1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
|
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "mozilla/SIMD.h"
#include "mozilla/SSE.h"
#include "mozilla/Assertions.h"
// Restricting to x86_64 simplifies things, and we're not particularly
// worried about slightly degraded performance on 32 bit processors which
// support AVX2, as this should be quite a minority.
#if defined(MOZILLA_MAY_SUPPORT_AVX2) && defined(__x86_64__)
# include <cstring>
# include <immintrin.h>
# include <stdint.h>
# include <type_traits>
namespace mozilla {
const __m256i* Cast256(uintptr_t ptr) {
return reinterpret_cast<const __m256i*>(ptr);
}
template <typename T>
T GetAs(uintptr_t ptr) {
return *reinterpret_cast<const T*>(ptr);
}
uintptr_t AlignDown32(uintptr_t ptr) { return ptr & ~0x1f; }
uintptr_t AlignUp32(uintptr_t ptr) { return AlignDown32(ptr + 0x1f); }
template <typename TValue>
__m128i CmpEq128(__m128i a, __m128i b) {
static_assert(sizeof(TValue) == 1 || sizeof(TValue) == 2);
if (sizeof(TValue) == 1) {
return _mm_cmpeq_epi8(a, b);
}
return _mm_cmpeq_epi16(a, b);
}
template <typename TValue>
__m256i CmpEq256(__m256i a, __m256i b) {
static_assert(sizeof(TValue) == 1 || sizeof(TValue) == 2 ||
sizeof(TValue) == 4 || sizeof(TValue) == 8);
if (sizeof(TValue) == 1) {
return _mm256_cmpeq_epi8(a, b);
}
if (sizeof(TValue) == 2) {
return _mm256_cmpeq_epi16(a, b);
}
if (sizeof(TValue) == 4) {
return _mm256_cmpeq_epi32(a, b);
}
return _mm256_cmpeq_epi64(a, b);
}
# if defined(__GNUC__) && !defined(__clang__)
// See the comment in SIMD.cpp over Load32BitsIntoXMM. This is just adapted
// from that workaround. Testing this, it also yields the correct instructions
// across all tested compilers.
__m128i Load64BitsIntoXMM(uintptr_t ptr) {
int64_t tmp;
memcpy(&tmp, reinterpret_cast<const void*>(ptr), sizeof(tmp));
return _mm_cvtsi64_si128(tmp);
}
# else
__m128i Load64BitsIntoXMM(uintptr_t ptr) {
return _mm_loadu_si64(reinterpret_cast<const __m128i*>(ptr));
}
# endif
template <typename TValue>
const TValue* Check4x8Bytes(__m128i needle, uintptr_t a, uintptr_t b,
uintptr_t c, uintptr_t d) {
__m128i haystackA = Load64BitsIntoXMM(a);
__m128i cmpA = CmpEq128<TValue>(needle, haystackA);
__m128i haystackB = Load64BitsIntoXMM(b);
__m128i cmpB = CmpEq128<TValue>(needle, haystackB);
__m128i haystackC = Load64BitsIntoXMM(c);
__m128i cmpC = CmpEq128<TValue>(needle, haystackC);
__m128i haystackD = Load64BitsIntoXMM(d);
__m128i cmpD = CmpEq128<TValue>(needle, haystackD);
__m128i or_ab = _mm_or_si128(cmpA, cmpB);
__m128i or_cd = _mm_or_si128(cmpC, cmpD);
__m128i or_abcd = _mm_or_si128(or_ab, or_cd);
int orMask = _mm_movemask_epi8(or_abcd);
if (orMask & 0xff) {
int cmpMask;
cmpMask = _mm_movemask_epi8(cmpA);
if (cmpMask & 0xff) {
return reinterpret_cast<const TValue*>(a + __builtin_ctz(cmpMask));
}
cmpMask = _mm_movemask_epi8(cmpB);
if (cmpMask & 0xff) {
return reinterpret_cast<const TValue*>(b + __builtin_ctz(cmpMask));
}
cmpMask = _mm_movemask_epi8(cmpC);
if (cmpMask & 0xff) {
return reinterpret_cast<const TValue*>(c + __builtin_ctz(cmpMask));
}
cmpMask = _mm_movemask_epi8(cmpD);
if (cmpMask & 0xff) {
return reinterpret_cast<const TValue*>(d + __builtin_ctz(cmpMask));
}
}
return nullptr;
}
template <typename TValue>
const TValue* Check4x32Bytes(__m256i needle, uintptr_t a, uintptr_t b,
uintptr_t c, uintptr_t d) {
__m256i haystackA = _mm256_loadu_si256(Cast256(a));
__m256i cmpA = CmpEq256<TValue>(needle, haystackA);
__m256i haystackB = _mm256_loadu_si256(Cast256(b));
__m256i cmpB = CmpEq256<TValue>(needle, haystackB);
__m256i haystackC = _mm256_loadu_si256(Cast256(c));
__m256i cmpC = CmpEq256<TValue>(needle, haystackC);
__m256i haystackD = _mm256_loadu_si256(Cast256(d));
__m256i cmpD = CmpEq256<TValue>(needle, haystackD);
__m256i or_ab = _mm256_or_si256(cmpA, cmpB);
__m256i or_cd = _mm256_or_si256(cmpC, cmpD);
__m256i or_abcd = _mm256_or_si256(or_ab, or_cd);
int orMask = _mm256_movemask_epi8(or_abcd);
if (orMask) {
int cmpMask;
cmpMask = _mm256_movemask_epi8(cmpA);
if (cmpMask) {
return reinterpret_cast<const TValue*>(a + __builtin_ctz(cmpMask));
}
cmpMask = _mm256_movemask_epi8(cmpB);
if (cmpMask) {
return reinterpret_cast<const TValue*>(b + __builtin_ctz(cmpMask));
}
cmpMask = _mm256_movemask_epi8(cmpC);
if (cmpMask) {
return reinterpret_cast<const TValue*>(c + __builtin_ctz(cmpMask));
}
cmpMask = _mm256_movemask_epi8(cmpD);
if (cmpMask) {
return reinterpret_cast<const TValue*>(d + __builtin_ctz(cmpMask));
}
}
return nullptr;
}
template <typename TValue>
const TValue* FindInBufferAVX2(const TValue* ptr, TValue value, size_t length) {
static_assert(sizeof(TValue) == 1 || sizeof(TValue) == 2 ||
sizeof(TValue) == 4 || sizeof(TValue) == 8);
static_assert(std::is_unsigned<TValue>::value);
// Load our needle into a 32-byte register
__m256i needle;
if (sizeof(TValue) == 1) {
needle = _mm256_set1_epi8(value);
} else if (sizeof(TValue) == 2) {
needle = _mm256_set1_epi16(value);
} else if (sizeof(TValue) == 4) {
needle = _mm256_set1_epi32(value);
} else {
needle = _mm256_set1_epi64x(value);
}
size_t numBytes = length * sizeof(TValue);
uintptr_t cur = reinterpret_cast<uintptr_t>(ptr);
uintptr_t end = cur + numBytes;
if (numBytes < 8 || (sizeof(TValue) >= 4 && numBytes < 32)) {
while (cur < end) {
if (GetAs<TValue>(cur) == value) {
return reinterpret_cast<const TValue*>(cur);
}
cur += sizeof(TValue);
}
return nullptr;
}
if constexpr (sizeof(TValue) < 4) {
if (numBytes < 32) {
__m128i needle_narrow;
if (sizeof(TValue) == 1) {
needle_narrow = _mm_set1_epi8(value);
} else {
needle_narrow = _mm_set1_epi16(value);
}
uintptr_t a = cur;
uintptr_t b = cur + ((numBytes & 16) >> 1);
uintptr_t c = end - 8 - ((numBytes & 16) >> 1);
uintptr_t d = end - 8;
return Check4x8Bytes<TValue>(needle_narrow, a, b, c, d);
}
}
if (numBytes < 128) {
// NOTE: here and below, we have some bit fiddling which could look a
// little weird. The important thing to note though is it's just a trick
// for getting the number 32 if numBytes is greater than or equal to 64,
// and 0 otherwise. This lets us fully cover the range without any
// branching for the case where numBytes is in [32,64), and [64,128). We get
// four ranges from this - if numbytes > 64, we get:
// [0,32), [32,64], [end - 64), [end - 32)
// and if numbytes < 64, we get
// [0,32), [0,32), [end - 32), [end - 32)
uintptr_t a = cur;
uintptr_t b = cur + ((numBytes & 64) >> 1);
uintptr_t c = end - 32 - ((numBytes & 64) >> 1);
uintptr_t d = end - 32;
return Check4x32Bytes<TValue>(needle, a, b, c, d);
}
// Get the initial unaligned load out of the way. This will overlap with the
// aligned stuff below, but the overlapped part should effectively be free
// (relative to a mispredict from doing a byte-by-byte loop).
__m256i haystack = _mm256_loadu_si256(Cast256(cur));
__m256i cmp = CmpEq256<TValue>(needle, haystack);
int cmpMask = _mm256_movemask_epi8(cmp);
if (cmpMask) {
return reinterpret_cast<const TValue*>(cur + __builtin_ctz(cmpMask));
}
// Now we're working with aligned memory. Hooray! \o/
cur = AlignUp32(cur);
uintptr_t tailStartPtr = AlignDown32(end - 96);
uintptr_t tailEndPtr = end - 32;
while (cur < tailStartPtr) {
uintptr_t a = cur;
uintptr_t b = cur + 32;
uintptr_t c = cur + 64;
uintptr_t d = cur + 96;
const TValue* result = Check4x32Bytes<TValue>(needle, a, b, c, d);
if (result) {
return result;
}
cur += 128;
}
uintptr_t a = tailStartPtr;
uintptr_t b = tailStartPtr + 32;
uintptr_t c = tailStartPtr + 64;
uintptr_t d = tailEndPtr;
return Check4x32Bytes<TValue>(needle, a, b, c, d);
}
const char* SIMD::memchr8AVX2(const char* ptr, char value, size_t length) {
const unsigned char* uptr = reinterpret_cast<const unsigned char*>(ptr);
unsigned char uvalue = static_cast<unsigned char>(value);
const unsigned char* uresult =
FindInBufferAVX2<unsigned char>(uptr, uvalue, length);
return reinterpret_cast<const char*>(uresult);
}
const char16_t* SIMD::memchr16AVX2(const char16_t* ptr, char16_t value,
size_t length) {
return FindInBufferAVX2<char16_t>(ptr, value, length);
}
const uint32_t* SIMD::memchr32AVX2(const uint32_t* ptr, uint32_t value,
size_t length) {
return FindInBufferAVX2<uint32_t>(ptr, value, length);
}
const uint64_t* SIMD::memchr64AVX2(const uint64_t* ptr, uint64_t value,
size_t length) {
return FindInBufferAVX2<uint64_t>(ptr, value, length);
}
} // namespace mozilla
#else
namespace mozilla {
const char* SIMD::memchr8AVX2(const char* ptr, char value, size_t length) {
MOZ_RELEASE_ASSERT(false, "AVX2 not supported in this binary.");
}
const char16_t* SIMD::memchr16AVX2(const char16_t* ptr, char16_t value,
size_t length) {
MOZ_RELEASE_ASSERT(false, "AVX2 not supported in this binary.");
}
const uint32_t* SIMD::memchr32AVX2(const uint32_t* ptr, uint32_t value,
size_t length) {
MOZ_RELEASE_ASSERT(false, "AVX2 not supported in this binary.");
}
const uint64_t* SIMD::memchr64AVX2(const uint64_t* ptr, uint64_t value,
size_t length) {
MOZ_RELEASE_ASSERT(false, "AVX2 not supported in this binary.");
}
} // namespace mozilla
#endif
|