1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
|
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2016 Mark Shannon
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <string.h>
#include <stdio.h>
#include <errno.h>
#include <sys/stat.h>
#include "py/runtime.h"
#include "py/obj.h"
#include "py/gc.h"
#include "py/stream.h"
#include "microbit/filesystem.h"
#include "microbit/memory.h"
#define DEBUG_FILE 0
#if DEBUG_FILE
#define DEBUG(s) printf s
#else
#define DEBUG(s) (void)0
#endif
/** How it works:
* The File System consists of up to MAX_CHUNKS_IN_FILE_SYSTEM chunks of CHUNK_SIZE each,
* plus one spare page which holds persistent configuration data and is used. for bulk erasing.
* The spare page is either the first or the last page and will be switched by a bulk erase.
* The exact number of chunks will depend on the amount of flash available.
*
* Each chunk consists of a one byte marker and a one byte tail
* The marker shows whether this chunk is the start of a file, the midst of a file
* (in which case it refers to the previous chunk in the file) or whether it is UNUSED
* (and erased) or FREED (which means it is unused, but not erased).
* Chunks are selected in a randomised round-robin fashion to even out wear on the flash
* memory as much as possible.
* A file consists of a linked list of chunks. The first chunk in a file contains its name
* as well as the end chunk and offset.
* Files are found by linear search of the chunks, this means that no meta-data needs to be stored
* outside of the file, which prevents wear hot-spots. Since there are fewer than 250 chunks,
* the search is fast enough.
*
* Chunks are numbered from 1 as we need to reserve 0 as the FREED marker.
*
* Writing to files relies on the persistent API which is high-level wrapper on top of the Nordic SDK.
*/
/** Page indexes count down from the end of ROM */
static uint8_t first_page_index;
static uint8_t last_page_index;
/** The number of useable chunks in the file system */
static uint8_t chunks_in_file_system;
/** Index of chunk to start searches. This is randomised to even out wear */
static uint8_t start_index;
static file_chunk *file_system_chunks;
STATIC_ASSERT((sizeof(file_chunk) == CHUNK_SIZE));
static inline void *first_page(void) {
return microbit_end_of_rom() - persistent_page_size() * first_page_index;
}
static inline void *last_page(void) {
return microbit_end_of_rom() - persistent_page_size() * last_page_index;
}
static void init_limits(void) {
/* First determine where to end */
char *end = (char*)microbit_compass_calibration_page() - persistent_page_size();
last_page_index = (microbit_end_of_rom() - end)/persistent_page_size();
/** Now find the start */
char *start = roundup(end - CHUNK_SIZE*MAX_CHUNKS_IN_FILE_SYSTEM, persistent_page_size());
while (start < microbit_end_of_code()) {
start += persistent_page_size();
}
first_page_index = (microbit_end_of_rom() - start)/persistent_page_size();
chunks_in_file_system = (end-start)>>LOG_CHUNK_SIZE;
}
static void randomise_start_index(void) {
uint8_t new_index; // 0 based index.
NRF_RNG->TASKS_START = 1;
// Wait for valid number
do {
NRF_RNG->EVENTS_VALRDY = 0;
while(NRF_RNG->EVENTS_VALRDY == 0);
new_index = NRF_RNG->VALUE&255;
} while (new_index >= chunks_in_file_system);
start_index = new_index + 1; // Adjust index to 1 based.
NRF_RNG->TASKS_STOP = 1;
}
void microbit_filesystem_init(void) {
init_limits();
randomise_start_index();
file_chunk *base = first_page();
if (base->marker == PERSISTENT_DATA_MARKER) {
file_system_chunks = &base[(persistent_page_size()>>LOG_CHUNK_SIZE)-1];
} else if (((file_chunk *)last_page())->marker == PERSISTENT_DATA_MARKER) {
file_system_chunks = &base[-1];
} else {
persistent_write_byte_unchecked(&((file_chunk *)last_page())->marker, PERSISTENT_DATA_MARKER);
file_system_chunks = &base[-1];
}
}
static void copy_page(void *dest, void *src) {
DEBUG(("FILE DEBUG: Copying page from %lx to %lx.\r\n", (uint32_t)src, (uint32_t)dest));
persistent_erase_page(dest);
file_chunk *src_chunk = src;
file_chunk *dest_chunk = dest;
uint32_t chunks = persistent_page_size()>>LOG_CHUNK_SIZE;
for (uint32_t i = 0; i < chunks; i++) {
if (src_chunk[i].marker != FREED_CHUNK) {
persistent_write_unchecked(&dest_chunk[i], &src_chunk[i], CHUNK_SIZE);
}
}
}
/* Move entire file system up or down one page, copying all used chunks
* Freed chunks are not copied, so become erased.
* There should be no erased chunks before the sweep (or it would be unnecessary)
* but if there are this should work correctly.
*
* The direction of the sweep depends on whether the persistent data is in the first or last page
* The persistent data is copied to RAM, leaving its page unused.
* Then all the pages are copied, one by one, into the adjacent newly unused page.
* Finally, the persistent data is saved back to the opposite end of the filesystem from whence it came.
*/
void filesystem_sweep(void) {
persistent_config_t config;
uint8_t *page;
uint8_t *end_page;
int step;
uint32_t page_size = persistent_page_size();
DEBUG(("FILE DEBUG: Sweeping file system\r\n"));
if (((file_chunk *)first_page())->marker == PERSISTENT_DATA_MARKER) {
config = *(persistent_config_t *)first_page();
page = first_page();
end_page = last_page();
step = page_size;
} else {
config = *(persistent_config_t *)last_page();
page = last_page();
end_page = first_page();
step = -page_size;
}
while (page != end_page) {
uint8_t *next_page = page+step;
persistent_erase_page(page);
copy_page(page, next_page);
page = next_page;
}
persistent_erase_page(end_page);
persistent_write_unchecked(end_page, &config, sizeof(config));
microbit_filesystem_init();
}
static inline char *seek_address(file_descriptor_obj *self) {
return (char *)&(file_system_chunks[self->seek_chunk].data[self->seek_offset]);
}
uint8_t microbit_find_file(const char *name, int name_len) {
for (uint8_t index = 1; index <= chunks_in_file_system; index++) {
const file_chunk *p = &file_system_chunks[index];
if (p->marker != FILE_START)
continue;
if (p->header.name_len != name_len)
continue;
if (memcmp(name, &p->header.filename[0], name_len) == 0) {
DEBUG(("FILE DEBUG: File found. index %d\r\n", index));
return index;
}
}
DEBUG(("FILE DEBUG: File not found.\r\n"));
return FILE_NOT_FOUND;
}
/** Return a free, erased chunk.
* Search the chunks:
* 1 If an UNUSED chunk is found, then return that.
* 2. If an entire page of FREED chunks is found, then erase the page and return the first chunk
* 3. If the number of FREED chunks is >= MIN_FREE_CHUNKS_FOR_SWEEP, then
* 3a. Sweep the filesystem and restart.
* 3b. Fail and return FILE_NOT_FOUND
*/
static uint8_t find_chunk_and_erase(void) {
// Start search at a random chunk to spread the wear more evenly.
// Search for unused chunk
uint8_t index = start_index;
do {
const file_chunk *p = &file_system_chunks[index];
if (p->marker == UNUSED_CHUNK) {
DEBUG(("FILE DEBUG: Unused chunk found: %d\r\n", index));
return index;
}
index++;
if (index == chunks_in_file_system+1) index = 1;
} while (index != start_index);
// Search for FREED page, and total up FREED chunks
uint32_t freed_chunks = 0;
index = start_index;
uint32_t chunks_per_page = persistent_page_size()>>LOG_CHUNK_SIZE;
do {
const file_chunk *p = &file_system_chunks[index];
if (p->marker == FREED_CHUNK) {
freed_chunks++;
}
if (is_persistent_page_aligned(p)) {
uint32_t i;
for (i = 0; i < chunks_per_page; i++) {
if (p[i].marker != FREED_CHUNK)
break;
}
if (i == chunks_per_page) {
DEBUG(("FILE DEBUG: Found freed page of chunks: %d\r\n", index));
persistent_erase_page(&file_system_chunks[index]);
return index;
}
}
index++;
if (index == chunks_in_file_system+1) index = 1;
} while (index != start_index);
DEBUG(("FILE DEBUG: %lu free chunks\r\n", freed_chunks));
if (freed_chunks < MIN_CHUNKS_FOR_SWEEP) {
return FILE_NOT_FOUND;
}
// No freed pages, so sweep file system.
filesystem_sweep();
// This is guaranteed to succeed.
return find_chunk_and_erase();
}
mp_obj_t microbit_file_name(file_descriptor_obj *fd) {
return mp_obj_new_str(&(file_system_chunks[fd->start_chunk].header.filename[0]), file_system_chunks[fd->start_chunk].header.name_len, false);
}
static file_descriptor_obj *microbit_file_descriptor_new(uint8_t start_chunk, bool write, bool binary);
static void clear_file(uint8_t chunk) {
do {
persistent_write_byte_unchecked(&(file_system_chunks[chunk].marker), FREED_CHUNK);
DEBUG(("FILE DEBUG: Freeing chunk %d.\n", chunk));
chunk = file_system_chunks[chunk].next_chunk;
} while (chunk <= chunks_in_file_system);
}
file_descriptor_obj *microbit_file_open(const char *name, uint32_t name_len, bool write, bool binary) {
if (name_len > MAX_FILENAME_LENGTH) {
return NULL;
}
uint8_t index = microbit_find_file(name, name_len);
if (write) {
if (index != FILE_NOT_FOUND) {
// Free old file
clear_file(index);
}
index = find_chunk_and_erase();
if (index == FILE_NOT_FOUND) {
mp_raise_msg(&mp_type_OSError, "no more storage space");
}
persistent_write_byte_unchecked(&(file_system_chunks[index].marker), FILE_START);
persistent_write_byte_unchecked(&(file_system_chunks[index].header.name_len), name_len);
persistent_write_unchecked(&(file_system_chunks[index].header.filename[0]), name, name_len);
} else {
if (index == FILE_NOT_FOUND) {
return NULL;
}
}
return microbit_file_descriptor_new(index, write, binary);
}
static file_descriptor_obj *microbit_file_descriptor_new(uint8_t start_chunk, bool write, bool binary) {
file_descriptor_obj *res = m_new_obj(file_descriptor_obj);
if (binary) {
res->base.type = µbit_bytesio_type;
} else {
res->base.type = µbit_textio_type;
}
res->start_chunk = start_chunk;
res->seek_chunk = start_chunk;
res->seek_offset = file_system_chunks[start_chunk].header.name_len+2;
res->writable = write;
res->open = true;
res->binary = binary;
return res;
}
mp_obj_t microbit_remove(mp_obj_t filename) {
mp_uint_t name_len;
const char *name = mp_obj_str_get_data(filename, &name_len);
mp_uint_t index = microbit_find_file(name, name_len);
if (index == 255) {
mp_raise_msg(&mp_type_OSError, "file not found");
}
clear_file(index);
return mp_const_none;
}
static void check_file_open(file_descriptor_obj *self) {
if (!self->open) {
mp_raise_ValueError("I/O operation on closed file");
}
}
static int advance(file_descriptor_obj *self, uint32_t n, bool write) {
DEBUG(("FILE DEBUG: Advancing from chunk %d, offset %d.\r\n", self->seek_chunk, self->seek_offset));
self->seek_offset += n;
if (self->seek_offset == DATA_PER_CHUNK) {
self->seek_offset = 0;
if (write) {
uint8_t next_chunk = find_chunk_and_erase();
if (next_chunk == FILE_NOT_FOUND) {
clear_file(self->start_chunk);
self->open = false;
return ENOSPC;
}
/* Link next chunk to this one */
persistent_write_byte_unchecked(&(file_system_chunks[self->seek_chunk].next_chunk), next_chunk);
persistent_write_byte_unchecked(&(file_system_chunks[next_chunk].marker), self->seek_chunk);
}
self->seek_chunk = file_system_chunks[self->seek_chunk].next_chunk;
}
DEBUG(("FILE DEBUG: Advanced to chunk %d, offset %d.\r\n", self->seek_chunk, self->seek_offset));
return 0;
}
mp_uint_t microbit_file_read(mp_obj_t obj, void *buf, mp_uint_t size, int *errcode) {
file_descriptor_obj *self = (file_descriptor_obj *)obj;
check_file_open(self);
if (self->writable || file_system_chunks[self->start_chunk].marker == FREED_CHUNK) {
*errcode = EBADF;
return MP_STREAM_ERROR;
}
uint32_t bytes_read = 0;
uint8_t *data = buf;
while (1) {
mp_uint_t to_read = DATA_PER_CHUNK - self->seek_offset;
if (file_system_chunks[self->seek_chunk].next_chunk == UNUSED_CHUNK) {
uint8_t end_offset = file_system_chunks[self->start_chunk].header.end_offset;
if (end_offset == UNUSED_CHUNK) {
to_read = 0;
} else {
to_read = min(to_read, (mp_uint_t)end_offset-self->seek_offset);
}
}
to_read = min(to_read, size-bytes_read);
if (to_read == 0) {
break;
}
memcpy(data+bytes_read, seek_address(self), to_read);
advance(self, to_read, false);
bytes_read += to_read;
}
return bytes_read;
}
mp_uint_t microbit_file_write(mp_obj_t obj, const void *buf, mp_uint_t size, int *errcode) {
file_descriptor_obj *self = (file_descriptor_obj *)obj;
check_file_open(self);
if (!self->writable || file_system_chunks[self->start_chunk].marker == FREED_CHUNK) {
*errcode = EBADF;
return MP_STREAM_ERROR;
}
uint32_t len = size;
const uint8_t *data = buf;
while (len) {
uint32_t to_write = min(((uint32_t)(DATA_PER_CHUNK - self->seek_offset)), len);
persistent_write_unchecked(seek_address(self), data, to_write);
int err = advance(self, to_write, true);
if (err) {
*errcode = err;
return MP_STREAM_ERROR;
}
data += to_write;
len -= to_write;
}
return size;
}
void microbit_file_close(file_descriptor_obj *fd) {
if (fd->writable) {
persistent_write_byte_unchecked(&(file_system_chunks[fd->start_chunk].header.end_offset), fd->seek_offset);
}
fd->open = false;
}
mp_obj_t microbit_file_list(void) {
mp_obj_t res = mp_obj_new_list(0, NULL);
for (uint8_t index = 1; index <= chunks_in_file_system; index++) {
if (file_system_chunks[index].marker == FILE_START) {
mp_obj_t name = mp_obj_new_str(&file_system_chunks[index].header.filename[0], file_system_chunks[index].header.name_len, false);
mp_obj_list_append(res, name);
}
}
return res;
}
mp_obj_t microbit_file_size(mp_obj_t filename) {
mp_uint_t name_len;
const char *name = mp_obj_str_get_data(filename, &name_len);
uint8_t chunk = microbit_find_file(name, name_len);
if (chunk == 255) {
mp_raise_msg(&mp_type_OSError, "file not found");
}
mp_uint_t len = 0;
uint8_t end_offset = file_system_chunks[chunk].header.end_offset;
uint8_t offset = file_system_chunks[chunk].header.name_len+2;
while (file_system_chunks[chunk].next_chunk != UNUSED_CHUNK) {
len += DATA_PER_CHUNK - offset;
chunk = file_system_chunks[chunk].next_chunk;
offset = 0;
}
len += end_offset - offset;
return mp_obj_new_int(len);
}
static mp_uint_t file_read_byte(void *fd_in) {
file_descriptor_obj *fd = fd_in;
if (file_system_chunks[fd->seek_chunk].next_chunk == UNUSED_CHUNK) {
uint8_t end_offset = file_system_chunks[fd->start_chunk].header.end_offset;
if (end_offset == UNUSED_CHUNK || fd->seek_offset == end_offset) {
return (mp_uint_t)-1;
}
}
mp_uint_t res = file_system_chunks[fd->seek_chunk].data[fd->seek_offset];
advance(fd, 1, false);
return res;
}
mp_lexer_t *microbit_file_lexer(qstr src_name, file_descriptor_obj *fd) {
mp_reader_t reader = {fd, file_read_byte, (void(*)(void*))microbit_file_close};
return mp_lexer_new(src_name, reader);
}
mp_lexer_t *mp_lexer_new_from_file(const char *filename) {
file_descriptor_obj *fd = microbit_file_open(filename, strlen(filename), false, false);
if (fd == NULL)
return NULL;
return microbit_file_lexer(qstr_from_str(filename), fd);
}
|