1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
|
/*
The MIT License (MIT)
Copyright (c) 2016 British Broadcasting Corporation.
This software is provided by Lancaster University by arrangement with the BBC.
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
*/
#include "MicroBitConfig.h"
#include "MicroBitCompassCalibrator.h"
#include "EventModel.h"
#define CALIBRATION_INCREMENT 200
/**
* Constructor.
*
* Create an object capable of calibrating the compass.
*
* The algorithm uses an accelerometer to ensure that a broad range of sample data has been gathered
* from the compass module, then performs a least mean squares optimisation of the
* results to determine the calibration data for the compass.
*
* The LED matrix display is used to provide feedback to the user on the gestures required.
*
* @param compass The compass instance to calibrate.
*
* @param accelerometer The accelerometer to gather contextual data from.
*
* @param display The LED matrix to display user feedback on.
*/
MicroBitCompassCalibrator::MicroBitCompassCalibrator(MicroBitCompass& _compass, MicroBitAccelerometer& _accelerometer, MicroBitDisplay& _display) : compass(_compass), accelerometer(_accelerometer), display(_display)
{
this->storage = NULL;
if (EventModel::defaultEventBus)
EventModel::defaultEventBus->listen(MICROBIT_ID_COMPASS, MICROBIT_COMPASS_EVT_CALIBRATE, this, &MicroBitCompassCalibrator::calibrateUX, MESSAGE_BUS_LISTENER_IMMEDIATE);
}
/**
* Constructor.
*
* Create an object capable of calibrating the compass.
*
* The algorithm uses an accelerometer to ensure that a broad range of sample data has been gathered
* from the compass module, then performs a least mean squares optimisation of the
* results to determine the calibration data for the compass.
*
* The LED matrix display is used to provide feedback to the user on the gestures required.
*
* @param compass The compass instance to calibrate.
* @param accelerometer The accelerometer to gather contextual data from.
* @param display The LED matrix to display user feedback on.
* @param storage The object to use for storing calibration data in persistent FLASH.
*/
MicroBitCompassCalibrator::MicroBitCompassCalibrator(MicroBitCompass& _compass, MicroBitAccelerometer& _accelerometer, MicroBitDisplay& _display, MicroBitStorage &storage) : compass(_compass), accelerometer(_accelerometer), display(_display)
{
this->storage = &storage;
//Attempt to load any stored calibration datafor the compass.
KeyValuePair *calibrationData = this->storage->get("compassCal");
if(calibrationData != NULL)
{
CompassCalibration cal = CompassCalibration();
memcpy(&cal, calibrationData->value, sizeof(CompassCalibration));
compass.setCalibration(cal);
delete calibrationData;
}
if (EventModel::defaultEventBus)
EventModel::defaultEventBus->listen(MICROBIT_ID_COMPASS, MICROBIT_COMPASS_EVT_CALIBRATE, this, &MicroBitCompassCalibrator::calibrateUX, MESSAGE_BUS_LISTENER_IMMEDIATE);
}
/**
* Scoring function for a hill climb algorithm.
*
* @param c An approximated centre point
* @param data a collection of data points
* @param samples the number of samples in the 'data' array
*
* @return The deviation between the closest and further point in the data array from the point given.
*/
float MicroBitCompassCalibrator::measureScore(Sample3D &c, Sample3D *data, int samples)
{
float minD;
float maxD;
minD = maxD = c.dSquared(data[0]);
for (int i = 1; i < samples; i++)
{
float d = c.dSquared(data[i]);
if (d < minD)
minD = d;
if (d > maxD)
maxD = d;
}
return (maxD - minD);
}
/**
* Calculates an independent X, Y, Z scale factor and centre for a given set of data points, assumed to be on
* a bounding sphere
*
* @param data An array of all data points
* @param samples The number of samples in the 'data' array.
*
* This algorithm should be called with no fewer than 12 points, but testing has indicated >21 points provides
* a more robust calculation.
*
* @return A calibration structure containing the a calculated centre point, the radius of the minimum
* enclosing spere of points and a scaling factor for each axis that places those points as close as possible
* to the surface of the containing sphere.
*/
CompassCalibration MicroBitCompassCalibrator::calibrate(Sample3D *data, int samples)
{
Sample3D centre = approximateCentre(data, samples);
return spherify(centre, data, samples);
}
/**
* Calculates an independent scale factor for X,Y and Z axes that places the given data points on a bounding sphere
*
* @param centre A proviously calculated centre point of all data.
* @param data An array of all data points
* @param samples The number of samples in the 'data' array.
*
* @return A calibration structure containing the centre point provided, the radius of the minimum
* enclosing spere of points and a scaling factor for each axis that places those points as close as possible
* to the surface of the containing sphere.
*/
CompassCalibration MicroBitCompassCalibrator::spherify(Sample3D centre, Sample3D *data, int samples)
{
// First, determine the radius of the enclosing sphere from the given centre.
// n.b. this will likely be different to the radius from the centre of mass previously calculated.
// We use the same algorithm though.
CompassCalibration result;
float radius = 0;
float scaleX = 0.0;
float scaleY = 0.0;
float scaleZ = 0.0;
float scale = 0.0;
float weightX = 0.0;
float weightY = 0.0;
float weightZ = 0.0;
for (int i = 0; i < samples; i++)
{
int d = sqrt((float)centre.dSquared(data[i]));
if (d > radius)
radius = d;
}
// Now, for each data point, determine a scalar multiplier for the vector between the centre and that point that
// takes the point onto the surface of the enclosing sphere.
for (int i = 0; i < samples; i++)
{
// Calculate the distance from this point to the centre of the sphere
float d = sqrt(centre.dSquared(data[i]));
// Now determine a scalar multiplier that, when applied to the vector to the centre,
// will place this point on the surface of the sphere.
float s = (radius / d) - 1;
scale = max(scale, s);
// next, determine the scale effect this has on each of our components.
float dx = (data[i].x - centre.x);
float dy = (data[i].y - centre.y);
float dz = (data[i].z - centre.z);
weightX += s * fabsf(dx / d);
weightY += s * fabsf(dy / d);
weightZ += s * fabsf(dz / d);
}
float wmag = sqrt((weightX * weightX) + (weightY * weightY) + (weightZ * weightZ));
scaleX = 1.0 + scale * (weightX / wmag);
scaleY = 1.0 + scale * (weightY / wmag);
scaleZ = 1.0 + scale * (weightZ / wmag);
result.scale.x = (int)(1024 * scaleX);
result.scale.y = (int)(1024 * scaleY);
result.scale.z = (int)(1024 * scaleZ);
result.centre.x = centre.x;
result.centre.y = centre.y;
result.centre.z = centre.z;
result.radius = radius;
return result;
}
/*
* Performs an interative approximation (hill descent) algorithm to determine an
* estimated centre point of a sphere upon which the given data points reside.
*
* @param data an array containing sample points
* @param samples the number of sample points in the 'data' array.
*
* @return the approximated centre point of the points in the 'data' array.
*/
Sample3D MicroBitCompassCalibrator::approximateCentre(Sample3D *data, int samples)
{
Sample3D c,t;
Sample3D centre = { 0,0,0 };
Sample3D best = { 0,0,0 };
float score;
for (int i = 0; i < samples; i++)
{
centre.x += data[i].x;
centre.y += data[i].y;
centre.z += data[i].z;
}
// Calclulate a centre of mass for our input samples. We only use this for validation purposes.
centre.x = centre.x / samples;
centre.y = centre.y / samples;
centre.z = centre.z / samples;
// Start hill climb in the centre of mass.
c = centre;
// calculate the nearest and furthest point to us.
score = measureScore(c, data, samples);
// iteratively attempt to improve position...
while (1)
{
for (int x = -CALIBRATION_INCREMENT; x <= CALIBRATION_INCREMENT; x=x+CALIBRATION_INCREMENT)
{
for (int y = -CALIBRATION_INCREMENT; y <= CALIBRATION_INCREMENT; y=y+CALIBRATION_INCREMENT)
{
for (int z = -CALIBRATION_INCREMENT; z <= CALIBRATION_INCREMENT; z=z+CALIBRATION_INCREMENT)
{
t = c;
t.x += x;
t.y += y;
t.z += z;
float s = measureScore(t, data, samples);
if (s < score)
{
score = s;
best = t;
}
}
}
}
if (best.x == c.x && best.y == c.y && best.z == c.z)
break;
c = best;
}
return c;
}
/**
* Performs a simple game that in parallel, calibrates the compass.
*
* This function is executed automatically when the user requests a compass bearing, and compass calibration is required.
*
* This function is, by design, synchronous and only returns once calibration is complete.
*/
void MicroBitCompassCalibrator::calibrateUX(MicroBitEvent)
{
struct Point
{
uint8_t x;
uint8_t y;
};
const int PERIMETER_POINTS = 25;
const int PIXEL1_THRESHOLD = 200;
const int PIXEL2_THRESHOLD = 680;
const int REDISPLAY_MSG_TIMEOUT_MS = 30000;
const int SAMPLES_END_MSG_COUNT = 15;
const int TIME_STEP = 100;
const int MSG_TIME = 155 * TIME_STEP; //We require MSG_TIME % TIME_STEP == 0
wait_ms(100);
static const Point perimeter[PERIMETER_POINTS] = {{0,0}, {1,0}, {2,0}, {3,0}, {4,0}, {0,1}, {1,1}, {2,1}, {3,1}, {4,1}, {0,2}, {1,2}, {2,2}, {3,2}, {4,2}, {0,3}, {1,3}, {2,3}, {3,3}, {4,3}, {0,4}, {1,4}, {2,4}, {3,4}, {4,4}};
Point cursor = {2,2};
MicroBitImage img(5,5);
MicroBitImage smiley("0,255,0,255,0\n0,255,0,255,0\n0,0,0,0,0\n255,0,0,0,255\n0,255,255,255,0\n");
Sample3D data[PERIMETER_POINTS];
uint8_t visited[PERIMETER_POINTS] = { 0 };
uint8_t cursor_on = 0;
uint8_t samples = 0;
uint8_t samples_this_period = 0;
int16_t remaining_scroll_time = MSG_TIME; // 32s maximum in uint16_t
// Set the display to full brightness (in case a user program has it very dim / off). Store the current brightness, so we can restore it later.
int displayBrightness = display.getBrightness();
display.setBrightness(255);
// Firstly, we need to take over the display. Ensure all active animations are paused.
display.stopAnimation();
while(samples < PERIMETER_POINTS)
{
// Scroll a message the first time we enter this loop and every REDISPLAY_MSG_TIMEOUT_MS
if (remaining_scroll_time == MSG_TIME || remaining_scroll_time <= -REDISPLAY_MSG_TIMEOUT_MS) {
display.clear();
display.scrollAsync("TILT TO FILL SCREEN "); // Takes about 14s
remaining_scroll_time = MSG_TIME;
samples_this_period = 0;
}
else if (remaining_scroll_time == 0 || samples_this_period == SAMPLES_END_MSG_COUNT)
{
// This stops the scrolling at the end of the message.
// ...and it is the source of the ((MSG_TIME % TIME_STEP) == 0) requirement
display.stopAnimation();
}
// update our model of the flash status of the user controlled pixel.
cursor_on = (cursor_on + 1) % 4;
// take a snapshot of the current accelerometer data.
int x = accelerometer.getX();
int y = accelerometer.getY();
// Deterine the position of the user controlled pixel on the screen.
if (x < -PIXEL2_THRESHOLD)
cursor.x = 0;
else if (x < -PIXEL1_THRESHOLD)
cursor.x = 1;
else if (x > PIXEL2_THRESHOLD)
cursor.x = 4;
else if (x > PIXEL1_THRESHOLD)
cursor.x = 3;
else
cursor.x = 2;
if (y < -PIXEL2_THRESHOLD)
cursor.y = 0;
else if (y < -PIXEL1_THRESHOLD)
cursor.y = 1;
else if (y > PIXEL2_THRESHOLD)
cursor.y = 4;
else if (y > PIXEL1_THRESHOLD)
cursor.y = 3;
else
cursor.y = 2;
img.clear();
// Turn on any pixels that have been visited.
for (int i=0; i<PERIMETER_POINTS; i++)
if (visited[i] == 1)
img.setPixelValue(perimeter[i].x, perimeter[i].y, 255);
// Update the pixel at the users position.
img.setPixelValue(cursor.x, cursor.y, cursor_on);
// Update the buffer to the screen ONLY if we've finished scrolling the message
if (remaining_scroll_time < 0 || samples_this_period > SAMPLES_END_MSG_COUNT)
display.image.paste(img,0,0,0);
// test if we need to update the state at the users position.
for (int i=0; i<PERIMETER_POINTS; i++)
{
if (cursor.x == perimeter[i].x && cursor.y == perimeter[i].y && !(visited[i] == 1))
{
// Record the sample data for later processing...
data[samples] = compass.getSample(RAW);
// Record that this pixel has been visited.
visited[i] = 1;
samples++;
samples_this_period++;
}
}
wait_ms(TIME_STEP);
remaining_scroll_time-=TIME_STEP;
}
CompassCalibration cal = calibrate(data, samples);
compass.setCalibration(cal);
if(this->storage)
this->storage->put(ManagedString("compassCal"), (uint8_t *) &cal, sizeof(CompassCalibration));
// Show a smiley to indicate that we're done, and continue on with the user program.
display.clear();
display.printAsync(smiley, 0, 0, 0, 1500);
wait_ms(1000);
display.clear();
// Retore the display brightness to the level it was at before this function was called.
display.setBrightness(displayBrightness);
}
|