File: modradio.cpp

package info (click to toggle)
firmware-microbit-micropython 1.0.1-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid
  • size: 25,448 kB
  • sloc: ansic: 83,496; cpp: 27,664; python: 2,475; asm: 274; makefile: 245; javascript: 41; sh: 25
file content (539 lines) | stat: -rw-r--r-- 19,753 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
/*
 * This file is part of the MicroPython project, http://micropython.org/
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2016 Damien P. George
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

extern "C" {

#include <stdio.h>
#include <string.h>

#include "us_ticker_api.h"
#include "py/runtime0.h"
#include "py/runtime.h"
#include "py/smallint.h"
#include "microbit/modmicrobit.h"

// Packets are stored in the queue as a sequence of bytes of the form:
//
//  len  - byte
//  data - "len" bytes
//  RSSI - byte
//  time - 4 bytes, little endian, microsecond timestamp
//
// "len" is first because it is written by the hardware, followed by the data.
#define RADIO_PACKET_OVERHEAD       (1 + 1 + 4) // 1 byte for len, 1 byte for RSSI, 4 bytes for time

#define RADIO_DEFAULT_MAX_PAYLOAD   (32)
#define RADIO_DEFAULT_QUEUE_LEN     (3)
#define RADIO_DEFAULT_CHANNEL       (7)
#define RADIO_DEFAULT_POWER_DBM     (0)
#define RADIO_DEFAULT_BASE0         (0x75626974) // "uBit"
#define RADIO_DEFAULT_PREFIX0       (0)
#define RADIO_DEFAULT_DATA_RATE     (RADIO_MODE_MODE_Nrf_1Mbit)

#define RADIO_MAX_CHANNEL           (83) // maximum allowed frequency is 2483.5 MHz

typedef struct _radio_state_t {
    uint8_t max_payload;    // 1-251 inclusive
    uint8_t queue_len;      // 1-254 inclusive
    uint8_t channel;        // 0-100 inclusive
    int8_t power_dbm;       // one of: -30, -20, -16, -12, -8, -4, 0, 4
    uint32_t base0;         // for BASE0 register
    uint8_t prefix0;        // for PREFIX0 register (lower 8 bits only)
    uint8_t data_rate;      // one of: RADIO_MODE_MODE_Nrf_{250Kbit,1Mbit,2Mbit}
} radio_state_t;

static radio_state_t radio_state;
static uint8_t *rx_buf_end = NULL; // pointer to the end of the allocated RX queue
static uint8_t *rx_buf = NULL; // pointer to last packet on the RX queue

void RADIO_IRQHandler(void) {
    if (NRF_RADIO->EVENTS_READY) {
        NRF_RADIO->EVENTS_READY = 0;
        NRF_RADIO->TASKS_START = 1;
    }

    if (NRF_RADIO->EVENTS_END) {
        NRF_RADIO->EVENTS_END = 0;

        size_t max_len = NRF_RADIO->PCNF1 & 0xff;
        uint8_t *pkt = MP_STATE_PORT(radio_buf);
        size_t len = pkt[0];
        if (len > max_len) {
            len = max_len;
            pkt[0] = len;
        }

        // if the CRC was valid, and there's enough room in the RX queue, then accept the packet
        if (NRF_RADIO->CRCSTATUS == 1 && rx_buf + RADIO_PACKET_OVERHEAD + len <= rx_buf_end) {
            // copy the data to the queue
            memcpy(rx_buf, pkt, 1 + len);

            // store RSSI as last byte in packet (needs to be negated to get actual dBm value)
            rx_buf[1 + len] = NRF_RADIO->RSSISAMPLE;

            // get and store the microsecond timestamp
            uint32_t time = us_ticker_read();
            rx_buf[1 + len + 1] = time & 0xff;
            rx_buf[1 + len + 2] = (time >> 8) & 0xff;
            rx_buf[1 + len + 3] = (time >> 16) & 0xff;
            rx_buf[1 + len + 4] = (time >> 24) & 0xff;

            // move the RX queue pointer to end of this new packet
            rx_buf += RADIO_PACKET_OVERHEAD + len;
        }

        NRF_RADIO->TASKS_START = 1;
    }
}

static void ensure_enabled(void) {
    if (MP_STATE_PORT(radio_buf) == NULL) {
        mp_raise_ValueError("radio is not enabled");
    }
}

static void radio_disable(void) {
    NVIC_DisableIRQ(RADIO_IRQn);
    NRF_RADIO->EVENTS_DISABLED = 0;
    NRF_RADIO->TASKS_DISABLE = 1;
    while (NRF_RADIO->EVENTS_DISABLED == 0);
    // free any old buffers
    if (MP_STATE_PORT(radio_buf) != NULL) {
        m_del(uint8_t, MP_STATE_PORT(radio_buf), rx_buf_end - MP_STATE_PORT(radio_buf));
        MP_STATE_PORT(radio_buf) = NULL;
    }
}

static void radio_enable(void) {
    radio_disable();

    // allocate tx and rx buffers
    size_t max_payload = radio_state.max_payload + RADIO_PACKET_OVERHEAD;
    size_t queue_len = radio_state.queue_len + 1; // one extra for tx/rx buffer
    MP_STATE_PORT(radio_buf) = m_new(uint8_t, max_payload * queue_len);
    rx_buf_end = MP_STATE_PORT(radio_buf) + max_payload * queue_len;
    rx_buf = MP_STATE_PORT(radio_buf) + max_payload; // start is tx/rx buffer

    // Enable the High Frequency clock on the processor. This is a pre-requisite for
    // the RADIO module. Without this clock, no communication is possible.
    NRF_CLOCK->EVENTS_HFCLKSTARTED = 0;
    NRF_CLOCK->TASKS_HFCLKSTART = 1;
    while (NRF_CLOCK->EVENTS_HFCLKSTARTED == 0);

    // power should be one of: -30, -20, -16, -12, -8, -4, 0, 4
    NRF_RADIO->TXPOWER = radio_state.power_dbm;

    // should be between 0 and 100 inclusive (actual physical freq is 2400MHz + this register)
    NRF_RADIO->FREQUENCY = radio_state.channel;

    // configure data rate
    NRF_RADIO->MODE = radio_state.data_rate;

    // The radio supports filtering packets at the hardware level based on an address.
    // We use a 5-byte address comprised of 4 bytes (set by BALEN=4 below) from the BASEx
    // register, plus 1 byte from PREFIXm.APn.
    // The (x,m,n) values are selected by the logical address.  We use logical address 0
    // which means using BASE0 with PREFIX0.AP0.
    NRF_RADIO->BASE0 = radio_state.base0;
    NRF_RADIO->PREFIX0 = radio_state.prefix0;
    NRF_RADIO->TXADDRESS = 0; // transmit on logical address 0
    NRF_RADIO->RXADDRESSES = 1; // a bit mask, listen only to logical address 0

    // LFLEN=8 bits, S0LEN=0, S1LEN=0
    NRF_RADIO->PCNF0 = 0x00000008;
    // STATLEN=0, BALEN=4, ENDIAN=0 (little), WHITEEN=1
    NRF_RADIO->PCNF1 = 0x02040000 | radio_state.max_payload;

    // Enable automatic 16bit CRC generation and checking, and configure how the CRC is calculated.
    NRF_RADIO->CRCCNF = RADIO_CRCCNF_LEN_Two;
    NRF_RADIO->CRCINIT = 0xFFFF;
    NRF_RADIO->CRCPOLY = 0x11021;

    // Set the start random value of the data whitening algorithm. This can be any non zero number.
    NRF_RADIO->DATAWHITEIV = 0x18;

    // Set the tx/rx packet buffer (must be in RAM).
    NRF_RADIO->PACKETPTR = (uint32_t)MP_STATE_PORT(radio_buf);

    // configure interrupts
    NRF_RADIO->INTENSET = 0x00000008;
    NVIC_SetPriority(RADIO_IRQn, 3);
    NVIC_ClearPendingIRQ(RADIO_IRQn);
    NVIC_EnableIRQ(RADIO_IRQn);

    NRF_RADIO->SHORTS |= RADIO_SHORTS_ADDRESS_RSSISTART_Msk;

    // enable receiver
    NRF_RADIO->EVENTS_READY = 0;
    NRF_RADIO->TASKS_RXEN = 1;
    while (NRF_RADIO->EVENTS_READY == 0);

    NRF_RADIO->EVENTS_END = 0;
    NRF_RADIO->TASKS_START = 1;
}

void radio_send(const void *buf, size_t len, const void *buf2, size_t len2) {
    ensure_enabled();

    // transmission will occur synchronously
    NVIC_DisableIRQ(RADIO_IRQn);

    // Turn off the transceiver.
    NRF_RADIO->EVENTS_DISABLED = 0;
    NRF_RADIO->TASKS_DISABLE = 1;
    while (NRF_RADIO->EVENTS_DISABLED == 0);

    // construct the packet
    // note: we must send from RAM
    size_t max_len = NRF_RADIO->PCNF1 & 0xff;
    if (len + len2 > max_len) {
        if (len > max_len) {
            len = max_len;
            len2 = 0;
        } else {
            len2 = max_len - len;
        }
    }
    MP_STATE_PORT(radio_buf)[0] = len + len2;
    memcpy(MP_STATE_PORT(radio_buf) + 1, buf, len);
    if (len2 != 0) {
        memcpy(MP_STATE_PORT(radio_buf) + 1 + len, buf2, len2);
    }

    // Turn on the transmitter, and wait for it to signal that it's ready to use.
    NRF_RADIO->EVENTS_READY = 0;
    NRF_RADIO->TASKS_TXEN = 1;
    while (NRF_RADIO->EVENTS_READY == 0);

    // Start transmission and wait for end of packet.
    NRF_RADIO->TASKS_START = 1;
    NRF_RADIO->EVENTS_END = 0;
    while (NRF_RADIO->EVENTS_END == 0);

    // Turn off the transmitter.
    NRF_RADIO->EVENTS_DISABLED = 0;
    NRF_RADIO->TASKS_DISABLE = 1;
    while (NRF_RADIO->EVENTS_DISABLED == 0);

    // Start listening for the next packet
    NRF_RADIO->EVENTS_READY = 0;
    NRF_RADIO->TASKS_RXEN = 1;
    while (NRF_RADIO->EVENTS_READY == 0);

    NRF_RADIO->EVENTS_END = 0;
    NRF_RADIO->TASKS_START = 1;

    NVIC_ClearPendingIRQ(RADIO_IRQn);
    NVIC_EnableIRQ(RADIO_IRQn);
}

static mp_obj_t radio_receive(uint8_t *header, mp_buffer_info_t *bufinfo, uint32_t *data_out) {
    ensure_enabled();

    // disable the radio irq while we receive the packet
    NVIC_DisableIRQ(RADIO_IRQn);

    // get the pointer to the next packet
    uint8_t *buf = MP_STATE_PORT(radio_buf) + (NRF_RADIO->PCNF1 & 0xff) + RADIO_PACKET_OVERHEAD; // skip tx buf

    // return None if there are no packets waiting
    if (rx_buf == buf) {
        NVIC_EnableIRQ(RADIO_IRQn);
        return mp_const_none;
    }

    // convert the packet data into a Python object
    size_t len = buf[0];
    mp_obj_t ret;
    if (header == NULL) {
        if (bufinfo == NULL) {
            ret = mp_obj_new_bytes(buf + 1, len); // if it raises the radio irq remains disabled...
        } else {
            memmove(bufinfo->buf, buf+1, len < bufinfo->len ? len : bufinfo->len);
            ret = MP_OBJ_NEW_SMALL_INT(len);
        }
    } else {
        if (len < 3) {
            header[0] = 0;
            header[1] = 0;
            header[2] = 0;
            header[3] = 0;
            ret = MP_OBJ_NEW_QSTR(MP_QSTR_); // empty str
        } else {
            memcpy(header, buf, 4);
            ret = mp_obj_new_str((char*)buf + 4, len - 3, false); // if it raises the radio irq remains disabled...
        }
    }

    if (data_out != NULL) {
        // return the RSSI (to be interpreted as a signed value)
        *data_out = -buf[1 + len];

        // return the timestamp
        data_out[1] = buf[1 + len + 1] | buf[1 + len + 2] << 8
            | buf[1 + len + 3] << 16 | buf[1 + len + 4] << 24;
    }

    // copy the rest of the packets down and restart the radio
    memmove(buf, buf + RADIO_PACKET_OVERHEAD + len, rx_buf - (buf + RADIO_PACKET_OVERHEAD + len));
    rx_buf -= RADIO_PACKET_OVERHEAD + len;
    NVIC_EnableIRQ(RADIO_IRQn);

    return ret;
}

/*****************************************************************************/
// MicroPython bindings and module

STATIC mp_obj_t mod_radio_reset(void) {
    radio_state.max_payload = RADIO_DEFAULT_MAX_PAYLOAD;
    radio_state.queue_len = RADIO_DEFAULT_QUEUE_LEN;
    radio_state.channel = RADIO_DEFAULT_CHANNEL;
    radio_state.power_dbm = RADIO_DEFAULT_POWER_DBM;
    radio_state.base0 = RADIO_DEFAULT_BASE0;
    radio_state.prefix0 = RADIO_DEFAULT_PREFIX0;
    radio_state.data_rate = RADIO_DEFAULT_DATA_RATE;
    return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_0(mod_radio_reset_obj, mod_radio_reset);

STATIC mp_obj_t mod_radio_config(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
    (void)pos_args; // unused

    if (n_args != 0) {
        mp_raise_TypeError("arguments must be keywords");
    }

    // make a copy of the radio state so we don't change anything if there are value errors
    radio_state_t new_state = radio_state;

    qstr arg_name = MP_QSTR_;
    for (size_t i = 0; i < kw_args->alloc; ++i) {
        if (MP_MAP_SLOT_IS_FILLED(kw_args, i)) {
            mp_int_t value = mp_obj_get_int_truncated(kw_args->table[i].value);
            arg_name = mp_obj_str_get_qstr(kw_args->table[i].key);
            switch (arg_name) {
                case MP_QSTR_length:
                    if (!(1 <= value && value <= 251)) {
                        goto value_error;
                    }
                    new_state.max_payload = value;
                    break;

                case MP_QSTR_queue:
                    if (!(1 <= value && value <= 254)) {
                        goto value_error;
                    }
                    new_state.queue_len = value;
                    break;

                case MP_QSTR_channel:
                    if (!(0 <= value && value <= RADIO_MAX_CHANNEL)) {
                        goto value_error;
                    }
                    new_state.channel = value;
                    break;

                case MP_QSTR_power: {
                    if (!(0 <= value && value <= 7)) {
                        goto value_error;
                    }
                    static int8_t power_dbm_table[8] = {-30, -20, -16, -12, -8, -4, 0, 4};
                    new_state.power_dbm = power_dbm_table[value];
                    break;
                }

                case MP_QSTR_data_rate:
                    if (!(value == RADIO_MODE_MODE_Nrf_250Kbit
                        || value == RADIO_MODE_MODE_Nrf_1Mbit
                        || value == RADIO_MODE_MODE_Nrf_2Mbit)) {
                        goto value_error;
                    }
                    new_state.data_rate = value;
                    break;

                case MP_QSTR_address:
                    new_state.base0 = value;
                    break;

                case MP_QSTR_group:
                    if (!(0 <= value && value <= 255)) {
                        goto value_error;
                    }
                    new_state.prefix0 = value;
                    break;

                default:
                    nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "unknown argument '%q'", arg_name));
                    break;
            }
        }
    }

    // reconfigure the radio with the new state

    if (MP_STATE_PORT(radio_buf) == NULL) {
        // radio disabled, just copy state
        radio_state = new_state;
    } else {
        // radio eabled
        if (new_state.max_payload != radio_state.max_payload || new_state.queue_len != radio_state.queue_len) {
            // tx/rx buffer size changed which requires reallocating the buffers
            radio_disable();
            radio_state = new_state;
            radio_enable();
        } else {
            // only registers changed so make the changes go through efficiently

            // disable radio
            NVIC_DisableIRQ(RADIO_IRQn);
            NRF_RADIO->EVENTS_DISABLED = 0;
            NRF_RADIO->TASKS_DISABLE = 1;
            while (NRF_RADIO->EVENTS_DISABLED == 0);

            // change state
            radio_state = new_state;
            NRF_RADIO->TXPOWER = radio_state.power_dbm;
            NRF_RADIO->FREQUENCY = radio_state.channel;
            NRF_RADIO->MODE = radio_state.data_rate;
            NRF_RADIO->BASE0 = radio_state.base0;
            NRF_RADIO->PREFIX0 = radio_state.prefix0;

            // need to set RXEN for FREQUENCY decision point
            NRF_RADIO->EVENTS_READY = 0;
            NRF_RADIO->TASKS_RXEN = 1;
            while (NRF_RADIO->EVENTS_READY == 0);

            // need to set START for BASE0 and PREFIX0 decision point
            NRF_RADIO->EVENTS_END = 0;
            NRF_RADIO->TASKS_START = 1;

            NVIC_ClearPendingIRQ(RADIO_IRQn);
            NVIC_EnableIRQ(RADIO_IRQn);
        }
    }

    return mp_const_none;

value_error:
    nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "value out of range for argument '%q'", arg_name));
}
MP_DEFINE_CONST_FUN_OBJ_KW(mod_radio_config_obj, 0, mod_radio_config);

STATIC mp_obj_t mod_radio_on(void) {
    radio_enable();
    return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_0(mod_radio_on_obj, mod_radio_on);

STATIC mp_obj_t mod_radio_off(void) {
    radio_disable();
    return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_0(mod_radio_off_obj, mod_radio_off);

STATIC mp_obj_t mod_radio_send_bytes(mp_obj_t buf_in) {
    mp_buffer_info_t bufinfo;
    mp_get_buffer_raise(buf_in, &bufinfo, MP_BUFFER_READ);
    radio_send(bufinfo.buf, bufinfo.len, NULL, 0);
    return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_1(mod_radio_send_bytes_obj, mod_radio_send_bytes);

STATIC mp_obj_t mod_radio_receive_bytes(void) {
    return radio_receive(NULL, NULL, NULL);
}
MP_DEFINE_CONST_FUN_OBJ_0(mod_radio_receive_bytes_obj, mod_radio_receive_bytes);

STATIC mp_obj_t mod_radio_send(mp_obj_t buf_in) {
    mp_uint_t len;
    const char *data = mp_obj_str_get_data(buf_in, &len);
    radio_send("\x01\x00\x01", 3, data, len);
    return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_1(mod_radio_send_obj, mod_radio_send);

STATIC mp_obj_t mod_radio_receive(void) {
    uint8_t header[4];
    mp_obj_t obj = radio_receive(header, NULL, NULL);
    // verify header has the correct values
    if (obj != mp_const_none && !(header[0] >= 3 && header[1] == 1 && header[2] == 0 && header[3] == 1)) {
        mp_raise_ValueError("received packet is not a string");
    }
    return obj;
}
MP_DEFINE_CONST_FUN_OBJ_0(mod_radio_receive_obj, mod_radio_receive);

STATIC mp_obj_t mod_radio_receive_bytes_into(mp_obj_t buf_in) {
    mp_buffer_info_t bufinfo;
    mp_get_buffer_raise(buf_in, &bufinfo, MP_BUFFER_WRITE);
    return radio_receive(NULL, &bufinfo, NULL);
}
MP_DEFINE_CONST_FUN_OBJ_1(mod_radio_receive_bytes_into_obj, mod_radio_receive_bytes_into);

STATIC mp_obj_t mod_radio_receive_full(void) {
    uint32_t data[2];
    mp_obj_t bytes = radio_receive(NULL, NULL, data);
    if (bytes == mp_const_none) {
        return mp_const_none;
    }
    mp_obj_t t[3] = {
        bytes,
        MP_OBJ_NEW_SMALL_INT((int32_t)data[0]),
        MP_OBJ_NEW_SMALL_INT(data[1] & (MICROPY_PY_UTIME_TICKS_PERIOD - 1))
    };
    return mp_obj_new_tuple(3, t);
}
MP_DEFINE_CONST_FUN_OBJ_0(mod_radio_receive_full_obj, mod_radio_receive_full);

STATIC const mp_map_elem_t radio_module_globals_table[] = {
    { MP_OBJ_NEW_QSTR(MP_QSTR___name__), MP_OBJ_NEW_QSTR(MP_QSTR_radio) },
    { MP_OBJ_NEW_QSTR(MP_QSTR___init__), (mp_obj_t)&mod_radio_reset_obj },

    { MP_OBJ_NEW_QSTR(MP_QSTR_reset), (mp_obj_t)&mod_radio_reset_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_config), (mp_obj_t)&mod_radio_config_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_on), (mp_obj_t)&mod_radio_on_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_off), (mp_obj_t)&mod_radio_off_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_send_bytes), (mp_obj_t)&mod_radio_send_bytes_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_receive_bytes), (mp_obj_t)&mod_radio_receive_bytes_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_send), (mp_obj_t)&mod_radio_send_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_receive), (mp_obj_t)&mod_radio_receive_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_receive_bytes_into), (mp_obj_t)&mod_radio_receive_bytes_into_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_receive_full), (mp_obj_t)&mod_radio_receive_full_obj },

    { MP_OBJ_NEW_QSTR(MP_QSTR_RATE_250KBIT), MP_OBJ_NEW_SMALL_INT(RADIO_MODE_MODE_Nrf_250Kbit) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_RATE_1MBIT), MP_OBJ_NEW_SMALL_INT(RADIO_MODE_MODE_Nrf_1Mbit) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_RATE_2MBIT), MP_OBJ_NEW_SMALL_INT(RADIO_MODE_MODE_Nrf_2Mbit) },
};

STATIC MP_DEFINE_CONST_DICT(radio_module_globals, radio_module_globals_table);

const mp_obj_module_t radio_module = {
    .base = { &mp_type_module },
    .globals = (mp_obj_dict_t*)&radio_module_globals,
};

}