1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
|
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2016 Mark Shannon
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include<stdio.h>
#include "py/obj.h"
#include "microbit/filesystem.h"
#include "py/objtuple.h"
#include "py/objstr.h"
#include "microbit/modaudio.h"
#include "lib/sam/render.h"
#include "lib/sam/reciter.h"
#include "lib/sam/sam.h"
/** Called by SAM to output byte `b` at `pos` */
static microbit_audio_frame_obj_t *buf;
static volatile unsigned int buf_start_pos = 0;
static volatile unsigned int last_pos = 0;
volatile bool rendering = false;
volatile bool last_frame = false;
volatile bool exhausted = false;
static unsigned int glitches;
void SamOutputByte(unsigned int pos, unsigned char b) {
//printf("%d, %d, %d\r\n", pos, SCALE_RATE(pos), b);
unsigned int actual_pos = SCALE_RATE(pos);
if (buf_start_pos > actual_pos) {
glitches++;
buf_start_pos -= 32;
}
while ((actual_pos & (-32)) > buf_start_pos) {
// We have filled buffer
rendering = true;
/* XXX - Busy wait */
}
unsigned int offset = actual_pos & 31;
// write a little bit in advance
unsigned int end = min(offset+4, 32);
while (offset < end) {
buf->data[offset] = b;
offset++;
}
last_pos = actual_pos;
return;
}
typedef struct _speech_iterator_t {
mp_obj_base_t base;
microbit_audio_frame_obj_t *buf;
microbit_audio_frame_obj_t *empty;
} speech_iterator_t;
/** This iterator assumes that the speech renderer can generate samples
* at least as fast as we can consume them */
static mp_obj_t next(mp_obj_t iter) {
if (exhausted) {
return MP_OBJ_STOP_ITERATION;
}
if (last_frame) {
exhausted = true;
last_frame = false;
}
// May need to wait for reciter to do its job before renderer generate samples.
if (rendering) {
buf_start_pos += 32;
return buf;
} else {
return ((speech_iterator_t *)iter)->empty;
}
}
const mp_obj_type_t speech_iterator_type = {
{ &mp_type_type },
.name = MP_QSTR_iterator,
.print = NULL,
.make_new = NULL,
.call = NULL,
.unary_op = NULL,
.binary_op = NULL,
.attr = NULL,
.subscr = NULL,
.getiter = mp_identity_getiter,
.iternext = next,
};
static mp_obj_t make_speech_iter(void) {
speech_iterator_t *result = m_new_obj(speech_iterator_t);
result->base.type = &speech_iterator_type;
result->empty = new_microbit_audio_frame();
result->buf = new_microbit_audio_frame();
return result;
}
static mp_obj_t translate(mp_obj_t words) {
mp_uint_t len, outlen;
const char *txt = mp_obj_str_get_data(words, &len);
// Reciter truncates *output* at about 120 characters.
// So to avoid that we must disallow any input that will exceed that.
if (len > 80) {
mp_raise_ValueError("text too long");
}
reciter_memory *mem = m_new(reciter_memory, 1);
MP_STATE_PORT(speech_data) = mem;
for (mp_uint_t i = 0; i < len; i++) {
mem->input[i] = txt[i];
}
mem->input[len] = '[';
if (!TextToPhonemes(mem)) {
MP_STATE_PORT(speech_data) = NULL;
mp_raise_ValueError("could not parse input");
}
for (outlen = 0; outlen < 255; outlen++) {
if (mem->input[outlen] == 155) {
break;
}
}
mp_obj_t res = mp_obj_new_str_of_type(&mp_type_str, (byte *)mem->input, outlen);
// Prevent input becoming invisible to GC due to tail-call optimisation.
MP_STATE_PORT(speech_data) = NULL;
return res;
}MP_DEFINE_CONST_FUN_OBJ_1(translate_obj, translate);
extern int debug;
static mp_obj_t articulate(mp_obj_t phonemes, mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args, bool sing) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_pitch, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = DEFAULT_PITCH} },
{ MP_QSTR_speed, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = DEFAULT_SPEED} },
{ MP_QSTR_mouth, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = DEFAULT_MOUTH} },
{ MP_QSTR_throat, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = DEFAULT_THROAT} },
{ MP_QSTR_debug, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} },
};
// parse args
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
sam_memory *sam = m_new(sam_memory, 1);
MP_STATE_PORT(speech_data) = sam;
// set the current saved speech state
sam->common.singmode = sing;
sam->common.pitch = args[0].u_int;
sam->common.speed = args[1].u_int;
sam->common.mouth = args[2].u_int;
sam->common.throat = args[3].u_int;
debug = args[4].u_bool;
mp_uint_t len;
const char *input = mp_obj_str_get_data(phonemes, &len);
buf_start_pos = 0;
speech_iterator_t *src = make_speech_iter();
buf = src->buf;
/* We need to wait for reciter to do its job */
rendering = false;
exhausted = false;
glitches = 0;
audio_play_source(src, mp_const_none, mp_const_none, false);
SetInput(sam, input, len);
if (!SAMMain(sam))
{
audio_stop();
MP_STATE_PORT(speech_data) = NULL;
mp_raise_ValueError(sam_error);
}
last_frame = true;
/* Wait for audio finish before returning */
while (microbit_audio_is_playing());
MP_STATE_PORT(speech_data) = NULL;
if (debug) {
printf("Glitches: %d\r\n", glitches);
}
return mp_const_none;
}
static mp_obj_t say(mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
mp_obj_t phonemes = translate(pos_args[0]);
return articulate(phonemes, n_args-1, pos_args+1, kw_args, false);
}
MP_DEFINE_CONST_FUN_OBJ_KW(say_obj, 1, say);
static mp_obj_t pronounce(mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
return articulate(pos_args[0], n_args-1, pos_args+1, kw_args, false);
}
MP_DEFINE_CONST_FUN_OBJ_KW(pronounce_obj, 1, pronounce);
static mp_obj_t sing(mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
return articulate(pos_args[0], n_args-1, pos_args+1, kw_args, true);
}
MP_DEFINE_CONST_FUN_OBJ_KW(sing_obj, 1, sing);
static const mp_map_elem_t _globals_table[] = {
{ MP_OBJ_NEW_QSTR(MP_QSTR___name__), MP_OBJ_NEW_QSTR(MP_QSTR_speech) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_say), (mp_obj_t)&say_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_sing), (mp_obj_t)&sing_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_pronounce), (mp_obj_t)&pronounce_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_translate), (mp_obj_t)&translate_obj },
};
static MP_DEFINE_CONST_DICT(_globals, _globals_table);
const mp_obj_module_t speech_module = {
.base = { &mp_type_module },
.globals = (mp_obj_dict_t*)&_globals,
};
|