1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
|
#pragma once
// IWYU pragma: private, include "rlbox.hpp"
// IWYU pragma: friend "rlbox_.*\.hpp"
#include <array>
#include <cstring>
#include <limits>
#include <type_traits>
#include "rlbox_helpers.hpp"
#include "rlbox_type_traits.hpp"
#include "rlbox_types.hpp"
namespace rlbox::detail {
template<typename T_To, typename T_From>
inline constexpr void convert_type_fundamental(T_To& to,
const volatile T_From& from)
{
using namespace std;
if_constexpr_named(cond1, !is_fundamental_or_enum_v<T_To>)
{
rlbox_detail_static_fail_because(
cond1, "Conversion target should be fundamental or enum type");
}
else if_constexpr_named(cond2, !is_fundamental_or_enum_v<T_From>)
{
rlbox_detail_static_fail_because(
cond2, "Conversion source should be fundamental or enum type");
}
else if_constexpr_named(cond3, is_enum_v<T_To> || is_enum_v<T_From>)
{
static_assert(std::is_same_v<detail::remove_cv_ref_t<T_To>,
detail::remove_cv_ref_t<T_From>>);
to = from;
}
else if_constexpr_named(
cond4, is_floating_point_v<T_To> || is_floating_point_v<T_From>)
{
static_assert(is_floating_point_v<T_To> && is_floating_point_v<T_From>);
// language coerces different float types
to = from;
}
else if_constexpr_named(cond5, is_integral_v<T_To> || is_integral_v<T_From>)
{
static_assert(is_integral_v<T_To> && is_integral_v<T_From>);
const char* err_msg =
"Over/Underflow when converting between integer types";
// Some branches don't use the param
RLBOX_UNUSED(err_msg);
if constexpr (is_signed_v<T_To> == is_signed_v<T_From> &&
sizeof(T_To) >= sizeof(T_From)) {
// Eg: int64_t from int32_t, uint64_t from uint32_t
} else if constexpr (is_unsigned_v<T_To> && is_unsigned_v<T_From>) {
// Eg: uint32_t from uint64_t
dynamic_check(from <= numeric_limits<T_To>::max(), err_msg);
} else if constexpr (is_signed_v<T_To> && is_signed_v<T_From>) {
// Eg: int32_t from int64_t
dynamic_check(from >= numeric_limits<T_To>::min(), err_msg);
dynamic_check(from <= numeric_limits<T_To>::max(), err_msg);
} else if constexpr (is_unsigned_v<T_To> && is_signed_v<T_From>) {
if constexpr (sizeof(T_To) < sizeof(T_From)) {
// Eg: uint32_t from int64_t
dynamic_check(from >= 0, err_msg);
auto to_max = numeric_limits<T_To>::max();
dynamic_check(from <= static_cast<T_From>(to_max), err_msg);
} else {
// Eg: uint32_t from int32_t, uint64_t from int32_t
dynamic_check(from >= 0, err_msg);
}
} else if constexpr (is_signed_v<T_To> && is_unsigned_v<T_From>) {
if constexpr (sizeof(T_To) <= sizeof(T_From)) {
// Eg: int32_t from uint32_t, int32_t from uint64_t
auto to_max = numeric_limits<T_To>::max();
dynamic_check(from <= static_cast<T_From>(to_max), err_msg);
} else {
// Eg: int64_t from uint32_t
}
}
to = static_cast<T_To>(from);
}
else
{
constexpr auto unknownCase = !(cond1 || cond2 || cond3 || cond4 || cond5);
rlbox_detail_static_fail_because(
unknownCase, "Unexpected case for convert_type_fundamental");
}
}
template<typename T_To, typename T_From>
inline constexpr void convert_type_fundamental_or_array(T_To& to,
const T_From& from)
{
using namespace std;
using T_To_C = std_array_to_c_arr_t<T_To>;
using T_From_C = std_array_to_c_arr_t<T_From>;
using T_To_El = remove_all_extents_t<T_To_C>;
using T_From_El = remove_all_extents_t<T_From_C>;
if_constexpr_named(cond1, is_array_v<T_To_C> != is_array_v<T_From_C>)
{
rlbox_detail_static_fail_because(
cond1, "Conversion should not go between array and non array types");
}
else if constexpr (!is_array_v<T_To_C>)
{
convert_type_fundamental(to, from);
}
else if_constexpr_named(cond2, !all_extents_same<T_To_C, T_From_C>)
{
rlbox_detail_static_fail_because(
cond2, "Conversion between arrays should have same dimensions");
}
else if_constexpr_named(cond3,
is_pointer_v<T_To_El> || is_pointer_v<T_From_El>)
{
rlbox_detail_static_fail_because(cond3,
"convert_type_fundamental_or_array "
"does not allow arrays of pointers");
}
else
{
// Explicitly using size to check for element type as we may be going across
// different types of the same width such as void* and uintptr_t
if constexpr (sizeof(T_To_El) == sizeof(T_From_El) &&
is_signed_v<T_To_El> == is_signed_v<T_From_El>) {
// Sanity check - this should definitely be true
static_assert(sizeof(T_From_C) == sizeof(T_To_C));
std::memcpy(&to, &from, sizeof(T_To_C));
} else {
for (size_t i = 0; i < std::extent_v<T_To_C>; i++) {
convert_type_fundamental_or_array(to[i], from[i]);
}
}
}
}
enum class adjust_type_direction
{
TO_SANDBOX,
TO_APPLICATION,
NO_CHANGE
};
enum class adjust_type_context
{
EXAMPLE,
SANDBOX
};
template<typename T_Sbx,
adjust_type_direction Direction,
adjust_type_context Context,
typename T_To,
typename T_From>
inline constexpr void convert_type_non_class(
T_To& to,
const T_From& from,
const void* example_unsandboxed_ptr,
rlbox_sandbox<T_Sbx>* sandbox_ptr)
{
using namespace std;
// Some branches don't use the param
RLBOX_UNUSED(example_unsandboxed_ptr);
RLBOX_UNUSED(sandbox_ptr);
using T_To_C = std_array_to_c_arr_t<T_To>;
using T_From_C = std_array_to_c_arr_t<T_From>;
using T_To_El = remove_all_extents_t<T_To_C>;
using T_From_El = remove_all_extents_t<T_From_C>;
if constexpr (is_pointer_v<T_To_C> || is_pointer_v<T_From_C>) {
if constexpr (Direction == adjust_type_direction::NO_CHANGE) {
static_assert(is_pointer_v<T_To_C> && is_pointer_v<T_From_C> &&
sizeof(T_To_C) == sizeof(T_From_C));
to = from;
} else if constexpr (Direction == adjust_type_direction::TO_SANDBOX) {
static_assert(is_pointer_v<T_From_C>);
// Maybe a function pointer, so convert
auto from_c = reinterpret_cast<const void*>(from);
if constexpr (Context == adjust_type_context::SANDBOX) {
RLBOX_DEBUG_ASSERT(sandbox_ptr != nullptr);
to = sandbox_ptr->template get_sandboxed_pointer<T_From_C>(from_c);
} else {
RLBOX_DEBUG_ASSERT(from_c == nullptr ||
example_unsandboxed_ptr != nullptr);
to =
rlbox_sandbox<T_Sbx>::template get_sandboxed_pointer_no_ctx<T_From_C>(
from_c, example_unsandboxed_ptr);
}
} else if constexpr (Direction == adjust_type_direction::TO_APPLICATION) {
static_assert(is_pointer_v<T_To_C>);
if constexpr (Context == adjust_type_context::SANDBOX) {
RLBOX_DEBUG_ASSERT(sandbox_ptr != nullptr);
to = sandbox_ptr->template get_unsandboxed_pointer<T_To_C>(from);
} else {
RLBOX_DEBUG_ASSERT(from == 0 || example_unsandboxed_ptr != nullptr);
to =
rlbox_sandbox<T_Sbx>::template get_unsandboxed_pointer_no_ctx<T_To_C>(
from, example_unsandboxed_ptr);
}
}
} else if constexpr (is_pointer_v<T_To_El> || is_pointer_v<T_From_El>) {
if constexpr (Direction == adjust_type_direction::NO_CHANGE) {
// Sanity check - this should definitely be true
static_assert(sizeof(T_To_El) == sizeof(T_From_El) &&
sizeof(T_From_C) == sizeof(T_To_C));
memcpy(&to, &from, sizeof(T_To_C));
} else {
for (size_t i = 0; i < std::extent_v<T_To_C>; i++) {
convert_type_non_class<T_Sbx, Direction, Context>(
to[i], from[i], example_unsandboxed_ptr, sandbox_ptr);
}
}
} else {
convert_type_fundamental_or_array(to, from);
}
}
// Structs implement their own convert_type by specializing this class
// Have to do this via a class, as functions can't be partially specialized
template<typename T_Sbx,
adjust_type_direction Direction,
adjust_type_context Context,
typename T_To,
typename T_From>
class convert_type_class;
// The specialization implements the following
// {
// static inline void run(T_To& to,
// const T_From& from,
// const void* example_unsandboxed_ptr);
// }
template<typename T_Sbx,
adjust_type_direction Direction,
adjust_type_context Context,
typename T_To,
typename T_From>
inline void convert_type(T_To& to,
const T_From& from,
const void* example_unsandboxed_ptr,
rlbox_sandbox<T_Sbx>* sandbox_ptr)
{
if constexpr ((std::is_class_v<T_To> ||
std::is_class_v<T_From>)&&!detail::is_std_array_v<T_To> &&
!detail::is_std_array_v<T_From>) {
// Sanity check
static_assert(std::is_class_v<T_From> && std::is_class_v<T_To>);
convert_type_class<T_Sbx, Direction, Context, T_To, T_From>::run(
to, from, example_unsandboxed_ptr, sandbox_ptr);
} else {
convert_type_non_class<T_Sbx, Direction, Context>(
to, from, example_unsandboxed_ptr, sandbox_ptr);
}
}
}
|