1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935
|
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include "render.h"
#include "RenderTabs.h"
#include "debug.h"
#include "sam.h"
extern int debug;
void AddInflection(sam_memory* sam, unsigned char mem48, unsigned char phase1, unsigned char punctuation);
// contains the final soundbuffer
extern int bufferpos;
//timetable for more accurate c64 simulation
const int timetable[5][5] =
{
{162, 167, 167, 127, 128},
{226, 60, 60, 0, 0},
{225, 60, 59, 0, 0},
{200, 0, 0, 54, 55},
{199, 0, 0, 54, 54}
};
extern void SamOutputByte(unsigned int pos, unsigned char b);
void Output(int index, unsigned char A)
{
static unsigned oldtimetableindex = 0;
bufferpos += timetable[oldtimetableindex][index];
oldtimetableindex = index;
SamOutputByte(bufferpos, (A & 15)*16);
}
//written by me because of different table positions.
// mem[47] = ...
// 168=pitches
// 169=frequency1
// 170=frequency2
// 171=frequency3
// 172=amplitude1
// 173=amplitude2
// 174=amplitude3
unsigned char Read(sam_memory* sam, unsigned char p, unsigned char Y)
{
if (p > RENDER_FRAMES) {
sam_error = "Out-of-buffer read";
return 0;
}
switch(p)
{
case 168: return sam->render.pitch[Y];
case 169: return sam->render.freq_amp[Y].freq1;
case 170: return sam->render.freq_amp[Y].freq2;
case 171: return sam->render.freq_amp[Y].freq3;
case 172: return sam->render.freq_amp[Y].amp1;
case 173: return sam->render.freq_amp[Y].amp2;
case 174: return sam->render.freq_amp[Y].amp3;
}
sam_error = "Read error";
return 0;
}
void Write(sam_memory* sam, unsigned char p, unsigned char Y, unsigned char value)
{
if (p > RENDER_FRAMES) {
sam_error = "Out-of-buffer write";
return;
}
switch(p)
{
case 168: sam->render.pitch[Y] = value; return;
case 169: sam->render.freq_amp[Y].freq1 = value; return;
case 170: sam->render.freq_amp[Y].freq2 = value; return;
case 171: sam->render.freq_amp[Y].freq3 = value; return;
case 172: sam->render.freq_amp[Y].amp1 = value; return;
case 173: sam->render.freq_amp[Y].amp2 = value; return;
case 174: sam->render.freq_amp[Y].amp3 = value; return;
}
sam_error = "Write error";
}
// -------------------------------------------------------------------------
//Code48227
// Render a sampled sound from the sampleTable.
//
// Phoneme Sample Start Sample End
// 32: S* 15 255
// 33: SH 257 511
// 34: F* 559 767
// 35: TH 583 767
// 36: /H 903 1023
// 37: /X 1135 1279
// 38: Z* 84 119
// 39: ZH 340 375
// 40: V* 596 639
// 41: DH 596 631
//
// 42: CH
// 43: ** 399 511
//
// 44: J*
// 45: ** 257 276
// 46: **
//
// 66: P*
// 67: ** 743 767
// 68: **
//
// 69: T*
// 70: ** 231 255
// 71: **
//
// The SampledPhonemesTable[] holds flags indicating if a phoneme is
// voiced or not. If the upper 5 bits are zero, the sample is voiced.
//
// Samples in the sampleTable are compressed, with bits being converted to
// bytes from high bit to low, as follows:
//
// unvoiced 0 bit -> X
// unvoiced 1 bit -> 5
//
// voiced 0 bit -> 6
// voiced 1 bit -> 24
//
// Where X is a value from the table:
//
// { 0x18, 0x1A, 0x17, 0x17, 0x17 };
//
// The index into this table is determined by masking off the lower
// 3 bits from the SampledPhonemesTable:
//
// index = (SampledPhonemesTable[i] & 7) - 1;
//
// For voices samples, samples are interleaved between voiced output.
// Code48227()
unsigned char RenderSample(sam_memory* sam, unsigned char *mem66, unsigned sample, unsigned char pos)
{
int tempA;
// current phoneme's index
unsigned char mem47;
unsigned char mem49 = pos;
unsigned char mem53;
unsigned char mem56;
// mask low three bits and subtract 1 get value to
// convert 0 bits on unvoiced samples.
unsigned char A = sample&7;
unsigned char X = A-1;
// store the result
mem56 = X;
// determine which offset to use from table { 0x18, 0x1A, 0x17, 0x17, 0x17 }
// T, S, Z 0 0x18
// CH, J, SH, ZH 1 0x1A
// P, F*, V, TH, DH 2 0x17
// /H 3 0x17
// /X 4 0x17
// get value from the table
if (X >= sizeof(tab48426))
sam_error = "Out-of-buffer read";
mem53 = tab48426[X];
mem47 = X; //46016+mem[56]*256
// voiced sample?
A = sample & 248;
if(A == 0)
{
// voiced phoneme: Z*, ZH, V*, DH
pos = mem49;
A = sam->render.pitch[9] >> 4;
// jump to voiced portion
goto pos48315;
}
pos = A ^ 255;
pos48274:
// step through the 8 bits in the sample
mem56 = 8;
// get the next sample from the table
// mem47*256 = offset to start of samples
A = sampleTable[mem47*256+pos];
pos48280:
// left shift to get the high bit
tempA = A;
A = A << 1;
//48281: BCC 48290
// bit not set?
if ((tempA & 128) == 0)
{
// convert the bit to value from table
X = mem53;
//mem[54296] = X;
// output the byte
Output(1, X);
// if X != 0, exit loop
if(X != 0) goto pos48296;
}
// output a 5 for the on bit
Output(2, 5);
//48295: NOP
pos48296:
X = 0;
// decrement counter
mem56--;
// if not done, jump to top of loop
if (mem56 != 0) goto pos48280;
// increment position
pos++;
if (pos != 0) goto pos48274;
// restore values and return
pos = mem49;
return pos;
unsigned char phase1;
pos48315:
// handle voiced samples here
// number of samples?
phase1 = A ^ 255;
pos = *mem66;
do
{
//pos48321:
// shift through all 8 bits
mem56 = 8;
//A = Read(sam, mem47, pos);
// fetch value from table
A = sampleTable[mem47*256+pos];
// loop 8 times
//pos48327:
do
{
//48327: ASL A
//48328: BCC 48337
// left shift and check high bit
tempA = A;
A = A << 1;
if ((tempA & 128) != 0)
{
// if bit set, output 26
X = 26;
Output(3, X);
} else
{
//timetable 4
// bit is not set, output a 6
X=6;
Output(4, X);
}
mem56--;
} while(mem56 != 0);
// move ahead in the table
pos++;
// continue until counter done
phase1++;
} while (phase1 != 0);
// if (phase1 != 0) goto pos48321;
// restore values and return
A = 1;
*mem66 = pos;
pos = mem49;
return pos;
}
// RENDER THE PHONEMES IN THE LIST
//
// The phoneme list is converted into sound through the steps:
//
// 1. Copy each phoneme <length> number of times into the frames list,
// where each frame represents 10 milliseconds of sound.
//
// 2. Determine the transitions lengths between phonemes, and linearly
// interpolate the values across the frames.
//
// 3. Offset the pitches by the fundamental frequency.
//
// 4. Render the each frame.
//void Code47574()
void Render(sam_memory* sam)
{
unsigned char phase1 = 0; //mem43
unsigned char phase2;
unsigned char phase3;
unsigned char mem38;
unsigned char mem40;
unsigned char speedcounter; //mem45
unsigned char mem47;
unsigned char mem48;
unsigned char mem49;
unsigned char mem50;
unsigned char mem51;
unsigned char mem53;
unsigned char mem56;
unsigned char mem44 = 0;
int i;
if (sam->common.phoneme_output[0].index == PHONEME_END) return; //exit if no data
unsigned char A = 0;
unsigned char X = 0;
// CREATE FRAMES
//
// The length parameter in the list corresponds to the number of frames
// to expand the phoneme to. Each frame represents 10 milliseconds of time.
// So a phoneme with a length of 7 = 7 frames = 70 milliseconds duration.
//
// The parameters are copied from the phoneme to the frame verbatim.
do
{
// get the index
unsigned char Y = mem44;
// get the phoneme at the index
A = sam->common.phoneme_output[mem44].index;
mem56 = A;
// if terminal phoneme, exit the loop
if (A == PHONEME_END) break;
// period phoneme *.
if (A == 1)
{
// add rising inflection
A = 1;
mem48 = 1;
//goto pos48376;
AddInflection(sam, mem48, phase1, X);
}
/*
if (A == 2) goto pos48372;
*/
// question mark phoneme?
if (A == 2)
{
// create falling inflection
mem48 = 255;
AddInflection(sam, mem48, phase1, X);
}
// pos47615:
// get the stress amount (more stress = higher pitch)
phase1 = tab47492[sam->common.phoneme_output[Y].stress + 1];
// get number of frames to write
phase2 = sam->common.phoneme_output[Y].length;
unsigned char pitch = sam->common.phoneme_output[Y].pitch;
Y = mem56;
// copy from the source to the frames list
do
{
sam->render.freq_amp[X].freq1 = get_freq1(Y, sam->common.mouth); // F1 frequency
sam->render.freq_amp[X].freq2 = get_freq2(Y, sam->common.throat); // F2 frequency
sam->render.freq_amp[X].freq3 = freq3data[Y]; // F3 frequency
sam->render.freq_amp[X].amp1 = ampl1data[Y]; // F1 amplitude
sam->render.freq_amp[X].amp2 = ampl2data[Y]; // F2 amplitude
sam->render.freq_amp[X].amp3 = ampl3data[Y]; // F3 amplitude
sam->render.flags[X] = sampledConsonantFlags[Y]; // phoneme data for sampled consonants
sam->render.pitch[X] = pitch + phase1; // pitch
X++;
phase2--;
} while(phase2 != 0);
mem44++;
} while(mem44 != OUTPUT_PHONEMES);
// -------------------
//pos47694:
// CREATE TRANSITIONS
//
// Linear transitions are now created to smoothly connect the
// end of one sustained portion of a phoneme to the following
// phoneme.
//
// To do this, three tables are used:
//
// Table Purpose
// ========= ==================================================
// blendRank Determines which phoneme's blend values are used.
//
// blendOut The number of frames at the end of the phoneme that
// will be used to transition to the following phoneme.
//
// blendIn The number of frames of the following phoneme that
// will be used to transition into that phoneme.
//
// In creating a transition between two phonemes, the phoneme
// with the HIGHEST rank is used. Phonemes are ranked on how much
// their identity is based on their transitions. For example,
// vowels are and diphthongs are identified by their sustained portion,
// rather than the transitions, so they are given low values. In contrast,
// stop consonants (P, B, T, K) and glides (Y, L) are almost entirely
// defined by their transitions, and are given high rank values.
//
// Here are the rankings used by SAM:
//
// Rank Type Phonemes
// 2 All vowels IY, IH, etc.
// 5 Diphthong endings YX, WX, ER
// 8 Terminal liquid consonants LX, WX, YX, N, NX
// 9 Liquid consonants L, RX, W
// 10 Glide R, OH
// 11 Glide WH
// 18 Voiceless fricatives S, SH, F, TH
// 20 Voiced fricatives Z, ZH, V, DH
// 23 Plosives, stop consonants P, T, K, KX, DX, CH
// 26 Stop consonants J, GX, B, D, G
// 27-29 Stop consonants (internal) **
// 30 Unvoiced consonants /H, /X and Q*
// 160 Nasal M
//
// To determine how many frames to use, the two phonemes are
// compared using the blendRank[] table. The phoneme with the
// higher rank is selected. In case of a tie, a blend of each is used:
//
// if blendRank[phoneme1] == blendRank[phomneme2]
// // use lengths from each phoneme
// outBlendFrames = outBlend[phoneme1]
// inBlendFrames = outBlend[phoneme2]
// else if blendRank[phoneme1] > blendRank[phoneme2]
// // use lengths from first phoneme
// outBlendFrames = outBlendLength[phoneme1]
// inBlendFrames = inBlendLength[phoneme1]
// else
// // use lengths from the second phoneme
// // note that in and out are SWAPPED!
// outBlendFrames = inBlendLength[phoneme2]
// inBlendFrames = outBlendLength[phoneme2]
//
// Blend lengths can't be less than zero.
//
// Transitions are assumed to be symetrical, so if the transition
// values for the second phoneme are used, the inBlendLength and
// outBlendLength values are SWAPPED.
//
// For most of the parameters, SAM interpolates over the range of the last
// outBlendFrames-1 and the first inBlendFrames.
//
// The exception to this is the Pitch[] parameter, which is interpolates the
// pitch from the CENTER of the current phoneme to the CENTER of the next
// phoneme.
//
// Here are two examples. First, For example, consider the word "SUN" (S AH N)
//
// Phoneme Duration BlendWeight OutBlendFrames InBlendFrames
// S 2 18 1 3
// AH 8 2 4 4
// N 7 8 1 2
//
// The formant transitions for the output frames are calculated as follows:
//
// flags ampl1 freq1 ampl2 freq2 ampl3 freq3 pitch
// ------------------------------------------------
// S
// 241 0 6 0 73 0 99 61 Use S (weight 18) for transition instead of AH (weight 2)
// 241 0 6 0 73 0 99 61 <-- (OutBlendFrames-1) = (1-1) = 0 frames
// AH
// 0 2 10 2 66 0 96 59 * <-- InBlendFrames = 3 frames
// 0 4 14 3 59 0 93 57 *
// 0 8 18 5 52 0 90 55 *
// 0 15 22 9 44 1 87 53
// 0 15 22 9 44 1 87 53
// 0 15 22 9 44 1 87 53 Use N (weight 8) for transition instead of AH (weight 2).
// 0 15 22 9 44 1 87 53 Since N is second phoneme, reverse the IN and OUT values.
// 0 11 17 8 47 1 98 56 * <-- (InBlendFrames-1) = (2-1) = 1 frames
// N
// 0 8 12 6 50 1 109 58 * <-- OutBlendFrames = 1
// 0 5 6 5 54 0 121 61
// 0 5 6 5 54 0 121 61
// 0 5 6 5 54 0 121 61
// 0 5 6 5 54 0 121 61
// 0 5 6 5 54 0 121 61
// 0 5 6 5 54 0 121 61
//
// Now, consider the reverse "NUS" (N AH S):
//
// flags ampl1 freq1 ampl2 freq2 ampl3 freq3 pitch
// ------------------------------------------------
// N
// 0 5 6 5 54 0 121 61
// 0 5 6 5 54 0 121 61
// 0 5 6 5 54 0 121 61
// 0 5 6 5 54 0 121 61
// 0 5 6 5 54 0 121 61
// 0 5 6 5 54 0 121 61 Use N (weight 8) for transition instead of AH (weight 2)
// 0 5 6 5 54 0 121 61 <-- (OutBlendFrames-1) = (1-1) = 0 frames
// AH
// 0 8 11 6 51 0 110 59 * <-- InBlendFrames = 2
// 0 11 16 8 48 0 99 56 *
// 0 15 22 9 44 1 87 53 Use S (weight 18) for transition instead of AH (weight 2)
// 0 15 22 9 44 1 87 53 Since S is second phoneme, reverse the IN and OUT values.
// 0 9 18 5 51 1 90 55 * <-- (InBlendFrames-1) = (3-1) = 2
// 0 4 14 3 58 1 93 57 *
// S
// 241 2 10 2 65 1 96 59 * <-- OutBlendFrames = 1
// 241 0 6 0 73 0 99 61
A = 0;
mem44 = 0;
mem49 = 0; // mem49 starts at as 0
X = 0;
while(1) //while No. 1
{
// get the current and following phoneme
unsigned char Y = sam->common.phoneme_output[X].index;
A = sam->common.phoneme_output[X+1].index;
X++;
// exit loop at end token
if (A == PHONEME_END) break;//goto pos47970;
// get the ranking of each phoneme
X = A;
mem56 = blendRank[A];
A = blendRank[Y];
// compare the rank - lower rank value is stronger
if (A == mem56)
{
// same rank, so use out blend lengths from each phoneme
phase1 = outBlendLength[Y];
phase2 = outBlendLength[X];
} else
if (A < mem56)
{
// first phoneme is stronger, so us it's blend lengths
phase1 = inBlendLength[X];
phase2 = outBlendLength[X];
} else
{
// second phoneme is stronger, so use it's blend lengths
// note the out/in are swapped
phase1 = outBlendLength[Y];
phase2 = inBlendLength[Y];
}
Y = mem44;
A = mem49 + sam->common.phoneme_output[mem44].length; // A is mem49 + length
mem49 = A; // mem49 now holds length + position
A = A + phase2; //Maybe Problem because of carry flag
//47776: ADC 42
speedcounter = A;
mem47 = 168;
phase3 = mem49 - phase1; // what is mem49
A = phase1 + phase2; // total transition?
mem38 = A;
X = A;
X -= 2;
if ((X & 128) == 0)
do //while No. 2
{
//pos47810:
// mem47 is used to index the tables:
// 168 pitches[]
// 169 frequency1
// 170 frequency2
// 171 frequency3
// 172 amplitude1
// 173 amplitude2
// 174 amplitude3
mem40 = mem38;
if (mem47 == 168) // pitch
{
// unlike the other values, the pitches[] interpolates from
// the middle of the current phoneme to the middle of the
// next phoneme
unsigned char mem36, mem37;
// half the width of the current phoneme
mem36 = sam->common.phoneme_output[mem44].length >> 1;
// half the width of the next phoneme
mem37 = sam->common.phoneme_output[mem44+1].length >> 1;
// sum the values
mem40 = mem36 + mem37; // length of both halves
mem37 += mem49; // center of next phoneme
mem36 = mem49 - mem36; // center index of current phoneme
A = Read(sam, mem47, mem37); // value at center of next phoneme - end interpolation value
//A = mem[address];
Y = mem36; // start index of interpolation
mem53 = A - Read(sam, mem47, mem36); // value to center of current phoneme
} else
{
// value to interpolate to
A = Read(sam, mem47, speedcounter);
// position to start interpolation from
Y = phase3;
// value to interpolate from
mem53 = A - Read(sam, mem47, phase3);
}
// calculate change per frame
mem50 = (((signed char)(mem53) < 0) ? 128 : 0);
mem51 = abs((signed char)mem53) % mem40;
mem53 = (unsigned char)((signed char)(mem53) / mem40);
// interpolation range
X = mem40; // number of frames to interpolate over
Y = phase3; // starting frame
// linearly interpolate values
mem56 = 0;
//47907: CLC
//pos47908:
while(1) //while No. 3
{
A = Read(sam, mem47, Y) + mem53; //carry alway cleared
mem48 = A;
Y++;
X--;
if(X == 0) break;
mem56 += mem51;
if (mem56 >= mem40) //???
{
mem56 -= mem40; //carry? is set
//if ((mem56 & 128)==0)
if ((mem50 & 128)==0)
{
//47935: BIT 50
//47937: BMI 47943
if(mem48 != 0) mem48++;
} else mem48--;
}
//pos47945:
Write(sam, mem47, Y, mem48);
} //while No. 3
//pos47952:
mem47++;
//if (mem47 != 175) goto pos47810;
} while (mem47 != 175); //while No. 2
//pos47963:
mem44++;
X = mem44;
} //while No. 1
//goto pos47701;
//pos47970:
// add the length of this phoneme
mem48 = mem49 + sam->common.phoneme_output[mem44].length;
// ASSIGN PITCH CONTOUR
//
// This subtracts the F1 frequency from the pitch to create a
// pitch contour. Without this, the output would be at a single
// pitch level (monotone).
// don't adjust pitch if in sing mode
if (!sam->common.singmode)
{
// iterate through the buffer
for(i=0; i<RENDER_FRAMES; i++) {
// subtract half the frequency of the formant 1.
// this adds variety to the voice
sam->render.pitch[i] -= (sam->render.freq_amp[i].freq1 >> 1);
}
}
OutputFrames(sam, mem48);
}
void OutputFrames(sam_memory *sam, unsigned char frame_count) {
unsigned char phase1 = 0;
unsigned char phase2 = 0;
unsigned char phase3 = 0;
unsigned char speedcounter = 72; //sam standard speed
unsigned char mem66 = 0;
// RESCALE AMPLITUDE
// Rescale volume from decibels to a linear scale.
for(int i=RENDER_FRAMES-1; i>=0; i--)
{
sam->render.freq_amp[i].amp1 = amplitudeRescale[sam->render.freq_amp[i].amp1];
sam->render.freq_amp[i].amp2 = amplitudeRescale[sam->render.freq_amp[i].amp2];
sam->render.freq_amp[i].amp3 = amplitudeRescale[sam->render.freq_amp[i].amp3];
}
unsigned char Y = 0;
unsigned char A = sam->render.pitch[0];
unsigned char glottal_pulse = A;
unsigned char count = A - (A>>2); // 3/4*A ???
if (debug)
{
PrintOutput(sam->render.flags, sam->render.freq_amp, sam->render.pitch, frame_count);
}
// PROCESS THE FRAMES
//
// In traditional vocal synthesis, the glottal pulse drives filters, which
// are attenuated to the frequencies of the formants.
//
// SAM generates these formants directly with sin and rectangular waves.
// To simulate them being driven by the glottal pulse, the waveforms are
// reset at the beginning of each glottal pulse.
//finally the loop for sound output
//pos48078:
while(1)
{
// get the sampled information on the phoneme
A = sam->render.flags[Y];
unsigned char sample = A;
// unvoiced sampled phoneme?
A = A & 248;
if(A != 0)
{
// render the sample for the phoneme
Y = RenderSample(sam, &mem66, sample, Y);
// skip ahead two in the frame buffer
Y += 2;
frame_count -= 2;
} else
{
// simulate the glottal pulse and formants
unsigned char accum = multtable[sinus[phase1] | sam->render.freq_amp[Y].amp1];
int carry = 0;
if ((accum+multtable[sinus[phase2] | sam->render.freq_amp[Y].amp2] ) > 255) carry = 1;
accum += multtable[sinus[phase2] | sam->render.freq_amp[Y].amp2];
A = accum + multtable[rectangle[phase3] | sam->render.freq_amp[Y].amp3] + (carry?1:0);
A = ((A + 136) & 255) >> 4; //there must be also a carry
//mem[54296] = A;
// output the accumulated value
Output(0, A);
speedcounter--;
if (speedcounter != 0) goto pos48155;
Y++; //go to next amplitude
// decrement the frame count
frame_count--;
}
// if the frame count is zero, exit the loop
if(frame_count == 0) return;
speedcounter = sam->common.speed;
pos48155:
// decrement the remaining length of the glottal pulse
glottal_pulse--;
// finished with a glottal pulse?
if(glottal_pulse == 0)
{
pos48159:
// fetch the next glottal pulse length
A = sam->render.pitch[Y];
glottal_pulse = A;
A = A - (A>>2);
count = A;
// reset the formant wave generators to keep them in
// sync with the glottal pulse
phase1 = 0;
phase2 = 0;
phase3 = 0;
continue;
}
// decrement the count
count--;
// is the count non-zero and the sampled flag is zero?
if((count != 0) || (sample == 0)) {
// reset the phase of the formants to match the pulse
phase1 += sam->render.freq_amp[Y].freq1;
phase2 += sam->render.freq_amp[Y].freq2;
phase3 += sam->render.freq_amp[Y].freq3;
continue;
}
// voiced sampled phonemes interleave the sample with the
// glottal pulse. The sample flag is non-zero, so render
// the sample for the phoneme.
Y = RenderSample(sam, &mem66, sample, Y);
goto pos48159;
}
}
// Create a rising or falling inflection 30 frames prior to
// index X. A rising inflection is used for questions, and
// a falling inflection is used for statements.
void AddInflection(sam_memory* sam, unsigned char mem48, unsigned char phase1, unsigned char punctuation)
{
unsigned char A = punctuation;
int Atemp = A;
// backup 30 frames
A = A - 30;
// if index is before buffer, point to start of buffer
if (Atemp <= 30) A=0;
unsigned char X = A;
// FIXME: Explain this fix better, it's not obvious
// ML : A =, fixes a problem with invalid pitch with '.'
while( (A=sam->render.pitch[X]) == 127) X++;
while(1) {
// add the inflection direction
A += mem48;
phase1 = A;
// set the inflection
sam->render.pitch[X] = A;
do {
// increment the position
X++;
// exit if the punctuation has been reached
if (X == punctuation) return; //goto pos47615;
} while (sam->render.pitch[X] == 255);
A = phase1;
}
}
static inline unsigned char trans(unsigned char mem39212, unsigned char mem39213) {
return (mem39212*mem39213) >> 7;
}
/*
SAM's voice can be altered by changing the frequencies of the
mouth formant (F1) and the throat formant (F2). Only the voiced
phonemes (5-29 and 48-53) are altered.
*/
static const unsigned char recalculate[] = {
0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 1, 1,
1, 1, 1, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0
};
static const unsigned char mouth_formants[] = {
0, 0, 0, 0, 0, 10, 14, 19, 24, 27,
23, 21, 16, 20, 14, 18, 14, 18, 18, 16,
13, 15, 11, 18, 14, 11, 9, 6, 6, 6,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 19, 27,
21, 27, 18, 13, 0,
};
unsigned char get_freq1(unsigned char pos, unsigned char mouth) {
if (recalculate[pos]) {
return trans(mouth, mouth_formants[pos]);
} else {
return freq1data[pos];
}
}
static const unsigned char throat_formants[] = {
0, 0, 0, 0, 0, 84, 73, 67, 63, 40,
44, 31, 37, 45, 73, 49, 36, 30, 51, 37,
29, 69, 24, 50, 30, 24, 83, 46, 54, 86,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 72, 39,
31, 43, 30, 34, 0,
};
unsigned char get_freq2(unsigned char pos, unsigned char throat) {
if (recalculate[pos]) {
return trans(throat, throat_formants[pos]);
} else {
return freq2data[pos];
}
}
|