1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
|
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2016 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
extern "C" {
#include <stdio.h>
#include <string.h>
#include "us_ticker_api.h"
#include "py/runtime0.h"
#include "py/runtime.h"
#include "py/smallint.h"
#include "microbit/modmicrobit.h"
// Packets are stored in the queue as a sequence of bytes of the form:
//
// len - byte
// data - "len" bytes
// RSSI - byte
// time - 4 bytes, little endian, microsecond timestamp
//
// "len" is first because it is written by the hardware, followed by the data.
#define RADIO_PACKET_OVERHEAD (1 + 1 + 4) // 1 byte for len, 1 byte for RSSI, 4 bytes for time
#define RADIO_DEFAULT_MAX_PAYLOAD (32)
#define RADIO_DEFAULT_QUEUE_LEN (3)
#define RADIO_DEFAULT_CHANNEL (7)
#define RADIO_DEFAULT_POWER_DBM (0)
#define RADIO_DEFAULT_BASE0 (0x75626974) // "uBit"
#define RADIO_DEFAULT_PREFIX0 (0)
#define RADIO_DEFAULT_DATA_RATE (RADIO_MODE_MODE_Nrf_1Mbit)
#define RADIO_MAX_CHANNEL (83) // maximum allowed frequency is 2483.5 MHz
typedef struct _radio_state_t {
uint8_t max_payload; // 1-251 inclusive
uint8_t queue_len; // 1-254 inclusive
uint8_t channel; // 0-100 inclusive
int8_t power_dbm; // one of: -30, -20, -16, -12, -8, -4, 0, 4
uint32_t base0; // for BASE0 register
uint8_t prefix0; // for PREFIX0 register (lower 8 bits only)
uint8_t data_rate; // one of: RADIO_MODE_MODE_Nrf_{250Kbit,1Mbit,2Mbit}
} radio_state_t;
static radio_state_t radio_state;
static uint8_t *rx_buf_end = NULL; // pointer to the end of the allocated RX queue
static uint8_t *rx_buf = NULL; // pointer to last packet on the RX queue
void RADIO_IRQHandler(void) {
if (NRF_RADIO->EVENTS_READY) {
NRF_RADIO->EVENTS_READY = 0;
NRF_RADIO->TASKS_START = 1;
}
if (NRF_RADIO->EVENTS_END) {
NRF_RADIO->EVENTS_END = 0;
size_t max_len = NRF_RADIO->PCNF1 & 0xff;
uint8_t *pkt = MP_STATE_PORT(radio_buf);
size_t len = pkt[0];
if (len > max_len) {
len = max_len;
pkt[0] = len;
}
// if the CRC was valid, and there's enough room in the RX queue, then accept the packet
if (NRF_RADIO->CRCSTATUS == 1 && rx_buf + RADIO_PACKET_OVERHEAD + len <= rx_buf_end) {
// copy the data to the queue
memcpy(rx_buf, pkt, 1 + len);
// store RSSI as last byte in packet (needs to be negated to get actual dBm value)
rx_buf[1 + len] = NRF_RADIO->RSSISAMPLE;
// get and store the microsecond timestamp
uint32_t time = us_ticker_read();
rx_buf[1 + len + 1] = time & 0xff;
rx_buf[1 + len + 2] = (time >> 8) & 0xff;
rx_buf[1 + len + 3] = (time >> 16) & 0xff;
rx_buf[1 + len + 4] = (time >> 24) & 0xff;
// move the RX queue pointer to end of this new packet
rx_buf += RADIO_PACKET_OVERHEAD + len;
}
NRF_RADIO->TASKS_START = 1;
}
}
static void ensure_enabled(void) {
if (MP_STATE_PORT(radio_buf) == NULL) {
mp_raise_ValueError("radio is not enabled");
}
}
static void radio_disable(void) {
NVIC_DisableIRQ(RADIO_IRQn);
NRF_RADIO->EVENTS_DISABLED = 0;
NRF_RADIO->TASKS_DISABLE = 1;
while (NRF_RADIO->EVENTS_DISABLED == 0);
// free any old buffers
if (MP_STATE_PORT(radio_buf) != NULL) {
m_del(uint8_t, MP_STATE_PORT(radio_buf), rx_buf_end - MP_STATE_PORT(radio_buf));
MP_STATE_PORT(radio_buf) = NULL;
}
}
static void radio_enable(void) {
radio_disable();
// allocate tx and rx buffers
size_t max_payload = radio_state.max_payload + RADIO_PACKET_OVERHEAD;
size_t queue_len = radio_state.queue_len + 1; // one extra for tx/rx buffer
MP_STATE_PORT(radio_buf) = m_new(uint8_t, max_payload * queue_len);
rx_buf_end = MP_STATE_PORT(radio_buf) + max_payload * queue_len;
rx_buf = MP_STATE_PORT(radio_buf) + max_payload; // start is tx/rx buffer
// Enable the High Frequency clock on the processor. This is a pre-requisite for
// the RADIO module. Without this clock, no communication is possible.
NRF_CLOCK->EVENTS_HFCLKSTARTED = 0;
NRF_CLOCK->TASKS_HFCLKSTART = 1;
while (NRF_CLOCK->EVENTS_HFCLKSTARTED == 0);
// power should be one of: -30, -20, -16, -12, -8, -4, 0, 4
NRF_RADIO->TXPOWER = radio_state.power_dbm;
// should be between 0 and 100 inclusive (actual physical freq is 2400MHz + this register)
NRF_RADIO->FREQUENCY = radio_state.channel;
// configure data rate
NRF_RADIO->MODE = radio_state.data_rate;
// The radio supports filtering packets at the hardware level based on an address.
// We use a 5-byte address comprised of 4 bytes (set by BALEN=4 below) from the BASEx
// register, plus 1 byte from PREFIXm.APn.
// The (x,m,n) values are selected by the logical address. We use logical address 0
// which means using BASE0 with PREFIX0.AP0.
NRF_RADIO->BASE0 = radio_state.base0;
NRF_RADIO->PREFIX0 = radio_state.prefix0;
NRF_RADIO->TXADDRESS = 0; // transmit on logical address 0
NRF_RADIO->RXADDRESSES = 1; // a bit mask, listen only to logical address 0
// LFLEN=8 bits, S0LEN=0, S1LEN=0
NRF_RADIO->PCNF0 = 0x00000008;
// STATLEN=0, BALEN=4, ENDIAN=0 (little), WHITEEN=1
NRF_RADIO->PCNF1 = 0x02040000 | radio_state.max_payload;
// Enable automatic 16bit CRC generation and checking, and configure how the CRC is calculated.
NRF_RADIO->CRCCNF = RADIO_CRCCNF_LEN_Two;
NRF_RADIO->CRCINIT = 0xFFFF;
NRF_RADIO->CRCPOLY = 0x11021;
// Set the start random value of the data whitening algorithm. This can be any non zero number.
NRF_RADIO->DATAWHITEIV = 0x18;
// Set the tx/rx packet buffer (must be in RAM).
NRF_RADIO->PACKETPTR = (uint32_t)MP_STATE_PORT(radio_buf);
// configure interrupts
NRF_RADIO->INTENSET = 0x00000008;
NVIC_SetPriority(RADIO_IRQn, 3);
NVIC_ClearPendingIRQ(RADIO_IRQn);
NVIC_EnableIRQ(RADIO_IRQn);
NRF_RADIO->SHORTS |= RADIO_SHORTS_ADDRESS_RSSISTART_Msk;
// enable receiver
NRF_RADIO->EVENTS_READY = 0;
NRF_RADIO->TASKS_RXEN = 1;
while (NRF_RADIO->EVENTS_READY == 0);
NRF_RADIO->EVENTS_END = 0;
NRF_RADIO->TASKS_START = 1;
}
void radio_send(const void *buf, size_t len, const void *buf2, size_t len2) {
ensure_enabled();
// transmission will occur synchronously
NVIC_DisableIRQ(RADIO_IRQn);
// Turn off the transceiver.
NRF_RADIO->EVENTS_DISABLED = 0;
NRF_RADIO->TASKS_DISABLE = 1;
while (NRF_RADIO->EVENTS_DISABLED == 0);
// construct the packet
// note: we must send from RAM
size_t max_len = NRF_RADIO->PCNF1 & 0xff;
if (len + len2 > max_len) {
if (len > max_len) {
len = max_len;
len2 = 0;
} else {
len2 = max_len - len;
}
}
MP_STATE_PORT(radio_buf)[0] = len + len2;
memcpy(MP_STATE_PORT(radio_buf) + 1, buf, len);
if (len2 != 0) {
memcpy(MP_STATE_PORT(radio_buf) + 1 + len, buf2, len2);
}
// Turn on the transmitter, and wait for it to signal that it's ready to use.
NRF_RADIO->EVENTS_READY = 0;
NRF_RADIO->TASKS_TXEN = 1;
while (NRF_RADIO->EVENTS_READY == 0);
// Start transmission and wait for end of packet.
NRF_RADIO->TASKS_START = 1;
NRF_RADIO->EVENTS_END = 0;
while (NRF_RADIO->EVENTS_END == 0);
// Turn off the transmitter.
NRF_RADIO->EVENTS_DISABLED = 0;
NRF_RADIO->TASKS_DISABLE = 1;
while (NRF_RADIO->EVENTS_DISABLED == 0);
// Start listening for the next packet
NRF_RADIO->EVENTS_READY = 0;
NRF_RADIO->TASKS_RXEN = 1;
while (NRF_RADIO->EVENTS_READY == 0);
NRF_RADIO->EVENTS_END = 0;
NRF_RADIO->TASKS_START = 1;
NVIC_ClearPendingIRQ(RADIO_IRQn);
NVIC_EnableIRQ(RADIO_IRQn);
}
static mp_obj_t radio_receive(uint8_t *header, mp_buffer_info_t *bufinfo, uint32_t *data_out) {
ensure_enabled();
// disable the radio irq while we receive the packet
NVIC_DisableIRQ(RADIO_IRQn);
// get the pointer to the next packet
uint8_t *buf = MP_STATE_PORT(radio_buf) + (NRF_RADIO->PCNF1 & 0xff) + RADIO_PACKET_OVERHEAD; // skip tx buf
// return None if there are no packets waiting
if (rx_buf == buf) {
NVIC_EnableIRQ(RADIO_IRQn);
return mp_const_none;
}
// convert the packet data into a Python object
size_t len = buf[0];
mp_obj_t ret;
if (header == NULL) {
if (bufinfo == NULL) {
ret = mp_obj_new_bytes(buf + 1, len); // if it raises the radio irq remains disabled...
} else {
memmove(bufinfo->buf, buf+1, len < bufinfo->len ? len : bufinfo->len);
ret = MP_OBJ_NEW_SMALL_INT(len);
}
} else {
if (len < 3) {
header[0] = 0;
header[1] = 0;
header[2] = 0;
header[3] = 0;
ret = MP_OBJ_NEW_QSTR(MP_QSTR_); // empty str
} else {
memcpy(header, buf, 4);
ret = mp_obj_new_str((char*)buf + 4, len - 3, false); // if it raises the radio irq remains disabled...
}
}
if (data_out != NULL) {
// return the RSSI (to be interpreted as a signed value)
*data_out = -buf[1 + len];
// return the timestamp
data_out[1] = buf[1 + len + 1] | buf[1 + len + 2] << 8
| buf[1 + len + 3] << 16 | buf[1 + len + 4] << 24;
}
// copy the rest of the packets down and restart the radio
memmove(buf, buf + RADIO_PACKET_OVERHEAD + len, rx_buf - (buf + RADIO_PACKET_OVERHEAD + len));
rx_buf -= RADIO_PACKET_OVERHEAD + len;
NVIC_EnableIRQ(RADIO_IRQn);
return ret;
}
/*****************************************************************************/
// MicroPython bindings and module
STATIC mp_obj_t mod_radio_reset(void) {
radio_state.max_payload = RADIO_DEFAULT_MAX_PAYLOAD;
radio_state.queue_len = RADIO_DEFAULT_QUEUE_LEN;
radio_state.channel = RADIO_DEFAULT_CHANNEL;
radio_state.power_dbm = RADIO_DEFAULT_POWER_DBM;
radio_state.base0 = RADIO_DEFAULT_BASE0;
radio_state.prefix0 = RADIO_DEFAULT_PREFIX0;
radio_state.data_rate = RADIO_DEFAULT_DATA_RATE;
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_0(mod_radio_reset_obj, mod_radio_reset);
STATIC mp_obj_t mod_radio_config(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
(void)pos_args; // unused
if (n_args != 0) {
mp_raise_TypeError("arguments must be keywords");
}
// make a copy of the radio state so we don't change anything if there are value errors
radio_state_t new_state = radio_state;
qstr arg_name = MP_QSTR_;
for (size_t i = 0; i < kw_args->alloc; ++i) {
if (MP_MAP_SLOT_IS_FILLED(kw_args, i)) {
mp_int_t value = mp_obj_get_int_truncated(kw_args->table[i].value);
arg_name = mp_obj_str_get_qstr(kw_args->table[i].key);
switch (arg_name) {
case MP_QSTR_length:
if (!(1 <= value && value <= 251)) {
goto value_error;
}
new_state.max_payload = value;
break;
case MP_QSTR_queue:
if (!(1 <= value && value <= 254)) {
goto value_error;
}
new_state.queue_len = value;
break;
case MP_QSTR_channel:
if (!(0 <= value && value <= RADIO_MAX_CHANNEL)) {
goto value_error;
}
new_state.channel = value;
break;
case MP_QSTR_power: {
if (!(0 <= value && value <= 7)) {
goto value_error;
}
static int8_t power_dbm_table[8] = {-30, -20, -16, -12, -8, -4, 0, 4};
new_state.power_dbm = power_dbm_table[value];
break;
}
case MP_QSTR_data_rate:
if (!(value == RADIO_MODE_MODE_Nrf_250Kbit
|| value == RADIO_MODE_MODE_Nrf_1Mbit
|| value == RADIO_MODE_MODE_Nrf_2Mbit)) {
goto value_error;
}
new_state.data_rate = value;
break;
case MP_QSTR_address:
new_state.base0 = value;
break;
case MP_QSTR_group:
if (!(0 <= value && value <= 255)) {
goto value_error;
}
new_state.prefix0 = value;
break;
default:
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "unknown argument '%q'", arg_name));
break;
}
}
}
// reconfigure the radio with the new state
if (MP_STATE_PORT(radio_buf) == NULL) {
// radio disabled, just copy state
radio_state = new_state;
} else {
// radio eabled
if (new_state.max_payload != radio_state.max_payload || new_state.queue_len != radio_state.queue_len) {
// tx/rx buffer size changed which requires reallocating the buffers
radio_disable();
radio_state = new_state;
radio_enable();
} else {
// only registers changed so make the changes go through efficiently
// disable radio
NVIC_DisableIRQ(RADIO_IRQn);
NRF_RADIO->EVENTS_DISABLED = 0;
NRF_RADIO->TASKS_DISABLE = 1;
while (NRF_RADIO->EVENTS_DISABLED == 0);
// change state
radio_state = new_state;
NRF_RADIO->TXPOWER = radio_state.power_dbm;
NRF_RADIO->FREQUENCY = radio_state.channel;
NRF_RADIO->MODE = radio_state.data_rate;
NRF_RADIO->BASE0 = radio_state.base0;
NRF_RADIO->PREFIX0 = radio_state.prefix0;
// need to set RXEN for FREQUENCY decision point
NRF_RADIO->EVENTS_READY = 0;
NRF_RADIO->TASKS_RXEN = 1;
while (NRF_RADIO->EVENTS_READY == 0);
// need to set START for BASE0 and PREFIX0 decision point
NRF_RADIO->EVENTS_END = 0;
NRF_RADIO->TASKS_START = 1;
NVIC_ClearPendingIRQ(RADIO_IRQn);
NVIC_EnableIRQ(RADIO_IRQn);
}
}
return mp_const_none;
value_error:
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "value out of range for argument '%q'", arg_name));
}
MP_DEFINE_CONST_FUN_OBJ_KW(mod_radio_config_obj, 0, mod_radio_config);
STATIC mp_obj_t mod_radio_on(void) {
radio_enable();
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_0(mod_radio_on_obj, mod_radio_on);
STATIC mp_obj_t mod_radio_off(void) {
radio_disable();
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_0(mod_radio_off_obj, mod_radio_off);
STATIC mp_obj_t mod_radio_send_bytes(mp_obj_t buf_in) {
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(buf_in, &bufinfo, MP_BUFFER_READ);
radio_send(bufinfo.buf, bufinfo.len, NULL, 0);
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_1(mod_radio_send_bytes_obj, mod_radio_send_bytes);
STATIC mp_obj_t mod_radio_receive_bytes(void) {
return radio_receive(NULL, NULL, NULL);
}
MP_DEFINE_CONST_FUN_OBJ_0(mod_radio_receive_bytes_obj, mod_radio_receive_bytes);
STATIC mp_obj_t mod_radio_send(mp_obj_t buf_in) {
mp_uint_t len;
const char *data = mp_obj_str_get_data(buf_in, &len);
radio_send("\x01\x00\x01", 3, data, len);
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_1(mod_radio_send_obj, mod_radio_send);
STATIC mp_obj_t mod_radio_receive(void) {
uint8_t header[4];
mp_obj_t obj = radio_receive(header, NULL, NULL);
// verify header has the correct values
if (obj != mp_const_none && !(header[0] >= 3 && header[1] == 1 && header[2] == 0 && header[3] == 1)) {
mp_raise_ValueError("received packet is not a string");
}
return obj;
}
MP_DEFINE_CONST_FUN_OBJ_0(mod_radio_receive_obj, mod_radio_receive);
STATIC mp_obj_t mod_radio_receive_bytes_into(mp_obj_t buf_in) {
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(buf_in, &bufinfo, MP_BUFFER_WRITE);
return radio_receive(NULL, &bufinfo, NULL);
}
MP_DEFINE_CONST_FUN_OBJ_1(mod_radio_receive_bytes_into_obj, mod_radio_receive_bytes_into);
STATIC mp_obj_t mod_radio_receive_full(void) {
uint32_t data[2];
mp_obj_t bytes = radio_receive(NULL, NULL, data);
if (bytes == mp_const_none) {
return mp_const_none;
}
mp_obj_t t[3] = {
bytes,
MP_OBJ_NEW_SMALL_INT((int32_t)data[0]),
MP_OBJ_NEW_SMALL_INT(data[1] & (MICROPY_PY_UTIME_TICKS_PERIOD - 1))
};
return mp_obj_new_tuple(3, t);
}
MP_DEFINE_CONST_FUN_OBJ_0(mod_radio_receive_full_obj, mod_radio_receive_full);
STATIC const mp_map_elem_t radio_module_globals_table[] = {
{ MP_OBJ_NEW_QSTR(MP_QSTR___name__), MP_OBJ_NEW_QSTR(MP_QSTR_radio) },
{ MP_OBJ_NEW_QSTR(MP_QSTR___init__), (mp_obj_t)&mod_radio_reset_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_reset), (mp_obj_t)&mod_radio_reset_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_config), (mp_obj_t)&mod_radio_config_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_on), (mp_obj_t)&mod_radio_on_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_off), (mp_obj_t)&mod_radio_off_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_send_bytes), (mp_obj_t)&mod_radio_send_bytes_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_receive_bytes), (mp_obj_t)&mod_radio_receive_bytes_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_send), (mp_obj_t)&mod_radio_send_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_receive), (mp_obj_t)&mod_radio_receive_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_receive_bytes_into), (mp_obj_t)&mod_radio_receive_bytes_into_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_receive_full), (mp_obj_t)&mod_radio_receive_full_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_RATE_250KBIT), MP_OBJ_NEW_SMALL_INT(RADIO_MODE_MODE_Nrf_250Kbit) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_RATE_1MBIT), MP_OBJ_NEW_SMALL_INT(RADIO_MODE_MODE_Nrf_1Mbit) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_RATE_2MBIT), MP_OBJ_NEW_SMALL_INT(RADIO_MODE_MODE_Nrf_2Mbit) },
};
STATIC MP_DEFINE_CONST_DICT(radio_module_globals, radio_module_globals_table);
const mp_obj_module_t radio_module = {
.base = { &mp_type_module },
.globals = (mp_obj_dict_t*)&radio_module_globals,
};
}
|