1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "gtest/gtest.h"
#include "mozilla/gfx/2D.h"
#include "Common.h"
#include "Decoder.h"
#include "DecoderFactory.h"
#include "SourceBuffer.h"
#include "SurfaceFilters.h"
#include "SurfacePipe.h"
using namespace mozilla;
using namespace mozilla::gfx;
using namespace mozilla::image;
template <typename Func>
void WithDeinterlacingFilter(const IntSize& aSize, bool aProgressiveDisplay,
Func aFunc) {
RefPtr<image::Decoder> decoder = CreateTrivialDecoder();
ASSERT_TRUE(bool(decoder));
WithFilterPipeline(
decoder, std::forward<Func>(aFunc),
DeinterlacingConfig<uint32_t>{aProgressiveDisplay},
SurfaceConfig{decoder, aSize, SurfaceFormat::OS_RGBA, false});
}
void AssertConfiguringDeinterlacingFilterFails(const IntSize& aSize) {
RefPtr<image::Decoder> decoder = CreateTrivialDecoder();
ASSERT_TRUE(decoder != nullptr);
AssertConfiguringPipelineFails(
decoder, DeinterlacingConfig<uint32_t>{/* mProgressiveDisplay = */ true},
SurfaceConfig{decoder, aSize, SurfaceFormat::OS_RGBA, false});
}
class ImageDeinterlacingFilter : public ::testing::Test {
protected:
AutoInitializeImageLib mInit;
};
TEST_F(ImageDeinterlacingFilter, WritePixels100_100) {
WithDeinterlacingFilter(
IntSize(100, 100), /* aProgressiveDisplay = */ true,
[](image::Decoder* aDecoder, SurfaceFilter* aFilter) {
CheckWritePixels(aDecoder, aFilter,
/* aOutputRect = */ Some(IntRect(0, 0, 100, 100)),
/* aInputRect = */ Some(IntRect(0, 0, 100, 100)));
});
}
TEST_F(ImageDeinterlacingFilter, WritePixels99_99) {
WithDeinterlacingFilter(IntSize(99, 99), /* aProgressiveDisplay = */ true,
[](image::Decoder* aDecoder, SurfaceFilter* aFilter) {
CheckWritePixels(
aDecoder, aFilter,
/* aOutputRect = */ Some(IntRect(0, 0, 99, 99)),
/* aInputRect = */ Some(IntRect(0, 0, 99, 99)));
});
}
TEST_F(ImageDeinterlacingFilter, WritePixels8_8) {
WithDeinterlacingFilter(IntSize(8, 8), /* aProgressiveDisplay = */ true,
[](image::Decoder* aDecoder, SurfaceFilter* aFilter) {
CheckWritePixels(
aDecoder, aFilter,
/* aOutputRect = */ Some(IntRect(0, 0, 8, 8)),
/* aInputRect = */ Some(IntRect(0, 0, 8, 8)));
});
}
TEST_F(ImageDeinterlacingFilter, WritePixels7_7) {
WithDeinterlacingFilter(IntSize(7, 7), /* aProgressiveDisplay = */ true,
[](image::Decoder* aDecoder, SurfaceFilter* aFilter) {
CheckWritePixels(
aDecoder, aFilter,
/* aOutputRect = */ Some(IntRect(0, 0, 7, 7)),
/* aInputRect = */ Some(IntRect(0, 0, 7, 7)));
});
}
TEST_F(ImageDeinterlacingFilter, WritePixels3_3) {
WithDeinterlacingFilter(IntSize(3, 3), /* aProgressiveDisplay = */ true,
[](image::Decoder* aDecoder, SurfaceFilter* aFilter) {
CheckWritePixels(
aDecoder, aFilter,
/* aOutputRect = */ Some(IntRect(0, 0, 3, 3)),
/* aInputRect = */ Some(IntRect(0, 0, 3, 3)));
});
}
TEST_F(ImageDeinterlacingFilter, WritePixels1_1) {
WithDeinterlacingFilter(IntSize(1, 1), /* aProgressiveDisplay = */ true,
[](image::Decoder* aDecoder, SurfaceFilter* aFilter) {
CheckWritePixels(
aDecoder, aFilter,
/* aOutputRect = */ Some(IntRect(0, 0, 1, 1)),
/* aInputRect = */ Some(IntRect(0, 0, 1, 1)));
});
}
TEST_F(ImageDeinterlacingFilter, WritePixelsNonProgressiveOutput51_52) {
WithDeinterlacingFilter(
IntSize(51, 52), /* aProgressiveDisplay = */ false,
[](image::Decoder* aDecoder, SurfaceFilter* aFilter) {
// Fill the image. The output should be green for even rows and red for
// odd rows but we need to write the rows in the order that the
// deinterlacer expects them.
uint32_t count = 0;
auto result = aFilter->WritePixels<uint32_t>([&]() {
uint32_t row = count / 51; // Integer division.
++count;
// Note that we use a switch statement here, even though it's quite
// verbose, because it's useful to have the mappings between input and
// output rows available when debugging these tests.
switch (row) {
// First pass. Output rows are positioned at 8n + 0.
case 0: // Output row 0.
case 1: // Output row 8.
case 2: // Output row 16.
case 3: // Output row 24.
case 4: // Output row 32.
case 5: // Output row 40.
case 6: // Output row 48.
return AsVariant(BGRAColor::Green().AsPixel());
// Second pass. Rows are positioned at 8n + 4.
case 7: // Output row 4.
case 8: // Output row 12.
case 9: // Output row 20.
case 10: // Output row 28.
case 11: // Output row 36.
case 12: // Output row 44.
return AsVariant(BGRAColor::Green().AsPixel());
// Third pass. Rows are positioned at 4n + 2.
case 13: // Output row 2.
case 14: // Output row 6.
case 15: // Output row 10.
case 16: // Output row 14.
case 17: // Output row 18.
case 18: // Output row 22.
case 19: // Output row 26.
case 20: // Output row 30.
case 21: // Output row 34.
case 22: // Output row 38.
case 23: // Output row 42.
case 24: // Output row 46.
case 25: // Output row 50.
return AsVariant(BGRAColor::Green().AsPixel());
// Fourth pass. Rows are positioned at 2n + 1.
case 26: // Output row 1.
case 27: // Output row 3.
case 28: // Output row 5.
case 29: // Output row 7.
case 30: // Output row 9.
case 31: // Output row 11.
case 32: // Output row 13.
case 33: // Output row 15.
case 34: // Output row 17.
case 35: // Output row 19.
case 36: // Output row 21.
case 37: // Output row 23.
case 38: // Output row 25.
case 39: // Output row 27.
case 40: // Output row 29.
case 41: // Output row 31.
case 42: // Output row 33.
case 43: // Output row 35.
case 44: // Output row 37.
case 45: // Output row 39.
case 46: // Output row 41.
case 47: // Output row 43.
case 48: // Output row 45.
case 49: // Output row 47.
case 50: // Output row 49.
case 51: // Output row 51.
return AsVariant(BGRAColor::Red().AsPixel());
default:
MOZ_CRASH("Unexpected row");
}
});
EXPECT_EQ(WriteState::FINISHED, result);
EXPECT_EQ(51u * 52u, count);
AssertCorrectPipelineFinalState(aFilter, IntRect(0, 0, 51, 52),
IntRect(0, 0, 51, 52));
// Check that the generated image is correct. As mentioned above, we
// expect even rows to be green and odd rows to be red.
RawAccessFrameRef currentFrame = aDecoder->GetCurrentFrameRef();
RefPtr<SourceSurface> surface = currentFrame->GetSourceSurface();
for (uint32_t row = 0; row < 52; ++row) {
EXPECT_TRUE(RowsAreSolidColor(
surface, row, 1,
row % 2 == 0 ? BGRAColor::Green() : BGRAColor::Red()));
}
});
}
TEST_F(ImageDeinterlacingFilter, WritePixelsOutput20_20) {
WithDeinterlacingFilter(
IntSize(20, 20), /* aProgressiveDisplay = */ true,
[](image::Decoder* aDecoder, SurfaceFilter* aFilter) {
// Fill the image. The output should be green for even rows and red for
// odd rows but we need to write the rows in the order that the
// deinterlacer expects them.
uint32_t count = 0;
auto result = aFilter->WritePixels<uint32_t>([&]() {
uint32_t row = count / 20; // Integer division.
++count;
// Note that we use a switch statement here, even though it's quite
// verbose, because it's useful to have the mappings between input and
// output rows available when debugging these tests.
switch (row) {
// First pass. Output rows are positioned at 8n + 0.
case 0: // Output row 0.
case 1: // Output row 8.
case 2: // Output row 16.
return AsVariant(BGRAColor::Green().AsPixel());
// Second pass. Rows are positioned at 8n + 4.
case 3: // Output row 4.
case 4: // Output row 12.
return AsVariant(BGRAColor::Green().AsPixel());
// Third pass. Rows are positioned at 4n + 2.
case 5: // Output row 2.
case 6: // Output row 6.
case 7: // Output row 10.
case 8: // Output row 14.
case 9: // Output row 18.
return AsVariant(BGRAColor::Green().AsPixel());
// Fourth pass. Rows are positioned at 2n + 1.
case 10: // Output row 1.
case 11: // Output row 3.
case 12: // Output row 5.
case 13: // Output row 7.
case 14: // Output row 9.
case 15: // Output row 11.
case 16: // Output row 13.
case 17: // Output row 15.
case 18: // Output row 17.
case 19: // Output row 19.
return AsVariant(BGRAColor::Red().AsPixel());
default:
MOZ_CRASH("Unexpected row");
}
});
EXPECT_EQ(WriteState::FINISHED, result);
EXPECT_EQ(20u * 20u, count);
AssertCorrectPipelineFinalState(aFilter, IntRect(0, 0, 20, 20),
IntRect(0, 0, 20, 20));
// Check that the generated image is correct. As mentioned above, we
// expect even rows to be green and odd rows to be red.
RawAccessFrameRef currentFrame = aDecoder->GetCurrentFrameRef();
RefPtr<SourceSurface> surface = currentFrame->GetSourceSurface();
for (uint32_t row = 0; row < 20; ++row) {
EXPECT_TRUE(RowsAreSolidColor(
surface, row, 1,
row % 2 == 0 ? BGRAColor::Green() : BGRAColor::Red()));
}
});
}
TEST_F(ImageDeinterlacingFilter, WritePixelsOutput7_7) {
WithDeinterlacingFilter(
IntSize(7, 7), /* aProgressiveDisplay = */ true,
[](image::Decoder* aDecoder, SurfaceFilter* aFilter) {
// Fill the image. The output should be a repeating pattern of two green
// rows followed by two red rows but we need to write the rows in the
// order that the deinterlacer expects them.
uint32_t count = 0;
auto result = aFilter->WritePixels<uint32_t>([&]() {
uint32_t row = count / 7; // Integer division.
++count;
switch (row) {
// First pass. Output rows are positioned at 8n + 0.
case 0: // Output row 0.
return AsVariant(BGRAColor::Green().AsPixel());
// Second pass. Rows are positioned at 8n + 4.
case 1: // Output row 4.
return AsVariant(BGRAColor::Green().AsPixel());
// Third pass. Rows are positioned at 4n + 2.
case 2: // Output row 2.
case 3: // Output row 6.
return AsVariant(BGRAColor::Red().AsPixel());
// Fourth pass. Rows are positioned at 2n + 1.
case 4: // Output row 1.
return AsVariant(BGRAColor::Green().AsPixel());
case 5: // Output row 3.
return AsVariant(BGRAColor::Red().AsPixel());
case 6: // Output row 5.
return AsVariant(BGRAColor::Green().AsPixel());
default:
MOZ_CRASH("Unexpected row");
}
});
EXPECT_EQ(WriteState::FINISHED, result);
EXPECT_EQ(7u * 7u, count);
AssertCorrectPipelineFinalState(aFilter, IntRect(0, 0, 7, 7),
IntRect(0, 0, 7, 7));
// Check that the generated image is correct. As mentioned above, we
// expect two green rows, followed by two red rows, then two green rows,
// etc.
RawAccessFrameRef currentFrame = aDecoder->GetCurrentFrameRef();
RefPtr<SourceSurface> surface = currentFrame->GetSourceSurface();
for (uint32_t row = 0; row < 7; ++row) {
BGRAColor color = row == 0 || row == 1 || row == 4 || row == 5
? BGRAColor::Green()
: BGRAColor::Red();
EXPECT_TRUE(RowsAreSolidColor(surface, row, 1, color));
}
});
}
TEST_F(ImageDeinterlacingFilter, WritePixelsOutput3_3) {
WithDeinterlacingFilter(
IntSize(3, 3), /* aProgressiveDisplay = */ true,
[](image::Decoder* aDecoder, SurfaceFilter* aFilter) {
// Fill the image. The output should be green, red, green in that order,
// but we need to write the rows in the order that the deinterlacer
// expects them.
uint32_t count = 0;
auto result = aFilter->WritePixels<uint32_t>([&]() {
uint32_t row = count / 3; // Integer division.
++count;
switch (row) {
// First pass. Output rows are positioned at 8n + 0.
case 0: // Output row 0.
return AsVariant(BGRAColor::Green().AsPixel());
// Second pass. Rows are positioned at 8n + 4.
// No rows for this pass.
// Third pass. Rows are positioned at 4n + 2.
case 1: // Output row 2.
return AsVariant(BGRAColor::Green().AsPixel());
// Fourth pass. Rows are positioned at 2n + 1.
case 2: // Output row 1.
return AsVariant(BGRAColor::Red().AsPixel());
default:
MOZ_CRASH("Unexpected row");
}
});
EXPECT_EQ(WriteState::FINISHED, result);
EXPECT_EQ(3u * 3u, count);
AssertCorrectPipelineFinalState(aFilter, IntRect(0, 0, 3, 3),
IntRect(0, 0, 3, 3));
// Check that the generated image is correct. As mentioned above, we
// expect green, red, green in that order.
RawAccessFrameRef currentFrame = aDecoder->GetCurrentFrameRef();
RefPtr<SourceSurface> surface = currentFrame->GetSourceSurface();
for (uint32_t row = 0; row < 3; ++row) {
EXPECT_TRUE(RowsAreSolidColor(
surface, row, 1,
row == 0 || row == 2 ? BGRAColor::Green() : BGRAColor::Red()));
}
});
}
TEST_F(ImageDeinterlacingFilter, WritePixelsOutput1_1) {
WithDeinterlacingFilter(
IntSize(1, 1), /* aProgressiveDisplay = */ true,
[](image::Decoder* aDecoder, SurfaceFilter* aFilter) {
// Fill the image. The output should be a single red row.
uint32_t count = 0;
auto result = aFilter->WritePixels<uint32_t>([&]() {
++count;
return AsVariant(BGRAColor::Red().AsPixel());
});
EXPECT_EQ(WriteState::FINISHED, result);
EXPECT_EQ(1u, count);
AssertCorrectPipelineFinalState(aFilter, IntRect(0, 0, 1, 1),
IntRect(0, 0, 1, 1));
// Check that the generated image is correct. As mentioned above, we
// expect a single red row.
RawAccessFrameRef currentFrame = aDecoder->GetCurrentFrameRef();
RefPtr<SourceSurface> surface = currentFrame->GetSourceSurface();
EXPECT_TRUE(RowsAreSolidColor(surface, 0, 1, BGRAColor::Red()));
});
}
void WriteRowAndCheckInterlacerOutput(image::Decoder* aDecoder,
SurfaceFilter* aFilter, BGRAColor aColor,
WriteState aNextState,
OrientedIntRect aInvalidRect,
uint32_t aFirstHaeberliRow,
uint32_t aLastHaeberliRow) {
uint32_t count = 0;
auto result = aFilter->WritePixels<uint32_t>([&]() -> NextPixel<uint32_t> {
if (count < 7) {
++count;
return AsVariant(aColor.AsPixel());
}
return AsVariant(WriteState::NEED_MORE_DATA);
});
EXPECT_EQ(aNextState, result);
EXPECT_EQ(7u, count);
// Assert that we got the expected invalidation region.
Maybe<SurfaceInvalidRect> invalidRect = aFilter->TakeInvalidRect();
EXPECT_TRUE(invalidRect.isSome());
EXPECT_EQ(aInvalidRect, invalidRect->mInputSpaceRect);
EXPECT_EQ(aInvalidRect, invalidRect->mOutputSpaceRect);
// Check that the portion of the image generated so far is correct. The rows
// from aFirstHaeberliRow to aLastHaeberliRow should be filled with aColor.
// Note that this is not the same as the set of rows in aInvalidRect, because
// after writing a row the deinterlacer seeks to the next row to write, which
// may involve copying previously-written rows in the buffer to the output
// even though they don't change in this pass.
RawAccessFrameRef currentFrame = aDecoder->GetCurrentFrameRef();
RefPtr<SourceSurface> surface = currentFrame->GetSourceSurface();
for (uint32_t row = aFirstHaeberliRow; row <= aLastHaeberliRow; ++row) {
EXPECT_TRUE(RowsAreSolidColor(surface, row, 1, aColor));
}
}
TEST_F(ImageDeinterlacingFilter, WritePixelsIntermediateOutput7_7) {
WithDeinterlacingFilter(
IntSize(7, 7), /* aProgressiveDisplay = */ true,
[](image::Decoder* aDecoder, SurfaceFilter* aFilter) {
// Fill the image. The output should be a repeating pattern of two green
// rows followed by two red rows but we need to write the rows in the
// order that the deinterlacer expects them.
// First pass. Output rows are positioned at 8n + 0.
// Output row 0. The invalid rect is the entire image because this is
// the end of the first pass.
WriteRowAndCheckInterlacerOutput(aDecoder, aFilter, BGRAColor::Green(),
WriteState::NEED_MORE_DATA,
OrientedIntRect(0, 0, 7, 7), 0, 4);
// Second pass. Rows are positioned at 8n + 4.
// Output row 4. The invalid rect is the entire image because this is
// the end of the second pass.
WriteRowAndCheckInterlacerOutput(aDecoder, aFilter, BGRAColor::Green(),
WriteState::NEED_MORE_DATA,
OrientedIntRect(0, 0, 7, 7), 1, 4);
// Third pass. Rows are positioned at 4n + 2.
// Output row 2. The invalid rect contains the Haeberli rows for this
// output row (rows 2 and 3) as well as the rows that we copy from
// previous passes when seeking to the next output row (rows 4 and 5).
WriteRowAndCheckInterlacerOutput(aDecoder, aFilter, BGRAColor::Red(),
WriteState::NEED_MORE_DATA,
OrientedIntRect(0, 2, 7, 4), 2, 3);
// Output row 6. The invalid rect is the entire image because this is
// the end of the third pass.
WriteRowAndCheckInterlacerOutput(aDecoder, aFilter, BGRAColor::Red(),
WriteState::NEED_MORE_DATA,
OrientedIntRect(0, 0, 7, 7), 6, 6);
// Fourth pass. Rows are positioned at 2n + 1.
// Output row 1. The invalid rect contains the Haeberli rows for this
// output row (just row 1) as well as the rows that we copy from
// previous passes when seeking to the next output row (row 2).
WriteRowAndCheckInterlacerOutput(aDecoder, aFilter, BGRAColor::Green(),
WriteState::NEED_MORE_DATA,
OrientedIntRect(0, 1, 7, 2), 1, 1);
// Output row 3. The invalid rect contains the Haeberli rows for this
// output row (just row 3) as well as the rows that we copy from
// previous passes when seeking to the next output row (row 4).
WriteRowAndCheckInterlacerOutput(aDecoder, aFilter, BGRAColor::Red(),
WriteState::NEED_MORE_DATA,
OrientedIntRect(0, 3, 7, 2), 3, 3);
// Output row 5. The invalid rect contains the Haeberli rows for this
// output row (just row 5) as well as the rows that we copy from
// previous passes when seeking to the next output row (row 6).
WriteRowAndCheckInterlacerOutput(aDecoder, aFilter, BGRAColor::Green(),
WriteState::FINISHED,
OrientedIntRect(0, 5, 7, 2), 5, 5);
// Assert that we're in the expected final state.
EXPECT_TRUE(aFilter->IsSurfaceFinished());
Maybe<SurfaceInvalidRect> invalidRect = aFilter->TakeInvalidRect();
EXPECT_TRUE(invalidRect.isNothing());
// Check that the generated image is correct. As mentioned above, we
// expect two green rows, followed by two red rows, then two green rows,
// etc.
RawAccessFrameRef currentFrame = aDecoder->GetCurrentFrameRef();
RefPtr<SourceSurface> surface = currentFrame->GetSourceSurface();
for (uint32_t row = 0; row < 7; ++row) {
BGRAColor color = row == 0 || row == 1 || row == 4 || row == 5
? BGRAColor::Green()
: BGRAColor::Red();
EXPECT_TRUE(RowsAreSolidColor(surface, row, 1, color));
}
});
}
TEST_F(ImageDeinterlacingFilter,
WritePixelsNonProgressiveIntermediateOutput7_7) {
WithDeinterlacingFilter(
IntSize(7, 7), /* aProgressiveDisplay = */ false,
[](image::Decoder* aDecoder, SurfaceFilter* aFilter) {
// Fill the image. The output should be a repeating pattern of two green
// rows followed by two red rows but we need to write the rows in the
// order that the deinterlacer expects them.
// First pass. Output rows are positioned at 8n + 0.
// Output row 0. The invalid rect is the entire image because this is
// the end of the first pass.
WriteRowAndCheckInterlacerOutput(aDecoder, aFilter, BGRAColor::Green(),
WriteState::NEED_MORE_DATA,
OrientedIntRect(0, 0, 7, 7), 0, 0);
// Second pass. Rows are positioned at 8n + 4.
// Output row 4. The invalid rect is the entire image because this is
// the end of the second pass.
WriteRowAndCheckInterlacerOutput(aDecoder, aFilter, BGRAColor::Green(),
WriteState::NEED_MORE_DATA,
OrientedIntRect(0, 0, 7, 7), 4, 4);
// Third pass. Rows are positioned at 4n + 2.
// Output row 2. The invalid rect contains the Haeberli rows for this
// output row (rows 2 and 3) as well as the rows that we copy from
// previous passes when seeking to the next output row (rows 4 and 5).
WriteRowAndCheckInterlacerOutput(aDecoder, aFilter, BGRAColor::Red(),
WriteState::NEED_MORE_DATA,
OrientedIntRect(0, 2, 7, 4), 2, 2);
// Output row 6. The invalid rect is the entire image because this is
// the end of the third pass.
WriteRowAndCheckInterlacerOutput(aDecoder, aFilter, BGRAColor::Red(),
WriteState::NEED_MORE_DATA,
OrientedIntRect(0, 0, 7, 7), 6, 6);
// Fourth pass. Rows are positioned at 2n + 1.
// Output row 1. The invalid rect contains the Haeberli rows for this
// output row (just row 1) as well as the rows that we copy from
// previous passes when seeking to the next output row (row 2).
WriteRowAndCheckInterlacerOutput(aDecoder, aFilter, BGRAColor::Green(),
WriteState::NEED_MORE_DATA,
OrientedIntRect(0, 1, 7, 2), 1, 1);
// Output row 3. The invalid rect contains the Haeberli rows for this
// output row (just row 3) as well as the rows that we copy from
// previous passes when seeking to the next output row (row 4).
WriteRowAndCheckInterlacerOutput(aDecoder, aFilter, BGRAColor::Red(),
WriteState::NEED_MORE_DATA,
OrientedIntRect(0, 3, 7, 2), 3, 3);
// Output row 5. The invalid rect contains the Haeberli rows for this
// output row (just row 5) as well as the rows that we copy from
// previous passes when seeking to the next output row (row 6).
WriteRowAndCheckInterlacerOutput(aDecoder, aFilter, BGRAColor::Green(),
WriteState::FINISHED,
OrientedIntRect(0, 5, 7, 2), 5, 5);
// Assert that we're in the expected final state.
EXPECT_TRUE(aFilter->IsSurfaceFinished());
Maybe<SurfaceInvalidRect> invalidRect = aFilter->TakeInvalidRect();
EXPECT_TRUE(invalidRect.isNothing());
// Check that the generated image is correct. As mentioned above, we
// expect two green rows, followed by two red rows, then two green rows,
// etc.
RawAccessFrameRef currentFrame = aDecoder->GetCurrentFrameRef();
RefPtr<SourceSurface> surface = currentFrame->GetSourceSurface();
for (uint32_t row = 0; row < 7; ++row) {
BGRAColor color = row == 0 || row == 1 || row == 4 || row == 5
? BGRAColor::Green()
: BGRAColor::Red();
EXPECT_TRUE(RowsAreSolidColor(surface, row, 1, color));
}
});
}
TEST_F(ImageDeinterlacingFilter, DeinterlacingFailsFor0_0) {
// A 0x0 input size is invalid, so configuration should fail.
AssertConfiguringDeinterlacingFilterFails(IntSize(0, 0));
}
TEST_F(ImageDeinterlacingFilter, DeinterlacingFailsForMinus1_Minus1) {
// A negative input size is invalid, so configuration should fail.
AssertConfiguringDeinterlacingFilterFails(IntSize(-1, -1));
}
|