1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
|
#include "lib/ticker.h"
#include "lib/pwm.h"
#include "microbit/memory.h"
#include "microbit/filesystem.h"
#include "microbit/microbitdal.h"
#include "MicroBitButton.h"
// Global instances of the mbed/DAL components that we use
gpio_t reset_button_gpio;
gpio_irq_t reset_button_gpio_irq;
MicroBitDisplay ubit_display;
MicroPythonI2C ubit_i2c(I2C_SDA0, I2C_SCL0);
// Global pointers to instances of DAL components that are created dynamically
MicroBitAccelerometer *ubit_accelerometer;
MicroBitCompass *ubit_compass;
MicroBitCompassCalibrator *ubit_compass_calibrator;
extern "C" {
#include "py/stackctrl.h"
#include "py/gc.h"
#include "py/compile.h"
#include "py/runtime.h"
#include "py/mphal.h"
#include "lib/mp-readline/readline.h"
#include "lib/utils/pyexec.h"
#include "microbit/modmicrobit.h"
#include "microbit/modmusic.h"
void reset_button_handler(uint32_t data, gpio_irq_event event) {
(void)data;
if (event == IRQ_FALL) {
microbit_reset();
}
}
void microbit_ticker(void) {
// Update compass if it is calibrating, but not if it is still
// updating as compass.idleTick() is not reentrant.
if (ubit_compass->isCalibrating() && !compass_updating) {
ubit_compass->idleTick();
}
compass_up_to_date = false;
accelerometer_up_to_date = false;
// Update buttons and pins with touch.
microbit_button_tick();
// Update the display.
microbit_display_tick();
// Update the music
microbit_music_tick();
}
static void microbit_display_exception(mp_obj_t exc_in) {
mp_uint_t n, *values;
mp_obj_exception_get_traceback(exc_in, &n, &values);
if (1) {
vstr_t vstr;
mp_print_t print;
vstr_init_print(&vstr, 50, &print);
#if MICROPY_ENABLE_SOURCE_LINE
if (n >= 3) {
mp_printf(&print, "line %u ", values[1]);
}
#endif
if (mp_obj_is_native_exception_instance(exc_in)) {
mp_obj_exception_t *exc = (mp_obj_exception_t*)MP_OBJ_TO_PTR(exc_in);
mp_printf(&print, "%q ", exc->base.type->name);
if (exc->args != NULL && exc->args->len != 0) {
mp_obj_print_helper(&print, exc->args->items[0], PRINT_STR);
}
}
// Allow ctrl-C to stop the scrolling message
mp_hal_set_interrupt_char(CHAR_CTRL_C);
mp_hal_display_string(vstr_null_terminated_str(&vstr));
vstr_clear(&vstr);
mp_hal_set_interrupt_char(-1);
// This is a variant of mp_handle_pending that swallows exceptions
#if MICROPY_ENABLE_SCHEDULER
#error Scheduler currently unsupported
#endif
if (MP_STATE_VM(mp_pending_exception) != MP_OBJ_NULL) {
MP_STATE_VM(mp_pending_exception) = MP_OBJ_NULL;
}
}
}
static void do_lexer(mp_lexer_t *lex) {
if (lex == NULL) {
printf("MemoryError: lexer could not allocate memory\n");
return;
}
nlr_buf_t nlr;
if (nlr_push(&nlr) == 0) {
qstr source_name = lex->source_name;
mp_parse_tree_t parse_tree = mp_parse(lex, MP_PARSE_FILE_INPUT);
mp_obj_t module_fun = mp_compile(&parse_tree, source_name, MP_EMIT_OPT_NONE, false);
mp_hal_set_interrupt_char(3); // allow ctrl-C to interrupt us
mp_call_function_0(module_fun);
mp_hal_set_interrupt_char(-1); // disable interrupt
nlr_pop();
} else {
// uncaught exception
mp_hal_set_interrupt_char(-1); // disable interrupt
// print exception to stdout
mp_obj_print_exception(&mp_plat_print, (mp_obj_t)nlr.ret_val);
// print exception to the display, but not if it's SystemExit or KeyboardInterrupt
mp_obj_type_t *exc_type = mp_obj_get_type((mp_obj_t)nlr.ret_val);
if (!mp_obj_is_subclass_fast(exc_type, &mp_type_SystemExit)
&& !mp_obj_is_subclass_fast(exc_type, &mp_type_KeyboardInterrupt)) {
microbit_display_exception(nlr.ret_val);
}
}
}
static void do_strn(const char *src, size_t len) {
mp_lexer_t *lex = mp_lexer_new_from_str_len(MP_QSTR___main__, src, len, 0);
do_lexer(lex);
}
static void do_file(file_descriptor_obj *fd) {
mp_lexer_t *lex = microbit_file_lexer(MP_QSTR___main__, fd);
do_lexer(lex);
}
typedef struct _appended_script_t {
byte header[2]; // should be "MP"
uint16_t len; // length of script stored little endian
char str[]; // data of script
} appended_script_t;
#define APPENDED_SCRIPT ((const appended_script_t*)microbit_mp_appended_script())
int main(void) {
// Configure the soft reset button
gpio_init_in(&reset_button_gpio, MICROBIT_PIN_BUTTON_RESET);
gpio_mode(&reset_button_gpio, PullUp);
gpio_irq_init(&reset_button_gpio_irq, MICROBIT_PIN_BUTTON_RESET, &reset_button_handler, 1 /* dummy, must be non-zero */);
gpio_irq_set(&reset_button_gpio_irq, IRQ_FALL, 1);
// Create dynamically-allocated DAL components
ubit_accelerometer = &MicroBitAccelerometer::autoDetect(ubit_i2c);
ubit_compass = &MicroBitCompass::autoDetect(ubit_i2c);
ubit_compass_calibrator = new MicroBitCompassCalibrator(*ubit_compass, *ubit_accelerometer, ubit_display);
for (;;) {
extern uint32_t __StackTop;
static uint32_t mp_heap[10240 / sizeof(uint32_t)];
// Initialise memory regions: stack and MicroPython heap
mp_stack_set_top(&__StackTop);
mp_stack_set_limit(1800); // stack is 2k
gc_init(mp_heap, (uint8_t*)mp_heap + sizeof(mp_heap));
// Initialise the MicroPython runtime
mp_init();
mp_hal_init();
readline_init0();
// Initialise the micro:bit peripherals
microbit_seed_random();
ubit_display.disable();
microbit_display_init();
microbit_filesystem_init();
microbit_pin_init();
microbit_compass_init();
pwm_init();
MP_STATE_PORT(radio_buf) = NULL;
// Start our ticker
// Note that the DAL has a separate ticker which is also running
ticker_init(microbit_ticker);
ticker_start();
pwm_start();
// Only run initial script (or import from microbit) if we are in "friendly REPL"
// mode. If we are in "raw REPL" mode then this will be skipped.
if (pyexec_mode_kind == PYEXEC_MODE_FRIENDLY_REPL) {
file_descriptor_obj *main_module;
if ((main_module = microbit_file_open("main.py", 7, false, false))) {
do_file(main_module);
} else if (APPENDED_SCRIPT->header[0] == 'M' && APPENDED_SCRIPT->header[1] == 'P') {
// run appended script
do_strn(APPENDED_SCRIPT->str, APPENDED_SCRIPT->len);
} else {
// from microbit import *
mp_import_all(mp_import_name(MP_QSTR_microbit, mp_const_empty_tuple, MP_OBJ_NEW_SMALL_INT(0)));
}
}
// Run the REPL until the user wants to exit
for (;;) {
if (pyexec_mode_kind == PYEXEC_MODE_RAW_REPL) {
if (pyexec_raw_repl() != 0) {
break;
}
} else {
if (pyexec_friendly_repl() != 0) {
break;
}
}
}
// Print the special string for pyboard.py to detect the soft reset
mp_hal_stdout_tx_str("soft reboot\r\n");
// Stop the ticker to prevent any background tasks from running
ticker_stop();
// Reset state associated with background tasks
memset(&MP_STATE_PORT(async_data)[0], 0, sizeof(MP_STATE_PORT(async_data)));
MP_STATE_PORT(audio_buffer) = NULL;
MP_STATE_PORT(music_data) = NULL;
}
}
mp_import_stat_t mp_import_stat(const char *path) {
if (microbit_find_file(path, strlen(path)) != FILE_NOT_FOUND) {
return MP_IMPORT_STAT_FILE;
}
return MP_IMPORT_STAT_NO_EXIST;
}
NORETURN void nlr_jump_fail(void *val) {
(void)val;
for (;;) {
}
}
// We need to override this function so that the linker does not pull in
// unnecessary code and static RAM usage for unused system exit functionality.
// There can be large static data structures to store the exit functions.
void __register_exitproc() {
}
}
|