1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
|
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/random/internal/explicit_seed_seq.h"
#include <iterator>
#include <random>
#include <utility>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/random/seed_sequences.h"
namespace {
using ::absl::random_internal::ExplicitSeedSeq;
template <typename Sseq>
bool ConformsToInterface() {
// Check that the SeedSequence can be default-constructed.
{
Sseq default_constructed_seq;
}
// Check that the SeedSequence can be constructed with two iterators.
{
uint32_t init_array[] = {1, 3, 5, 7, 9};
Sseq iterator_constructed_seq(init_array, &init_array[5]);
}
// Check that the SeedSequence can be std::initializer_list-constructed.
{
Sseq list_constructed_seq = {1, 3, 5, 7, 9, 11, 13};
}
// Check that param() and size() return state provided to constructor.
{
uint32_t init_array[] = {1, 2, 3, 4, 5};
Sseq seq(init_array, &init_array[ABSL_ARRAYSIZE(init_array)]);
EXPECT_EQ(seq.size(), ABSL_ARRAYSIZE(init_array));
uint32_t state_array[ABSL_ARRAYSIZE(init_array)];
seq.param(state_array);
for (int i = 0; i < ABSL_ARRAYSIZE(state_array); i++) {
EXPECT_EQ(state_array[i], i + 1);
}
}
// Check for presence of generate() method.
{
Sseq seq;
uint32_t seeds[5];
seq.generate(seeds, &seeds[ABSL_ARRAYSIZE(seeds)]);
}
return true;
}
} // namespace
TEST(SeedSequences, CheckInterfaces) {
// Control case
EXPECT_TRUE(ConformsToInterface<std::seed_seq>());
// Abseil classes
EXPECT_TRUE(ConformsToInterface<ExplicitSeedSeq>());
}
TEST(ExplicitSeedSeq, DefaultConstructorGeneratesZeros) {
const size_t kNumBlocks = 128;
uint32_t outputs[kNumBlocks];
ExplicitSeedSeq seq;
seq.generate(outputs, &outputs[kNumBlocks]);
for (uint32_t& seed : outputs) {
EXPECT_EQ(seed, 0);
}
}
TEST(ExplicitSeeqSeq, SeedMaterialIsForwardedIdentically) {
const size_t kNumBlocks = 128;
uint32_t seed_material[kNumBlocks];
std::random_device urandom{"/dev/urandom"};
for (uint32_t& seed : seed_material) {
seed = urandom();
}
ExplicitSeedSeq seq(seed_material, &seed_material[kNumBlocks]);
// Check that output is same as seed-material provided to constructor.
{
const size_t kNumGenerated = kNumBlocks / 2;
uint32_t outputs[kNumGenerated];
seq.generate(outputs, &outputs[kNumGenerated]);
for (size_t i = 0; i < kNumGenerated; i++) {
EXPECT_EQ(outputs[i], seed_material[i]);
}
}
// Check that SeedSequence is stateless between invocations: Despite the last
// invocation of generate() only consuming half of the input-entropy, the same
// entropy will be recycled for the next invocation.
{
const size_t kNumGenerated = kNumBlocks;
uint32_t outputs[kNumGenerated];
seq.generate(outputs, &outputs[kNumGenerated]);
for (size_t i = 0; i < kNumGenerated; i++) {
EXPECT_EQ(outputs[i], seed_material[i]);
}
}
// Check that when more seed-material is asked for than is provided, nonzero
// values are still written.
{
const size_t kNumGenerated = kNumBlocks * 2;
uint32_t outputs[kNumGenerated];
seq.generate(outputs, &outputs[kNumGenerated]);
for (size_t i = 0; i < kNumGenerated; i++) {
EXPECT_EQ(outputs[i], seed_material[i % kNumBlocks]);
}
}
}
TEST(ExplicitSeedSeq, CopyAndMoveConstructors) {
using testing::Each;
using testing::Eq;
using testing::Not;
using testing::Pointwise;
uint32_t entropy[4];
std::random_device urandom("/dev/urandom");
for (uint32_t& entry : entropy) {
entry = urandom();
}
ExplicitSeedSeq seq_from_entropy(std::begin(entropy), std::end(entropy));
// Copy constructor.
{
ExplicitSeedSeq seq_copy(seq_from_entropy);
EXPECT_EQ(seq_copy.size(), seq_from_entropy.size());
std::vector<uint32_t> seeds_1(1000, 0);
std::vector<uint32_t> seeds_2(1000, 1);
seq_from_entropy.generate(seeds_1.begin(), seeds_1.end());
seq_copy.generate(seeds_2.begin(), seeds_2.end());
EXPECT_THAT(seeds_1, Pointwise(Eq(), seeds_2));
}
// Assignment operator.
{
for (uint32_t& entry : entropy) {
entry = urandom();
}
ExplicitSeedSeq another_seq(std::begin(entropy), std::end(entropy));
std::vector<uint32_t> seeds_1(1000, 0);
std::vector<uint32_t> seeds_2(1000, 0);
seq_from_entropy.generate(seeds_1.begin(), seeds_1.end());
another_seq.generate(seeds_2.begin(), seeds_2.end());
// Assert precondition: Sequences generated by seed-sequences are not equal.
EXPECT_THAT(seeds_1, Not(Pointwise(Eq(), seeds_2)));
// Apply the assignment-operator.
// GCC 12 has a false-positive -Wstringop-overflow warning here.
#if ABSL_INTERNAL_HAVE_MIN_GNUC_VERSION(12, 0)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wstringop-overflow"
#endif
another_seq = seq_from_entropy;
#if ABSL_INTERNAL_HAVE_MIN_GNUC_VERSION(12, 0)
#pragma GCC diagnostic pop
#endif
// Re-generate seeds.
seq_from_entropy.generate(seeds_1.begin(), seeds_1.end());
another_seq.generate(seeds_2.begin(), seeds_2.end());
// Seeds generated by seed-sequences should now be equal.
EXPECT_THAT(seeds_1, Pointwise(Eq(), seeds_2));
}
// Move constructor.
{
// Get seeds from seed-sequence constructed from entropy.
std::vector<uint32_t> seeds_1(1000, 0);
seq_from_entropy.generate(seeds_1.begin(), seeds_1.end());
// Apply move-constructor move the sequence to another instance.
absl::random_internal::ExplicitSeedSeq moved_seq(
std::move(seq_from_entropy));
std::vector<uint32_t> seeds_2(1000, 1);
moved_seq.generate(seeds_2.begin(), seeds_2.end());
// Verify that seeds produced by moved-instance are the same as original.
EXPECT_THAT(seeds_1, Pointwise(Eq(), seeds_2));
// Verify that the moved-from instance now behaves like a
// default-constructed instance.
EXPECT_EQ(seq_from_entropy.size(), 0);
seq_from_entropy.generate(seeds_1.begin(), seeds_1.end());
EXPECT_THAT(seeds_1, Each(Eq(0)));
}
}
TEST(ExplicitSeedSeq, StdURBGGoldenTests) {
// Verify that for std::- URBG instances the results are stable across
// platforms (these should have deterministic output).
{
ExplicitSeedSeq seed_sequence{12, 34, 56};
std::minstd_rand rng(seed_sequence);
std::minstd_rand::result_type values[4] = {rng(), rng(), rng(), rng()};
EXPECT_THAT(values,
testing::ElementsAre(579252, 43785881, 464353103, 1501811174));
}
{
ExplicitSeedSeq seed_sequence{12, 34, 56};
std::mt19937 rng(seed_sequence);
std::mt19937::result_type values[4] = {rng(), rng(), rng(), rng()};
EXPECT_THAT(values, testing::ElementsAre(138416803, 151130212, 33817739,
138416803));
}
{
ExplicitSeedSeq seed_sequence{12, 34, 56};
std::mt19937_64 rng(seed_sequence);
std::mt19937_64::result_type values[4] = {rng(), rng(), rng(), rng()};
EXPECT_THAT(values,
testing::ElementsAre(19738651785169348, 1464811352364190456,
18054685302720800, 19738651785169348));
}
}
|