1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "mozilla/SIMD.h"
#include <cstring>
#include <stdint.h>
#include <type_traits>
#include "mozilla/EndianUtils.h"
#include "mozilla/SSE.h"
#ifdef MOZILLA_PRESUME_SSE2
# include <immintrin.h>
#endif
namespace mozilla {
template <typename TValue>
const TValue* FindInBufferNaive(const TValue* ptr, TValue value,
size_t length) {
const TValue* end = ptr + length;
while (ptr < end) {
if (*ptr == value) {
return ptr;
}
ptr++;
}
return nullptr;
}
#ifdef MOZILLA_PRESUME_SSE2
const __m128i* Cast128(uintptr_t ptr) {
return reinterpret_cast<const __m128i*>(ptr);
}
template <typename T>
T GetAs(uintptr_t ptr) {
return *reinterpret_cast<const T*>(ptr);
}
// Akin to ceil/floor, AlignDown/AlignUp will return the original pointer if it
// is already aligned.
uintptr_t AlignDown16(uintptr_t ptr) { return ptr & ~0xf; }
uintptr_t AlignUp16(uintptr_t ptr) { return AlignDown16(ptr + 0xf); }
template <typename TValue>
__m128i CmpEq128(__m128i a, __m128i b) {
static_assert(sizeof(TValue) == 1 || sizeof(TValue) == 2);
if (sizeof(TValue) == 1) {
return _mm_cmpeq_epi8(a, b);
}
return _mm_cmpeq_epi16(a, b);
}
# ifdef __GNUC__
// Earlier versions of GCC are missing the _mm_loadu_si32 instruction. This
// workaround from Peter Cordes (https://stackoverflow.com/a/72837992) compiles
// down to the same instructions. We could just replace _mm_loadu_si32
__m128i Load32BitsIntoXMM(uintptr_t ptr) {
int tmp;
memcpy(&tmp, reinterpret_cast<const void*>(ptr),
sizeof(tmp)); // unaligned aliasing-safe load
return _mm_cvtsi32_si128(tmp); // efficient on GCC/clang/MSVC
}
# else
__m128i Load32BitsIntoXMM(uintptr_t ptr) {
return _mm_loadu_si32(Cast128(ptr));
}
# endif
const char* Check4x4Chars(__m128i needle, uintptr_t a, uintptr_t b, uintptr_t c,
uintptr_t d) {
__m128i haystackA = Load32BitsIntoXMM(a);
__m128i cmpA = CmpEq128<char>(needle, haystackA);
__m128i haystackB = Load32BitsIntoXMM(b);
__m128i cmpB = CmpEq128<char>(needle, haystackB);
__m128i haystackC = Load32BitsIntoXMM(c);
__m128i cmpC = CmpEq128<char>(needle, haystackC);
__m128i haystackD = Load32BitsIntoXMM(d);
__m128i cmpD = CmpEq128<char>(needle, haystackD);
__m128i or_ab = _mm_or_si128(cmpA, cmpB);
__m128i or_cd = _mm_or_si128(cmpC, cmpD);
__m128i or_abcd = _mm_or_si128(or_ab, or_cd);
int orMask = _mm_movemask_epi8(or_abcd);
if (orMask & 0xf) {
int cmpMask;
cmpMask = _mm_movemask_epi8(cmpA);
if (cmpMask & 0xf) {
return reinterpret_cast<const char*>(a + __builtin_ctz(cmpMask));
}
cmpMask = _mm_movemask_epi8(cmpB);
if (cmpMask & 0xf) {
return reinterpret_cast<const char*>(b + __builtin_ctz(cmpMask));
}
cmpMask = _mm_movemask_epi8(cmpC);
if (cmpMask & 0xf) {
return reinterpret_cast<const char*>(c + __builtin_ctz(cmpMask));
}
cmpMask = _mm_movemask_epi8(cmpD);
if (cmpMask & 0xf) {
return reinterpret_cast<const char*>(d + __builtin_ctz(cmpMask));
}
}
return nullptr;
}
template <typename TValue>
const TValue* Check4x16Bytes(__m128i needle, uintptr_t a, uintptr_t b,
uintptr_t c, uintptr_t d) {
__m128i haystackA = _mm_loadu_si128(Cast128(a));
__m128i cmpA = CmpEq128<TValue>(needle, haystackA);
__m128i haystackB = _mm_loadu_si128(Cast128(b));
__m128i cmpB = CmpEq128<TValue>(needle, haystackB);
__m128i haystackC = _mm_loadu_si128(Cast128(c));
__m128i cmpC = CmpEq128<TValue>(needle, haystackC);
__m128i haystackD = _mm_loadu_si128(Cast128(d));
__m128i cmpD = CmpEq128<TValue>(needle, haystackD);
__m128i or_ab = _mm_or_si128(cmpA, cmpB);
__m128i or_cd = _mm_or_si128(cmpC, cmpD);
__m128i or_abcd = _mm_or_si128(or_ab, or_cd);
int orMask = _mm_movemask_epi8(or_abcd);
if (orMask) {
int cmpMask;
cmpMask = _mm_movemask_epi8(cmpA);
if (cmpMask) {
return reinterpret_cast<const TValue*>(a + __builtin_ctz(cmpMask));
}
cmpMask = _mm_movemask_epi8(cmpB);
if (cmpMask) {
return reinterpret_cast<const TValue*>(b + __builtin_ctz(cmpMask));
}
cmpMask = _mm_movemask_epi8(cmpC);
if (cmpMask) {
return reinterpret_cast<const TValue*>(c + __builtin_ctz(cmpMask));
}
cmpMask = _mm_movemask_epi8(cmpD);
if (cmpMask) {
return reinterpret_cast<const TValue*>(d + __builtin_ctz(cmpMask));
}
}
return nullptr;
}
enum class HaystackOverlap {
Overlapping,
Sequential,
};
// Check two 16-byte chunks for the two-byte sequence loaded into needle1
// followed by needle1. `carryOut` is an optional pointer which we will
// populate based on whether the last character of b matches needle1. This
// should be provided on subsequent calls via `carryIn` so we can detect cases
// where the last byte of b's 16-byte chunk is needle1 and the first byte of
// the next a's 16-byte chunk is needle2. `overlap` and whether
// `carryIn`/`carryOut` are NULL should be knowable at compile time to avoid
// branching.
template <typename TValue>
const TValue* Check2x2x16Bytes(__m128i needle1, __m128i needle2, uintptr_t a,
uintptr_t b, __m128i* carryIn, __m128i* carryOut,
HaystackOverlap overlap) {
const int shiftRightAmount = 16 - sizeof(TValue);
const int shiftLeftAmount = sizeof(TValue);
__m128i haystackA = _mm_loadu_si128(Cast128(a));
__m128i cmpA1 = CmpEq128<TValue>(needle1, haystackA);
__m128i cmpA2 = CmpEq128<TValue>(needle2, haystackA);
__m128i cmpA;
if (carryIn) {
cmpA = _mm_and_si128(
_mm_or_si128(_mm_bslli_si128(cmpA1, shiftLeftAmount), *carryIn), cmpA2);
} else {
cmpA = _mm_and_si128(_mm_bslli_si128(cmpA1, shiftLeftAmount), cmpA2);
}
__m128i haystackB = _mm_loadu_si128(Cast128(b));
__m128i cmpB1 = CmpEq128<TValue>(needle1, haystackB);
__m128i cmpB2 = CmpEq128<TValue>(needle2, haystackB);
__m128i cmpB;
if (overlap == HaystackOverlap::Overlapping) {
cmpB = _mm_and_si128(_mm_bslli_si128(cmpB1, shiftLeftAmount), cmpB2);
} else {
MOZ_ASSERT(overlap == HaystackOverlap::Sequential);
__m128i carryAB = _mm_bsrli_si128(cmpA1, shiftRightAmount);
cmpB = _mm_and_si128(
_mm_or_si128(_mm_bslli_si128(cmpB1, shiftLeftAmount), carryAB), cmpB2);
}
__m128i or_ab = _mm_or_si128(cmpA, cmpB);
int orMask = _mm_movemask_epi8(or_ab);
if (orMask) {
int cmpMask;
cmpMask = _mm_movemask_epi8(cmpA);
if (cmpMask) {
return reinterpret_cast<const TValue*>(a + __builtin_ctz(cmpMask) -
shiftLeftAmount);
}
cmpMask = _mm_movemask_epi8(cmpB);
if (cmpMask) {
return reinterpret_cast<const TValue*>(b + __builtin_ctz(cmpMask) -
shiftLeftAmount);
}
}
if (carryOut) {
_mm_store_si128(carryOut, _mm_bsrli_si128(cmpB1, shiftRightAmount));
}
return nullptr;
}
template <typename TValue>
const TValue* FindInBuffer(const TValue* ptr, TValue value, size_t length) {
static_assert(sizeof(TValue) == 1 || sizeof(TValue) == 2);
static_assert(std::is_unsigned<TValue>::value);
uint64_t splat64;
if (sizeof(TValue) == 1) {
splat64 = 0x0101010101010101llu;
} else {
splat64 = 0x0001000100010001llu;
}
// Load our needle into a 16-byte register
uint64_t u64_value = static_cast<uint64_t>(value) * splat64;
int64_t i64_value = *reinterpret_cast<int64_t*>(&u64_value);
__m128i needle = _mm_set_epi64x(i64_value, i64_value);
size_t numBytes = length * sizeof(TValue);
uintptr_t cur = reinterpret_cast<uintptr_t>(ptr);
uintptr_t end = cur + numBytes;
if ((sizeof(TValue) > 1 && numBytes < 16) || numBytes < 4) {
while (cur < end) {
if (GetAs<TValue>(cur) == value) {
return reinterpret_cast<const TValue*>(cur);
}
cur += sizeof(TValue);
}
return nullptr;
}
if (numBytes < 16) {
// NOTE: here and below, we have some bit fiddling which could look a
// little weird. The important thing to note though is it's just a trick
// for getting the number 4 if numBytes is greater than or equal to 8,
// and 0 otherwise. This lets us fully cover the range without any
// branching for the case where numBytes is in [4,8), and [8,16). We get
// four ranges from this - if numbytes > 8, we get:
// [0,4), [4,8], [end - 8), [end - 4)
// and if numbytes < 8, we get
// [0,4), [0,4), [end - 4), [end - 4)
uintptr_t a = cur;
uintptr_t b = cur + ((numBytes & 8) >> 1);
uintptr_t c = end - 4 - ((numBytes & 8) >> 1);
uintptr_t d = end - 4;
const char* charResult = Check4x4Chars(needle, a, b, c, d);
// Note: we ensure above that sizeof(TValue) == 1 here, so this is
// either char to char or char to something like a uint8_t.
return reinterpret_cast<const TValue*>(charResult);
}
if (numBytes < 64) {
// NOTE: see the above explanation of the similar chunk of code, but in
// this case, replace 8 with 32 and 4 with 16.
uintptr_t a = cur;
uintptr_t b = cur + ((numBytes & 32) >> 1);
uintptr_t c = end - 16 - ((numBytes & 32) >> 1);
uintptr_t d = end - 16;
return Check4x16Bytes<TValue>(needle, a, b, c, d);
}
// Get the initial unaligned load out of the way. This will overlap with the
// aligned stuff below, but the overlapped part should effectively be free
// (relative to a mispredict from doing a byte-by-byte loop).
__m128i haystack = _mm_loadu_si128(Cast128(cur));
__m128i cmp = CmpEq128<TValue>(needle, haystack);
int cmpMask = _mm_movemask_epi8(cmp);
if (cmpMask) {
return reinterpret_cast<const TValue*>(cur + __builtin_ctz(cmpMask));
}
// Now we're working with aligned memory. Hooray! \o/
cur = AlignUp16(cur);
// The address of the final 48-63 bytes. We overlap this with what we check in
// our hot loop below to avoid branching. Again, the overlap should be
// negligible compared with a branch mispredict.
uintptr_t tailStartPtr = AlignDown16(end - 48);
uintptr_t tailEndPtr = end - 16;
while (cur < tailStartPtr) {
uintptr_t a = cur;
uintptr_t b = cur + 16;
uintptr_t c = cur + 32;
uintptr_t d = cur + 48;
const TValue* result = Check4x16Bytes<TValue>(needle, a, b, c, d);
if (result) {
return result;
}
cur += 64;
}
uintptr_t a = tailStartPtr;
uintptr_t b = tailStartPtr + 16;
uintptr_t c = tailStartPtr + 32;
uintptr_t d = tailEndPtr;
return Check4x16Bytes<TValue>(needle, a, b, c, d);
}
template <typename TValue>
const TValue* TwoElementLoop(uintptr_t start, uintptr_t end, TValue v1,
TValue v2) {
static_assert(sizeof(TValue) == 1 || sizeof(TValue) == 2);
const TValue* cur = reinterpret_cast<const TValue*>(start);
const TValue* preEnd = reinterpret_cast<const TValue*>(end - sizeof(TValue));
uint32_t expected = static_cast<uint32_t>(v1) |
(static_cast<uint32_t>(v2) << (sizeof(TValue) * 8));
while (cur < preEnd) {
// NOTE: this should only ever be called on little endian architectures.
static_assert(MOZ_LITTLE_ENDIAN());
// We or cur[0] and cur[1] together explicitly and compare to expected,
// in order to avoid UB from just loading them as a uint16_t/uint32_t.
// However, it will compile down the same code after optimizations on
// little endian systems which support unaligned loads. Comparing them
// value-by-value, however, will not, and seems to perform worse in local
// microbenchmarking. Even after bitwise or'ing the comparison values
// together to avoid the short circuit, the compiler doesn't seem to get
// the hint and creates two branches, the first of which might be
// frequently mispredicted.
uint32_t actual = static_cast<uint32_t>(cur[0]) |
(static_cast<uint32_t>(cur[1]) << (sizeof(TValue) * 8));
if (actual == expected) {
return cur;
}
cur++;
}
return nullptr;
}
template <typename TValue>
const TValue* FindTwoInBuffer(const TValue* ptr, TValue v1, TValue v2,
size_t length) {
static_assert(sizeof(TValue) == 1 || sizeof(TValue) == 2);
static_assert(std::is_unsigned<TValue>::value);
uint64_t splat64;
if (sizeof(TValue) == 1) {
splat64 = 0x0101010101010101llu;
} else {
splat64 = 0x0001000100010001llu;
}
// Load our needle into a 16-byte register
uint64_t u64_v1 = static_cast<uint64_t>(v1) * splat64;
int64_t i64_v1 = *reinterpret_cast<int64_t*>(&u64_v1);
__m128i needle1 = _mm_set_epi64x(i64_v1, i64_v1);
uint64_t u64_v2 = static_cast<uint64_t>(v2) * splat64;
int64_t i64_v2 = *reinterpret_cast<int64_t*>(&u64_v2);
__m128i needle2 = _mm_set_epi64x(i64_v2, i64_v2);
size_t numBytes = length * sizeof(TValue);
uintptr_t cur = reinterpret_cast<uintptr_t>(ptr);
uintptr_t end = cur + numBytes;
if (numBytes < 16) {
return TwoElementLoop<TValue>(cur, end, v1, v2);
}
if (numBytes < 32) {
uintptr_t a = cur;
uintptr_t b = end - 16;
return Check2x2x16Bytes<TValue>(needle1, needle2, a, b, nullptr, nullptr,
HaystackOverlap::Overlapping);
}
// Get the initial unaligned load out of the way. This will likely overlap
// with the aligned stuff below, but the overlapped part should effectively
// be free.
__m128i haystack = _mm_loadu_si128(Cast128(cur));
__m128i cmp1 = CmpEq128<TValue>(needle1, haystack);
__m128i cmp2 = CmpEq128<TValue>(needle2, haystack);
int cmpMask1 = _mm_movemask_epi8(cmp1);
int cmpMask2 = _mm_movemask_epi8(cmp2);
int cmpMask = (cmpMask1 << sizeof(TValue)) & cmpMask2;
if (cmpMask) {
return reinterpret_cast<const TValue*>(cur + __builtin_ctz(cmpMask) -
sizeof(TValue));
}
// Now we're working with aligned memory. Hooray! \o/
cur = AlignUp16(cur);
// The address of the final 48-63 bytes. We overlap this with what we check in
// our hot loop below to avoid branching. Again, the overlap should be
// negligible compared with a branch mispredict.
uintptr_t tailEndPtr = end - 16;
uintptr_t tailStartPtr = AlignDown16(tailEndPtr);
__m128i cmpMaskCarry = _mm_set1_epi32(0);
while (cur < tailStartPtr) {
uintptr_t a = cur;
uintptr_t b = cur + 16;
const TValue* result =
Check2x2x16Bytes<TValue>(needle1, needle2, a, b, &cmpMaskCarry,
&cmpMaskCarry, HaystackOverlap::Sequential);
if (result) {
return result;
}
cur += 32;
}
uint32_t carry = (cur == tailStartPtr) ? 0xffffffff : 0;
__m128i wideCarry = Load32BitsIntoXMM(reinterpret_cast<uintptr_t>(&carry));
cmpMaskCarry = _mm_and_si128(cmpMaskCarry, wideCarry);
uintptr_t a = tailStartPtr;
uintptr_t b = tailEndPtr;
return Check2x2x16Bytes<TValue>(needle1, needle2, a, b, &cmpMaskCarry,
nullptr, HaystackOverlap::Overlapping);
}
const char* SIMD::memchr8SSE2(const char* ptr, char value, size_t length) {
// Signed chars are just really annoying to do bit logic with. Convert to
// unsigned at the outermost scope so we don't have to worry about it.
const unsigned char* uptr = reinterpret_cast<const unsigned char*>(ptr);
unsigned char uvalue = static_cast<unsigned char>(value);
const unsigned char* uresult =
FindInBuffer<unsigned char>(uptr, uvalue, length);
return reinterpret_cast<const char*>(uresult);
}
// So, this is a bit awkward. It generally simplifies things if we can just
// assume all the AVX2 code is 64-bit, so we have this preprocessor guard
// in SIMD_avx2 over all of its actual code, and it also defines versions
// of its endpoints that just assert false if the guard is not satisfied.
// A 32 bit processor could implement the AVX2 instruction set though, which
// would result in it passing the supports_avx2() check and landing in an
// assertion failure. Accordingly, we just don't allow that to happen. We
// are not particularly concerned about ensuring that newer 32 bit processors
// get access to the AVX2 functions exposed here.
# if defined(MOZILLA_MAY_SUPPORT_AVX2) && defined(__x86_64__)
bool SupportsAVX2() { return supports_avx2(); }
# else
bool SupportsAVX2() { return false; }
# endif
const char* SIMD::memchr8(const char* ptr, char value, size_t length) {
if (SupportsAVX2()) {
return memchr8AVX2(ptr, value, length);
}
return memchr8SSE2(ptr, value, length);
}
const char16_t* SIMD::memchr16SSE2(const char16_t* ptr, char16_t value,
size_t length) {
return FindInBuffer<char16_t>(ptr, value, length);
}
const char16_t* SIMD::memchr16(const char16_t* ptr, char16_t value,
size_t length) {
if (SupportsAVX2()) {
return memchr16AVX2(ptr, value, length);
}
return memchr16SSE2(ptr, value, length);
}
const uint32_t* SIMD::memchr32(const uint32_t* ptr, uint32_t value,
size_t length) {
if (SupportsAVX2()) {
return memchr32AVX2(ptr, value, length);
}
return FindInBufferNaive<uint32_t>(ptr, value, length);
}
const uint64_t* SIMD::memchr64(const uint64_t* ptr, uint64_t value,
size_t length) {
if (SupportsAVX2()) {
return memchr64AVX2(ptr, value, length);
}
return FindInBufferNaive<uint64_t>(ptr, value, length);
}
const char* SIMD::memchr2x8(const char* ptr, char v1, char v2, size_t length) {
// Signed chars are just really annoying to do bit logic with. Convert to
// unsigned at the outermost scope so we don't have to worry about it.
const unsigned char* uptr = reinterpret_cast<const unsigned char*>(ptr);
unsigned char uv1 = static_cast<unsigned char>(v1);
unsigned char uv2 = static_cast<unsigned char>(v2);
const unsigned char* uresult =
FindTwoInBuffer<unsigned char>(uptr, uv1, uv2, length);
return reinterpret_cast<const char*>(uresult);
}
const char16_t* SIMD::memchr2x16(const char16_t* ptr, char16_t v1, char16_t v2,
size_t length) {
return FindTwoInBuffer<char16_t>(ptr, v1, v2, length);
}
#else
const char* SIMD::memchr8(const char* ptr, char value, size_t length) {
const void* result = ::memchr(reinterpret_cast<const void*>(ptr),
static_cast<int>(value), length);
return reinterpret_cast<const char*>(result);
}
const char* SIMD::memchr8SSE2(const char* ptr, char value, size_t length) {
return memchr8(ptr, value, length);
}
const char16_t* SIMD::memchr16(const char16_t* ptr, char16_t value,
size_t length) {
return FindInBufferNaive<char16_t>(ptr, value, length);
}
const char16_t* SIMD::memchr16SSE2(const char16_t* ptr, char16_t value,
size_t length) {
return memchr16(ptr, value, length);
}
const uint32_t* SIMD::memchr32(const uint32_t* ptr, uint32_t value,
size_t length) {
return FindInBufferNaive<uint32_t>(ptr, value, length);
}
const uint64_t* SIMD::memchr64(const uint64_t* ptr, uint64_t value,
size_t length) {
return FindInBufferNaive<uint64_t>(ptr, value, length);
}
const char* SIMD::memchr2x8(const char* ptr, char v1, char v2, size_t length) {
const char* end = ptr + length - 1;
while (ptr < end) {
ptr = memchr8(ptr, v1, end - ptr);
if (!ptr) {
return nullptr;
}
if (ptr[1] == v2) {
return ptr;
}
ptr++;
}
return nullptr;
}
const char16_t* SIMD::memchr2x16(const char16_t* ptr, char16_t v1, char16_t v2,
size_t length) {
const char16_t* end = ptr + length - 1;
while (ptr < end) {
ptr = memchr16(ptr, v1, end - ptr);
if (!ptr) {
return nullptr;
}
if (ptr[1] == v2) {
return ptr;
}
ptr++;
}
return nullptr;
}
#endif
} // namespace mozilla
|