1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
|
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include <algorithm>
#include <cstdint>
#include <utility>
#include "Common.h"
#include "SourceBuffer.h"
#include "SurfaceCache.h"
#include "gtest/gtest.h"
#include "nsIInputStream.h"
using namespace mozilla;
using namespace mozilla::image;
using std::min;
void ExpectChunkAndByteCount(const SourceBufferIterator& aIterator,
uint32_t aChunks, size_t aBytes) {
EXPECT_EQ(aChunks, aIterator.ChunkCount());
EXPECT_EQ(aBytes, aIterator.ByteCount());
}
void ExpectRemainingBytes(const SourceBufferIterator& aIterator,
size_t aBytes) {
EXPECT_TRUE(aIterator.RemainingBytesIsNoMoreThan(aBytes));
EXPECT_TRUE(aIterator.RemainingBytesIsNoMoreThan(aBytes + 1));
if (aBytes > 0) {
EXPECT_FALSE(aIterator.RemainingBytesIsNoMoreThan(0));
EXPECT_FALSE(aIterator.RemainingBytesIsNoMoreThan(aBytes - 1));
}
}
char GenerateByte(size_t aIndex) {
uint8_t byte = aIndex % 256;
return *reinterpret_cast<char*>(&byte);
}
void GenerateData(char* aOutput, size_t aOffset, size_t aLength) {
for (size_t i = 0; i < aLength; ++i) {
aOutput[i] = GenerateByte(aOffset + i);
}
}
void GenerateData(char* aOutput, size_t aLength) {
GenerateData(aOutput, 0, aLength);
}
void CheckData(const char* aData, size_t aOffset, size_t aLength) {
for (size_t i = 0; i < aLength; ++i) {
ASSERT_EQ(GenerateByte(aOffset + i), aData[i]);
}
}
enum class AdvanceMode { eAdvanceAsMuchAsPossible, eAdvanceByLengthExactly };
class ImageSourceBuffer : public ::testing::Test {
public:
ImageSourceBuffer()
: mSourceBuffer(new SourceBuffer),
mExpectNoResume(new ExpectNoResume),
mCountResumes(new CountResumes) {
GenerateData(mData, sizeof(mData));
EXPECT_FALSE(mSourceBuffer->IsComplete());
}
protected:
void CheckedAppendToBuffer(const char* aData, size_t aLength) {
EXPECT_NS_SUCCEEDED(mSourceBuffer->Append(aData, aLength));
}
void CheckedAppendToBufferLastByteForLength(size_t aLength) {
const char lastByte = GenerateByte(aLength);
CheckedAppendToBuffer(&lastByte, 1);
}
void CheckedAppendToBufferInChunks(size_t aChunkLength, size_t aTotalLength) {
char* data = new char[aChunkLength];
size_t bytesWritten = 0;
while (bytesWritten < aTotalLength) {
GenerateData(data, bytesWritten, aChunkLength);
size_t toWrite = min(aChunkLength, aTotalLength - bytesWritten);
CheckedAppendToBuffer(data, toWrite);
bytesWritten += toWrite;
}
delete[] data;
}
void CheckedCompleteBuffer(nsresult aCompletionStatus = NS_OK) {
mSourceBuffer->Complete(aCompletionStatus);
EXPECT_TRUE(mSourceBuffer->IsComplete());
}
void CheckedCompleteBuffer(SourceBufferIterator& aIterator, size_t aLength,
nsresult aCompletionStatus = NS_OK) {
CheckedCompleteBuffer(aCompletionStatus);
ExpectRemainingBytes(aIterator, aLength);
}
void CheckedAdvanceIteratorStateOnly(
SourceBufferIterator& aIterator, size_t aLength, uint32_t aChunks,
size_t aTotalLength,
AdvanceMode aAdvanceMode = AdvanceMode::eAdvanceAsMuchAsPossible) {
const size_t advanceBy =
aAdvanceMode == AdvanceMode::eAdvanceAsMuchAsPossible ? SIZE_MAX
: aLength;
auto state = aIterator.AdvanceOrScheduleResume(advanceBy, mExpectNoResume);
ASSERT_EQ(SourceBufferIterator::READY, state);
EXPECT_TRUE(aIterator.Data());
EXPECT_EQ(aLength, aIterator.Length());
ExpectChunkAndByteCount(aIterator, aChunks, aTotalLength);
}
void CheckedAdvanceIteratorStateOnly(SourceBufferIterator& aIterator,
size_t aLength) {
CheckedAdvanceIteratorStateOnly(aIterator, aLength, 1, aLength);
}
void CheckedAdvanceIterator(
SourceBufferIterator& aIterator, size_t aLength, uint32_t aChunks,
size_t aTotalLength,
AdvanceMode aAdvanceMode = AdvanceMode::eAdvanceAsMuchAsPossible) {
// Check that the iterator is in the expected state.
CheckedAdvanceIteratorStateOnly(aIterator, aLength, aChunks, aTotalLength,
aAdvanceMode);
// Check that we read the expected data. To do this, we need to compute our
// offset in the SourceBuffer, but fortunately that's pretty easy: it's the
// total number of bytes the iterator has advanced through, minus the length
// of the current chunk.
const size_t offset = aIterator.ByteCount() - aIterator.Length();
CheckData(aIterator.Data(), offset, aIterator.Length());
}
void CheckedAdvanceIterator(SourceBufferIterator& aIterator, size_t aLength) {
CheckedAdvanceIterator(aIterator, aLength, 1, aLength);
}
void CheckIteratorMustWait(SourceBufferIterator& aIterator,
IResumable* aOnResume) {
auto state = aIterator.AdvanceOrScheduleResume(1, aOnResume);
EXPECT_EQ(SourceBufferIterator::WAITING, state);
}
void CheckIteratorIsComplete(SourceBufferIterator& aIterator,
uint32_t aChunks, size_t aTotalLength,
nsresult aCompletionStatus = NS_OK) {
ASSERT_TRUE(mSourceBuffer->IsComplete());
auto state = aIterator.AdvanceOrScheduleResume(1, mExpectNoResume);
ASSERT_EQ(SourceBufferIterator::COMPLETE, state);
EXPECT_EQ(aCompletionStatus, aIterator.CompletionStatus());
ExpectRemainingBytes(aIterator, 0);
ExpectChunkAndByteCount(aIterator, aChunks, aTotalLength);
}
void CheckIteratorIsComplete(SourceBufferIterator& aIterator,
size_t aTotalLength) {
CheckIteratorIsComplete(aIterator, 1, aTotalLength);
}
AutoInitializeImageLib mInit;
char mData[9];
RefPtr<SourceBuffer> mSourceBuffer;
RefPtr<ExpectNoResume> mExpectNoResume;
RefPtr<CountResumes> mCountResumes;
};
TEST_F(ImageSourceBuffer, InitialState) {
SourceBufferIterator iterator = mSourceBuffer->Iterator();
// RemainingBytesIsNoMoreThan() should always return false in the initial
// state, since we can't know the answer until Complete() has been called.
EXPECT_FALSE(iterator.RemainingBytesIsNoMoreThan(0));
EXPECT_FALSE(iterator.RemainingBytesIsNoMoreThan(SIZE_MAX));
// We haven't advanced our iterator at all, so its counters should be zero.
ExpectChunkAndByteCount(iterator, 0, 0);
// Attempt to advance; we should fail, and end up in the WAITING state. We
// expect no resumes because we don't actually append anything to the
// SourceBuffer in this test.
CheckIteratorMustWait(iterator, mExpectNoResume);
}
TEST_F(ImageSourceBuffer, ZeroLengthBufferAlwaysFails) {
SourceBufferIterator iterator = mSourceBuffer->Iterator();
// Complete the buffer without writing to it, providing a successful
// completion status.
CheckedCompleteBuffer(iterator, 0);
// Completing a buffer without writing to it results in an automatic failure;
// make sure that the actual completion status we get from the iterator
// reflects this.
CheckIteratorIsComplete(iterator, 0, 0, NS_ERROR_FAILURE);
}
TEST_F(ImageSourceBuffer, CompleteSuccess) {
SourceBufferIterator iterator = mSourceBuffer->Iterator();
// Write a single byte to the buffer and complete the buffer. (We have to
// write at least one byte because completing a zero length buffer always
// fails; see the ZeroLengthBufferAlwaysFails test.)
CheckedAppendToBuffer(mData, 1);
CheckedCompleteBuffer(iterator, 1);
// We should be able to advance once (to read the single byte) and then should
// reach the COMPLETE state with a successful status.
CheckedAdvanceIterator(iterator, 1);
CheckIteratorIsComplete(iterator, 1);
}
TEST_F(ImageSourceBuffer, CompleteFailure) {
SourceBufferIterator iterator = mSourceBuffer->Iterator();
// Write a single byte to the buffer and complete the buffer. (We have to
// write at least one byte because completing a zero length buffer always
// fails; see the ZeroLengthBufferAlwaysFails test.)
CheckedAppendToBuffer(mData, 1);
CheckedCompleteBuffer(iterator, 1, NS_ERROR_FAILURE);
// Advance the iterator. Because a failing status is propagated to the
// iterator as soon as it advances, we won't be able to read the single byte
// that we wrote above; we go directly into the COMPLETE state.
CheckIteratorIsComplete(iterator, 0, 0, NS_ERROR_FAILURE);
}
TEST_F(ImageSourceBuffer, Append) {
SourceBufferIterator iterator = mSourceBuffer->Iterator();
// Write test data to the buffer.
EXPECT_NS_SUCCEEDED(mSourceBuffer->ExpectLength(sizeof(mData)));
CheckedAppendToBuffer(mData, sizeof(mData));
CheckedCompleteBuffer(iterator, sizeof(mData));
// Verify that we can read it back via the iterator, and that the final state
// is what we expect.
CheckedAdvanceIterator(iterator, sizeof(mData));
CheckIteratorIsComplete(iterator, sizeof(mData));
}
TEST_F(ImageSourceBuffer, HugeAppendFails) {
SourceBufferIterator iterator = mSourceBuffer->Iterator();
// We should fail to append anything bigger than what the SurfaceCache can
// hold, so use the SurfaceCache's maximum capacity to calculate what a
// "massive amount of data" (see below) consists of on this platform.
ASSERT_LT(SurfaceCache::MaximumCapacity(), SIZE_MAX);
const size_t hugeSize = SurfaceCache::MaximumCapacity() + 1;
// Attempt to write a massive amount of data and verify that it fails. (We'd
// get a buffer overrun during the test if it succeeds, but if it succeeds
// that's the least of our problems.)
EXPECT_NS_FAILED(mSourceBuffer->Append(mData, hugeSize));
EXPECT_TRUE(mSourceBuffer->IsComplete());
CheckIteratorIsComplete(iterator, 0, 0, NS_ERROR_OUT_OF_MEMORY);
}
TEST_F(ImageSourceBuffer, AppendFromInputStream) {
SourceBufferIterator iterator = mSourceBuffer->Iterator();
// Construct an input stream with some arbitrary data. (We use test data from
// one of the decoder tests.)
nsCOMPtr<nsIInputStream> inputStream = LoadFile(GreenPNGTestCase().mPath);
ASSERT_TRUE(inputStream != nullptr);
// Figure out how much data we have.
uint64_t length;
ASSERT_NS_SUCCEEDED(inputStream->Available(&length));
// Write test data to the buffer.
EXPECT_TRUE(
NS_SUCCEEDED(mSourceBuffer->AppendFromInputStream(inputStream, length)));
CheckedCompleteBuffer(iterator, length);
// Verify that the iterator sees the appropriate amount of data.
CheckedAdvanceIteratorStateOnly(iterator, length);
CheckIteratorIsComplete(iterator, length);
}
TEST_F(ImageSourceBuffer, AppendAfterComplete) {
SourceBufferIterator iterator = mSourceBuffer->Iterator();
// Write test data to the buffer.
EXPECT_NS_SUCCEEDED(mSourceBuffer->ExpectLength(sizeof(mData)));
CheckedAppendToBuffer(mData, sizeof(mData));
CheckedCompleteBuffer(iterator, sizeof(mData));
// Verify that we can read it back via the iterator, and that the final state
// is what we expect.
CheckedAdvanceIterator(iterator, sizeof(mData));
CheckIteratorIsComplete(iterator, sizeof(mData));
// Write more data to the completed buffer.
EXPECT_NS_FAILED(mSourceBuffer->Append(mData, sizeof(mData)));
// Try to read with a new iterator and verify that the new data got ignored.
SourceBufferIterator iterator2 = mSourceBuffer->Iterator();
CheckedAdvanceIterator(iterator2, sizeof(mData));
CheckIteratorIsComplete(iterator2, sizeof(mData));
}
TEST_F(ImageSourceBuffer, MinChunkCapacity) {
SourceBufferIterator iterator = mSourceBuffer->Iterator();
// Write test data to the buffer using many small appends. Since
// ExpectLength() isn't being called, we should be able to write up to
// SourceBuffer::MIN_CHUNK_CAPACITY bytes without a second chunk being
// allocated.
CheckedAppendToBufferInChunks(10, SourceBuffer::MIN_CHUNK_CAPACITY);
// Verify that the iterator sees the appropriate amount of data.
CheckedAdvanceIterator(iterator, SourceBuffer::MIN_CHUNK_CAPACITY);
// Write one more byte; we expect to see that it triggers an allocation.
CheckedAppendToBufferLastByteForLength(SourceBuffer::MIN_CHUNK_CAPACITY);
CheckedCompleteBuffer(iterator, 1);
// Verify that the iterator sees the new byte and a new chunk has been
// allocated.
CheckedAdvanceIterator(iterator, 1, 2, SourceBuffer::MIN_CHUNK_CAPACITY + 1);
CheckIteratorIsComplete(iterator, 2, SourceBuffer::MIN_CHUNK_CAPACITY + 1);
}
TEST_F(ImageSourceBuffer, ExpectLengthAllocatesRequestedCapacity) {
SourceBufferIterator iterator = mSourceBuffer->Iterator();
// Write SourceBuffer::MIN_CHUNK_CAPACITY bytes of test data to the buffer,
// but call ExpectLength() first to make SourceBuffer expect only a single
// byte. We expect this to still result in two chunks, because we trust the
// initial guess of ExpectLength() but after that it will only allocate chunks
// of at least MIN_CHUNK_CAPACITY bytes.
EXPECT_NS_SUCCEEDED(mSourceBuffer->ExpectLength(1));
CheckedAppendToBufferInChunks(10, SourceBuffer::MIN_CHUNK_CAPACITY);
CheckedCompleteBuffer(iterator, SourceBuffer::MIN_CHUNK_CAPACITY);
// Verify that the iterator sees a first chunk with 1 byte, and a second chunk
// with the remaining data.
CheckedAdvanceIterator(iterator, 1, 1, 1);
CheckedAdvanceIterator(iterator, SourceBuffer::MIN_CHUNK_CAPACITY - 1, 2,
SourceBuffer::MIN_CHUNK_CAPACITY);
CheckIteratorIsComplete(iterator, 2, SourceBuffer::MIN_CHUNK_CAPACITY);
}
TEST_F(ImageSourceBuffer, ExpectLengthGrowsAboveMinCapacity) {
SourceBufferIterator iterator = mSourceBuffer->Iterator();
// Write two times SourceBuffer::MIN_CHUNK_CAPACITY bytes of test data to the
// buffer, calling ExpectLength() with the correct length first. We expect
// this to result in only one chunk, because ExpectLength() allows us to
// allocate a larger first chunk than MIN_CHUNK_CAPACITY bytes.
const size_t length = 2 * SourceBuffer::MIN_CHUNK_CAPACITY;
EXPECT_NS_SUCCEEDED(mSourceBuffer->ExpectLength(length));
CheckedAppendToBufferInChunks(10, length);
// Verify that the iterator sees a single chunk.
CheckedAdvanceIterator(iterator, length);
// Write one more byte; we expect to see that it triggers an allocation.
CheckedAppendToBufferLastByteForLength(length);
CheckedCompleteBuffer(iterator, 1);
// Verify that the iterator sees the new byte and a new chunk has been
// allocated.
CheckedAdvanceIterator(iterator, 1, 2, length + 1);
CheckIteratorIsComplete(iterator, 2, length + 1);
}
TEST_F(ImageSourceBuffer, HugeExpectLengthFails) {
SourceBufferIterator iterator = mSourceBuffer->Iterator();
// ExpectLength() should fail if the length is bigger than what the
// SurfaceCache can hold, so use the SurfaceCache's maximum capacity to
// calculate what a "massive amount of data" (see below) consists of on this
// platform.
ASSERT_LT(SurfaceCache::MaximumCapacity(), SIZE_MAX);
const size_t hugeSize = SurfaceCache::MaximumCapacity() + 1;
// Attempt to write a massive amount of data and verify that it fails. (We'd
// get a buffer overrun during the test if it succeeds, but if it succeeds
// that's the least of our problems.)
EXPECT_NS_FAILED(mSourceBuffer->ExpectLength(hugeSize));
EXPECT_TRUE(mSourceBuffer->IsComplete());
CheckIteratorIsComplete(iterator, 0, 0, NS_ERROR_INVALID_ARG);
}
TEST_F(ImageSourceBuffer, LargeAppendsAllocateOnlyOneChunk) {
SourceBufferIterator iterator = mSourceBuffer->Iterator();
// Write two times SourceBuffer::MIN_CHUNK_CAPACITY bytes of test data to the
// buffer in a single Append() call. We expect this to result in only one
// chunk even though ExpectLength() wasn't called, because we should always
// allocate a new chunk large enough to store the data we have at hand.
constexpr size_t length = 2 * SourceBuffer::MIN_CHUNK_CAPACITY;
char data[length];
GenerateData(data, sizeof(data));
CheckedAppendToBuffer(data, length);
// Verify that the iterator sees a single chunk.
CheckedAdvanceIterator(iterator, length);
// Write one more byte; we expect to see that it triggers an allocation.
CheckedAppendToBufferLastByteForLength(length);
CheckedCompleteBuffer(iterator, 1);
// Verify that the iterator sees the new byte and a new chunk has been
// allocated.
CheckedAdvanceIterator(iterator, 1, 2, length + 1);
CheckIteratorIsComplete(iterator, 2, length + 1);
}
TEST_F(ImageSourceBuffer, LargeAppendsAllocateAtMostOneChunk) {
SourceBufferIterator iterator = mSourceBuffer->Iterator();
// Allocate some data we'll use below.
constexpr size_t firstWriteLength = SourceBuffer::MIN_CHUNK_CAPACITY / 2;
constexpr size_t secondWriteLength = 3 * SourceBuffer::MIN_CHUNK_CAPACITY;
constexpr size_t totalLength = firstWriteLength + secondWriteLength;
char data[totalLength];
GenerateData(data, sizeof(data));
// Write half of SourceBuffer::MIN_CHUNK_CAPACITY bytes of test data to the
// buffer in a single Append() call. This should fill half of the first chunk.
CheckedAppendToBuffer(data, firstWriteLength);
// Write three times SourceBuffer::MIN_CHUNK_CAPACITY bytes of test data to
// the buffer in a single Append() call. We expect this to result in the first
// of the first chunk being filled and a new chunk being allocated for the
// remainder.
CheckedAppendToBuffer(data + firstWriteLength, secondWriteLength);
// Verify that the iterator sees a MIN_CHUNK_CAPACITY-length chunk.
CheckedAdvanceIterator(iterator, SourceBuffer::MIN_CHUNK_CAPACITY);
// Verify that the iterator sees a second chunk of the length we expect.
const size_t expectedSecondChunkLength =
totalLength - SourceBuffer::MIN_CHUNK_CAPACITY;
CheckedAdvanceIterator(iterator, expectedSecondChunkLength, 2, totalLength);
// Write one more byte; we expect to see that it triggers an allocation.
CheckedAppendToBufferLastByteForLength(totalLength);
CheckedCompleteBuffer(iterator, 1);
// Verify that the iterator sees the new byte and a new chunk has been
// allocated.
CheckedAdvanceIterator(iterator, 1, 3, totalLength + 1);
CheckIteratorIsComplete(iterator, 3, totalLength + 1);
}
TEST_F(ImageSourceBuffer, OversizedAppendsAllocateAtMostOneChunk) {
SourceBufferIterator iterator = mSourceBuffer->Iterator();
// Allocate some data we'll use below.
constexpr size_t writeLength = SourceBuffer::MAX_CHUNK_CAPACITY + 1;
// Write SourceBuffer::MAX_CHUNK_CAPACITY + 1 bytes of test data to the
// buffer in a single Append() call. This should cause one chunk to be
// allocated because we wrote it as a single block.
CheckedAppendToBufferInChunks(writeLength, writeLength);
// Verify that the iterator sees a MAX_CHUNK_CAPACITY+1-length chunk.
CheckedAdvanceIterator(iterator, writeLength);
CheckedCompleteBuffer(NS_OK);
CheckIteratorIsComplete(iterator, 1, writeLength);
}
TEST_F(ImageSourceBuffer, CompactionHappensWhenBufferIsComplete) {
constexpr size_t chunkLength = SourceBuffer::MIN_CHUNK_CAPACITY;
constexpr size_t totalLength = 2 * chunkLength;
// Write enough data to create two chunks.
CheckedAppendToBufferInChunks(chunkLength, totalLength);
{
SourceBufferIterator iterator = mSourceBuffer->Iterator();
// Verify that the iterator sees two chunks.
CheckedAdvanceIterator(iterator, chunkLength);
CheckedAdvanceIterator(iterator, chunkLength, 2, totalLength);
}
// Complete the buffer, which should trigger compaction implicitly.
CheckedCompleteBuffer();
{
SourceBufferIterator iterator = mSourceBuffer->Iterator();
// Verify that compaction happened and there's now only one chunk.
CheckedAdvanceIterator(iterator, totalLength);
CheckIteratorIsComplete(iterator, 1, totalLength);
}
}
TEST_F(ImageSourceBuffer, CompactionIsDelayedWhileIteratorsExist) {
constexpr size_t chunkLength = SourceBuffer::MIN_CHUNK_CAPACITY;
constexpr size_t totalLength = 2 * chunkLength;
{
SourceBufferIterator outerIterator = mSourceBuffer->Iterator();
{
SourceBufferIterator iterator = mSourceBuffer->Iterator();
// Write enough data to create two chunks.
CheckedAppendToBufferInChunks(chunkLength, totalLength);
CheckedCompleteBuffer(iterator, totalLength);
// Verify that the iterator sees two chunks. Since there are live
// iterators, compaction shouldn't have happened when we completed the
// buffer.
CheckedAdvanceIterator(iterator, chunkLength);
CheckedAdvanceIterator(iterator, chunkLength, 2, totalLength);
CheckIteratorIsComplete(iterator, 2, totalLength);
}
// Now |iterator| has been destroyed, but |outerIterator| still exists, so
// we expect no compaction to have occurred at this point.
CheckedAdvanceIterator(outerIterator, chunkLength);
CheckedAdvanceIterator(outerIterator, chunkLength, 2, totalLength);
CheckIteratorIsComplete(outerIterator, 2, totalLength);
}
// Now all iterators have been destroyed. Since the buffer was already
// complete, we expect compaction to happen implicitly here.
{
SourceBufferIterator iterator = mSourceBuffer->Iterator();
// Verify that compaction happened and there's now only one chunk.
CheckedAdvanceIterator(iterator, totalLength);
CheckIteratorIsComplete(iterator, 1, totalLength);
}
}
TEST_F(ImageSourceBuffer, SourceBufferIteratorsCanBeMoved) {
constexpr size_t chunkLength = SourceBuffer::MIN_CHUNK_CAPACITY;
constexpr size_t totalLength = 2 * chunkLength;
// Write enough data to create two chunks. We create an iterator here to make
// sure that compaction doesn't happen during the test.
SourceBufferIterator iterator = mSourceBuffer->Iterator();
CheckedAppendToBufferInChunks(chunkLength, totalLength);
CheckedCompleteBuffer(iterator, totalLength);
auto GetIterator = [&] {
SourceBufferIterator lambdaIterator = mSourceBuffer->Iterator();
CheckedAdvanceIterator(lambdaIterator, chunkLength);
return lambdaIterator;
};
// Move-construct |movedIterator| from the iterator returned from
// GetIterator() and check that its state is as we expect.
SourceBufferIterator tmpIterator = GetIterator();
SourceBufferIterator movedIterator(std::move(tmpIterator));
EXPECT_TRUE(movedIterator.Data());
EXPECT_EQ(chunkLength, movedIterator.Length());
ExpectChunkAndByteCount(movedIterator, 1, chunkLength);
// Make sure that we can advance the iterator.
CheckedAdvanceIterator(movedIterator, chunkLength, 2, totalLength);
// Make sure that the iterator handles completion properly.
CheckIteratorIsComplete(movedIterator, 2, totalLength);
// Move-assign |movedIterator| from the iterator returned from
// GetIterator() and check that its state is as we expect.
tmpIterator = GetIterator();
movedIterator = std::move(tmpIterator);
EXPECT_TRUE(movedIterator.Data());
EXPECT_EQ(chunkLength, movedIterator.Length());
ExpectChunkAndByteCount(movedIterator, 1, chunkLength);
// Make sure that we can advance the iterator.
CheckedAdvanceIterator(movedIterator, chunkLength, 2, totalLength);
// Make sure that the iterator handles completion properly.
CheckIteratorIsComplete(movedIterator, 2, totalLength);
}
TEST_F(ImageSourceBuffer, SubchunkAdvance) {
constexpr size_t chunkLength = SourceBuffer::MIN_CHUNK_CAPACITY;
constexpr size_t totalLength = 2 * chunkLength;
// Write enough data to create two chunks. We create our iterator here to make
// sure that compaction doesn't happen during the test.
SourceBufferIterator iterator = mSourceBuffer->Iterator();
CheckedAppendToBufferInChunks(chunkLength, totalLength);
CheckedCompleteBuffer(iterator, totalLength);
// Advance through the first chunk. The chunk count should not increase.
// We check that by always passing 1 for the |aChunks| parameter of
// CheckedAdvanceIteratorStateOnly(). We have to call CheckData() manually
// because the offset calculation in CheckedAdvanceIterator() assumes that
// we're advancing a chunk at a time.
size_t offset = 0;
while (offset < chunkLength) {
CheckedAdvanceIteratorStateOnly(iterator, 1, 1, chunkLength,
AdvanceMode::eAdvanceByLengthExactly);
CheckData(iterator.Data(), offset++, iterator.Length());
}
// Read the first byte of the second chunk. This is the point at which we
// can't advance within the same chunk, so the chunk count should increase. We
// check that by passing 2 for the |aChunks| parameter of
// CheckedAdvanceIteratorStateOnly().
CheckedAdvanceIteratorStateOnly(iterator, 1, 2, totalLength,
AdvanceMode::eAdvanceByLengthExactly);
CheckData(iterator.Data(), offset++, iterator.Length());
// Read the rest of the second chunk. The chunk count should not increase.
while (offset < totalLength) {
CheckedAdvanceIteratorStateOnly(iterator, 1, 2, totalLength,
AdvanceMode::eAdvanceByLengthExactly);
CheckData(iterator.Data(), offset++, iterator.Length());
}
// Make sure we reached the end.
CheckIteratorIsComplete(iterator, 2, totalLength);
}
TEST_F(ImageSourceBuffer, SubchunkZeroByteAdvance) {
constexpr size_t chunkLength = SourceBuffer::MIN_CHUNK_CAPACITY;
constexpr size_t totalLength = 2 * chunkLength;
// Write enough data to create two chunks. We create our iterator here to make
// sure that compaction doesn't happen during the test.
SourceBufferIterator iterator = mSourceBuffer->Iterator();
CheckedAppendToBufferInChunks(chunkLength, totalLength);
CheckedCompleteBuffer(iterator, totalLength);
// Make an initial zero-length advance. Although a zero-length advance
// normally won't cause us to read a chunk from the SourceBuffer, we'll do so
// if the iterator is in the initial state to keep the invariant that
// SourceBufferIterator in the READY state always returns a non-null pointer
// from Data().
CheckedAdvanceIteratorStateOnly(iterator, 0, 1, chunkLength,
AdvanceMode::eAdvanceByLengthExactly);
// Advance through the first chunk. As in the |SubchunkAdvance| test, the
// chunk count should not increase. We do a zero-length advance after each
// normal advance to ensure that zero-length advances do not change the
// iterator's position or cause a new chunk to be read.
size_t offset = 0;
while (offset < chunkLength) {
CheckedAdvanceIteratorStateOnly(iterator, 1, 1, chunkLength,
AdvanceMode::eAdvanceByLengthExactly);
CheckData(iterator.Data(), offset++, iterator.Length());
CheckedAdvanceIteratorStateOnly(iterator, 0, 1, chunkLength,
AdvanceMode::eAdvanceByLengthExactly);
}
// Read the first byte of the second chunk. This is the point at which we
// can't advance within the same chunk, so the chunk count should increase. As
// before, we do a zero-length advance afterward.
CheckedAdvanceIteratorStateOnly(iterator, 1, 2, totalLength,
AdvanceMode::eAdvanceByLengthExactly);
CheckData(iterator.Data(), offset++, iterator.Length());
CheckedAdvanceIteratorStateOnly(iterator, 0, 2, totalLength,
AdvanceMode::eAdvanceByLengthExactly);
// Read the rest of the second chunk. The chunk count should not increase. As
// before, we do a zero-length advance after each normal advance.
while (offset < totalLength) {
CheckedAdvanceIteratorStateOnly(iterator, 1, 2, totalLength,
AdvanceMode::eAdvanceByLengthExactly);
CheckData(iterator.Data(), offset++, iterator.Length());
CheckedAdvanceIteratorStateOnly(iterator, 0, 2, totalLength,
AdvanceMode::eAdvanceByLengthExactly);
}
// Make sure we reached the end.
CheckIteratorIsComplete(iterator, 2, totalLength);
}
TEST_F(ImageSourceBuffer, SubchunkZeroByteAdvanceWithNoData) {
SourceBufferIterator iterator = mSourceBuffer->Iterator();
// Check that advancing by zero bytes still makes us enter the WAITING state.
// This is because if we entered the READY state before reading any data at
// all, we'd break the invariant that SourceBufferIterator::Data() always
// returns a non-null pointer in the READY state.
auto state = iterator.AdvanceOrScheduleResume(0, mCountResumes);
EXPECT_EQ(SourceBufferIterator::WAITING, state);
// Call Complete(). This should trigger a resume.
CheckedCompleteBuffer();
EXPECT_EQ(1u, mCountResumes->Count());
}
TEST_F(ImageSourceBuffer, NullIResumable) {
SourceBufferIterator iterator = mSourceBuffer->Iterator();
// Check that we can't advance.
CheckIteratorMustWait(iterator, nullptr);
// Append to the buffer, which would cause a resume if we had passed a
// non-null IResumable.
CheckedAppendToBuffer(mData, sizeof(mData));
CheckedCompleteBuffer(iterator, sizeof(mData));
}
TEST_F(ImageSourceBuffer, AppendTriggersResume) {
SourceBufferIterator iterator = mSourceBuffer->Iterator();
// Check that we can't advance.
CheckIteratorMustWait(iterator, mCountResumes);
// Call Append(). This should trigger a resume.
mSourceBuffer->Append(mData, sizeof(mData));
EXPECT_EQ(1u, mCountResumes->Count());
}
TEST_F(ImageSourceBuffer, OnlyOneResumeTriggeredPerAppend) {
SourceBufferIterator iterator = mSourceBuffer->Iterator();
// Check that we can't advance.
CheckIteratorMustWait(iterator, mCountResumes);
// Allocate some data we'll use below.
constexpr size_t firstWriteLength = SourceBuffer::MIN_CHUNK_CAPACITY / 2;
constexpr size_t secondWriteLength = 3 * SourceBuffer::MIN_CHUNK_CAPACITY;
constexpr size_t totalLength = firstWriteLength + secondWriteLength;
char data[totalLength];
GenerateData(data, sizeof(data));
// Write half of SourceBuffer::MIN_CHUNK_CAPACITY bytes of test data to the
// buffer in a single Append() call. This should fill half of the first chunk.
// This should trigger a resume.
CheckedAppendToBuffer(data, firstWriteLength);
EXPECT_EQ(1u, mCountResumes->Count());
// Advance past the new data and wait again.
CheckedAdvanceIterator(iterator, firstWriteLength);
CheckIteratorMustWait(iterator, mCountResumes);
// Write three times SourceBuffer::MIN_CHUNK_CAPACITY bytes of test data to
// the buffer in a single Append() call. We expect this to result in the first
// of the first chunk being filled and a new chunk being allocated for the
// remainder. Even though two chunks are getting written to here, only *one*
// resume should get triggered, for a total of two in this test.
CheckedAppendToBuffer(data + firstWriteLength, secondWriteLength);
EXPECT_EQ(2u, mCountResumes->Count());
}
TEST_F(ImageSourceBuffer, CompleteTriggersResume) {
SourceBufferIterator iterator = mSourceBuffer->Iterator();
// Check that we can't advance.
CheckIteratorMustWait(iterator, mCountResumes);
// Call Complete(). This should trigger a resume.
CheckedCompleteBuffer();
EXPECT_EQ(1u, mCountResumes->Count());
}
TEST_F(ImageSourceBuffer, ExpectLengthDoesNotTriggerResume) {
SourceBufferIterator iterator = mSourceBuffer->Iterator();
// Check that we can't advance.
CheckIteratorMustWait(iterator, mExpectNoResume);
// Call ExpectLength(). If this triggers a resume, |mExpectNoResume| will
// ensure that the test fails.
mSourceBuffer->ExpectLength(1000);
}
TEST_F(ImageSourceBuffer, CompleteSuccessWithSameReadLength) {
SourceBufferIterator iterator = mSourceBuffer->Iterator(1);
// Write a single byte to the buffer and complete the buffer. (We have to
// write at least one byte because completing a zero length buffer always
// fails; see the ZeroLengthBufferAlwaysFails test.)
CheckedAppendToBuffer(mData, 1);
CheckedCompleteBuffer(iterator, 1);
// We should be able to advance once (to read the single byte) and then should
// reach the COMPLETE state with a successful status.
CheckedAdvanceIterator(iterator, 1);
CheckIteratorIsComplete(iterator, 1);
}
TEST_F(ImageSourceBuffer, CompleteSuccessWithSmallerReadLength) {
// Create an iterator limited to one byte.
SourceBufferIterator iterator = mSourceBuffer->Iterator(1);
// Write two bytes to the buffer and complete the buffer. (We have to
// write at least one byte because completing a zero length buffer always
// fails; see the ZeroLengthBufferAlwaysFails test.)
CheckedAppendToBuffer(mData, 2);
CheckedCompleteBuffer(iterator, 2);
// We should be able to advance once (to read the single byte) and then should
// reach the COMPLETE state with a successful status, because our iterator is
// limited to a single byte, rather than the full length.
CheckedAdvanceIterator(iterator, 1);
CheckIteratorIsComplete(iterator, 1);
}
TEST_F(ImageSourceBuffer, CompleteSuccessWithGreaterReadLength) {
// Create an iterator limited to one byte.
SourceBufferIterator iterator = mSourceBuffer->Iterator(2);
// Write a single byte to the buffer and complete the buffer. (We have to
// write at least one byte because completing a zero length buffer always
// fails; see the ZeroLengthBufferAlwaysFails test.)
CheckedAppendToBuffer(mData, 1);
CheckedCompleteBuffer(iterator, 1);
// We should be able to advance once (to read the single byte) and then should
// reach the COMPLETE state with a successful status. Our iterator lets us
// read more but the underlying buffer has been completed.
CheckedAdvanceIterator(iterator, 1);
CheckIteratorIsComplete(iterator, 1);
}
|