyzd50[0];
xyzd50FromLinearRgb.at(2, 0) = data.blue_colorant_xyzd50[0];
// Y contributions from [R,G,B]
xyzd50FromLinearRgb.at(0, 1) = data.red_colorant_xyzd50[1];
xyzd50FromLinearRgb.at(1, 1) = data.green_colorant_xyzd50[1];
xyzd50FromLinearRgb.at(2, 1) = data.blue_colorant_xyzd50[1];
// Z contributions from [R,G,B]
xyzd50FromLinearRgb.at(0, 2) = data.red_colorant_xyzd50[2];
xyzd50FromLinearRgb.at(1, 2) = data.green_colorant_xyzd50[2];
xyzd50FromLinearRgb.at(2, 2) = data.blue_colorant_xyzd50[2];
const auto d65FromD50 = XyzAFromXyzB_BradfordLinear(D65, D50);
ret.xyzd65FromLinearRgb = d65FromD50 * xyzd50FromLinearRgb;
// -
const auto Fn = [&](std::vector<float>* const linearFromTf,
int32_t claimed_samples,
const qcms_color_channel channel) {
if (claimed_samples == 0) return; // No tf.
if (claimed_samples == -1) {
claimed_samples = 4096; // Ask it to generate a bunch.
claimed_samples = 256; // Ask it to generate a bunch.
}
linearFromTf->resize(AssertedCast<size_t>(claimed_samples));
const auto begin = linearFromTf->data();
qcms_profile_get_lut(&qcmsProfile, channel, begin,
begin + linearFromTf->size());
};
Fn(&ret.linearFromTf.r, data.linear_from_trc_red_samples,
qcms_color_channel::Red);
Fn(&ret.linearFromTf.b, data.linear_from_trc_blue_samples,
qcms_color_channel::Blue);
Fn(&ret.linearFromTf.g, data.linear_from_trc_green_samples,
qcms_color_channel::Green);
// -
return ret;
}
// -
ColorProfileConversionDesc ColorProfileConversionDesc::From(
const FromDesc& desc) {
const auto dstLinearRgbFromXyzd65 = inverse(desc.dst.xyzd65FromLinearRgb);
auto ret = ColorProfileConversionDesc{
.srcRgbFromSrcYuv = desc.src.rgbFromYcbcr,
.srcLinearFromSrcTf = desc.src.linearFromTf,
.dstLinearFromSrcLinear =
dstLinearRgbFromXyzd65 * desc.src.xyzd65FromLinearRgb,
.dstTfFromDstLinear = {},
};
const auto Invert = [](const std::vector<float>& linearFromTf,
std::vector<float>* const tfFromLinear) {
const auto size = linearFromTf.size();
MOZ_ASSERT(size != 1); // Less than two is uninvertable.
if (size < 2) return;
(*tfFromLinear).resize(size);
InvertLut(linearFromTf, &*tfFromLinear);
};
Invert(desc.dst.linearFromTf.r, &ret.dstTfFromDstLinear.r);
Invert(desc.dst.linearFromTf.g, &ret.dstTfFromDstLinear.g);
Invert(desc.dst.linearFromTf.b, &ret.dstTfFromDstLinear.b);
return ret;
}
} // namespace mozilla::color
|