File: gtmcrypt_dbk_ref.h

package info (click to toggle)
fis-gtm 6.2-000-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 30,784 kB
  • ctags: 42,554
  • sloc: ansic: 358,483; asm: 4,847; csh: 4,574; sh: 2,261; awk: 200; makefile: 86; sed: 13
file content (251 lines) | stat: -rw-r--r-- 13,837 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
/****************************************************************
 *								*
 *	Copyright 2009, 2014 Fidelity Information Services, Inc *
 *								*
 *	This source code contains the intellectual property	*
 *	of its copyright holder(s), and is made available	*
 *	under a license.  If you do not know the terms of	*
 *	the license, please stop and do not read further.	*
 *								*
 ****************************************************************/

#ifndef GTMCRYPT_DBK_REF_H
#define GTMCRYPT_DBK_REF_H

/*
 * This file defines several structures that store information about every symmetric key that we load as well the encryption /
 * decryption context for any database or device that uses that particular key. The information about the key includes its raw
 * content and its hash; those are stored in gtm_keystore_t->typed objects malloced invdividually. To assist lookups based on the
 * key's hash or name, we have tree structures consisting of gtm_keystore_hash_link_t- and gtm_keystore_keyname_link_t-typed nodes,
 * respectively. Since we expect hashes to be unique, and the hash information is already stored in gtm_keystore_t nodes, the hash-
 * based tree's nodes contain no additional information and have a one-to-one and onto relationship with the gtm_keystore_t nodes.
 * The keyname-based tree's nodes, on the other hand, also contain the key name information, which may correspond to the database's
 * name or a user-chosen string, in case of device encryption. Additionally, several databases or devices may use the same key, in
 * which case one gtm_keystore_t element may be referenced by multiple keyname tree's nodes. An example is given below:
 *
 *       keystore_by_hash_head                                         keystore_by_keyname_head
 *    (gtm_keystore_hash_link_t *)   (gtm_keystore_t *)             (gtm_keystore_keyname_link_t *)
 *                 |                      ________                                 |
 *           ______|_____                |        |                          ______|_____
 *          |    link ---|-------------> | key #1 | <-----.    .------------|--- link    |
 *          | left right |               |________|        \  /             | left right |
 *          |_/_______\__|                                  \/              |_/_______\__|
 *           /         \                  ________          /\               /         \
 *   _______/____       \                |        |        /  \       ______/_____      \
 *  |    link ---|-------\-------------> | key #2 | <-----`    `-----|--- link    |      \
 *  | left right |        \              |________|                  | left right |       \
 *  |_/_______\__|         \                                         |_/_______\__|        \
 *  ...       ...           \             ________                    /        ...          \
 *                      _____\______     |        |                  /                  _____\______
 *                     |    link ---|--> | key #3 | <-.------------ / -----------------|--- link    |
 *                     | left right |    |________|    \           /                   | left right |
 *                     |_/_______\__|                   \   ______/_____               |_/_______\__|
 *                     ...       ...                     `-|--- link    |               ...      ...
 *                                                         | left right |
 *                                                         |_/_______\__|
 *                                                         ...       ...
 *
 * Because we resolve database file names' real paths when we read the configuration file, it is possible that one or more databases
 * might not yet exist (such as when issuing MUPIP CREATE), so we temporarily store whatever information we processed in an
 * unresolved databases' list, hoping that a later attempt of resolving the path will succeed. The list is singly-linked and consist
 * of gtm_keystore_keyname_link_t-typed elements; each element contains information about the key name, raw content, and hash.
 *
 * As for gtm_keystore_t elements, in addition to the key data they host a pointer to the head of the encryption / decryption state
 * list as well as to the one element of that list that is specific to database encryption. (Because database encryption does not
 * preserve its state beyond one block, we only ever create one database encryption and one database decryption state object, which
 * gets reused continuously.) Unlike devices, which can activate encryption and decryption individually, databases have to have both
 * encryption and decryption enabled at once. For that reason, if there is a database encryption context entry in one key's contexts
 * list, there is a database decryption context right after.
 *
 * The encryption / decryption contexts list is doubly-linked and consists of gtm_cipher_ctx_t-typed elements. Each element contains
 * the algorithm-specific (such as OpenSSL or GCRYPT) encryption or decryption state object, initialization vector (used only when
 * initializing the encryption / decryption state) and a pointer back to its respective key structure. An example is given below:
 *
 *                       ____________________________________________
 *                      |     cipher_head          db_cipher_entry   |
 *                .---> | (gtm_cipher_ctx_t *)  (gtm_cipher_ctx_t *) |
 *               |      |___/__________________________|_____________|
 *               |         /                           |
 *               |        /                        (DB ENCR) ---> (DB DECR)
 *               |   ____/____      _________      ____|____      _________
 *               |  |  prev   | <--|- prev   | <--|- prev   | <--|- prev   |
 *               |  |  next --|--> |  next --|--> |  next --|--> |  next   |
 *               |  |  store  |    |  store  |    |  store  |    |  store  |
 *               |  |____|____|    |____|____|    |____|____|    |____|____|
 *               |       |              |              |              |
 *               `-------'--------------'--------------'--------------`
 *
 * For the actual implementation of the above design please refer to gtmcrypt_dbk_ref.c.
 */

/* Principal structure for storing key information required to perform encryption / decryption. */
typedef struct gtm_keystore_struct
{
	unsigned char					key[SYMMETRIC_KEY_MAX];		/* Raw symmetric key contents. */
	unsigned char					key_hash[GTMCRYPT_HASH_LEN];	/* SHA-512 hash of symmetric key. */
	struct gtm_cipher_ctx_struct			*cipher_head;			/* Linked list of cipher handles for
											 * either encryption or decryption. A list
											 * is needed because multiple devices or
											 * databases can map to the same key, but
											 * the internal encryption / decryption
											 * state cannot be shared. */
	struct gtm_cipher_ctx_struct			*db_cipher_entry;		/* Direct pointer to the (only) DB
											 * encryption cipher entry (followed by the
											 * DB decryption entry). */
} gtm_keystore_t;

/* Structure for storing the encryption / decryption state for one device or any DB using the key pointed to by the store field. */
typedef struct gtm_cipher_ctx_struct
{
	crypt_key_t					handle;				/* Encryption / decryption state. */
	unsigned char					iv[GTMCRYPT_IV_LEN];		/* Initialization vector. */
	gtm_keystore_t					*store;				/* Pointer to master key object. */
	struct gtm_cipher_ctx_struct			*prev;				/* Pointer to previous element. */
	struct gtm_cipher_ctx_struct			*next; 				/* Pointer to next element. */
} gtm_cipher_ctx_t;

/* Structure to organize references to the key object by the key name, in a binary search tree fashion. */
typedef struct gtm_keystore_keyname_link_struct
{
	gtm_keystore_t					*link;				/* Link to respective key object. */
	char						key_name[GTM_PATH_MAX];		/* Logical entity that the symmetric key
											 * maps to. For databases it is the name of
											 * the database file. For devices it is a
											 * user-chosen string. */
	struct gtm_keystore_keyname_link_struct		*left;				/* Pointer to left child. */
	struct gtm_keystore_keyname_link_struct		*right;				/* Pointer to right child. */
} gtm_keystore_keyname_link_t;

/* Structure to organize references to the key object by the key hash, in a binary search tree fashion. */
typedef struct gtm_keystore_hash_link_struct
{
	gtm_keystore_t					*link;				/* Link to respective key object. */
	struct gtm_keystore_hash_link_struct		*left;				/* Pointer to left child. */
	struct gtm_keystore_hash_link_struct		*right;				/* Pointer to right child. */
} gtm_keystore_hash_link_t;

/* Structure to temporarily store key information if the real path of the respective database file name could not be obtained. */
typedef struct gtm_keystore_unres_keyname_link_struct
{
	unsigned char					key[SYMMETRIC_KEY_MAX];		/* Raw symmetric key contents. */
	unsigned char					key_hash[GTMCRYPT_HASH_LEN];	/* SHA-512 hash of symmetric key. */
	char						key_name[GTM_PATH_MAX];		/* Logical entity that the symmetric key
											 * maps to. For databases it is the name of
											 * the database file. For devices it is a
											 * user-chosen string. */
	struct gtm_keystore_unres_keyname_link_struct	*next;				/* Pointer to next element. */
} gtm_keystore_unres_keyname_link_t;

STATICFNDEF int			keystore_refresh(int *new_db_keys, int *new_db_hashes, int *new_dev_keys, int *new_dev_hashes);
STATICFNDEF int 		read_files_section(config_t *cfgp, int *n_mappings, int *new_keynames, int *new_hashes);
STATICFNDEF int 		read_database_section(config_t *cfgp, int *n_mappings, int *new_keynames, int *new_hashes);
STATICFNDEF void		gtm_keystore_cleanup_node(gtm_keystore_t *);
void				gtm_keystore_cleanup_all(void);
STATICFNDEF void		gtm_keystore_cleanup_hash_tree(gtm_keystore_hash_link_t *entry);
STATICFNDEF void		gtm_keystore_cleanup_keyname_tree(gtm_keystore_keyname_link_t *entry);
STATICFNDEF void		gtm_keystore_cleanup_unres_keyname_list(gtm_keystore_unres_keyname_link_t *entry);
int				gtmcrypt_getkey_by_keyname(char *keyname, int length, gtm_keystore_t **entry,
				int database, int nulled);
int				gtmcrypt_getkey_by_hash(unsigned char *hash, gtm_keystore_t **entry);
STATICFNDEF gtm_keystore_t	*keystore_lookup_by_hash(unsigned char *hash);
STATICFNDEF gtm_keystore_t 	*keystore_lookup_by_keyname(char *keyname, int length, int nulled);
STATICFNDEF gtm_keystore_t 	*keystore_lookup_by_unres_keyname(char *keyname, int *error);
STATICFNDEF gtm_keystore_t 	*keystore_lookup_by_unres_keyname_hash(unsigned char *hash);
int 				keystore_new_cipher_ctx(gtm_keystore_t *entry, char *iv, int length, int action);
void 				keystore_remove_cipher_ctx(gtm_cipher_ctx_t *ctx);

/* Allocate a gtm_keystore_t element. */
#define GC_ALLOCATE_KEYSTORE_ENTRY(X)						\
{										\
	X = MALLOC(SIZEOF(gtm_keystore_t));					\
	(X)->cipher_head = NULL;						\
	(X)->db_cipher_entry = NULL;						\
}

/* Allocate a gtm_keystore_xxx_link_t element. */
#define GC_ALLOCATE_KEYSTORE_LINK(X, TYPE)					\
{										\
	X = (TYPE *)MALLOC(SIZEOF(TYPE));					\
	(X)->left = (X)->right = NULL;						\
}

/* Insert a new gtm_keystore_xxx_link_t element in a respective tree. It assumes
 * (and asserts) that there is no existing matching node.
 */
#define INSERT_KEY_LINK(ROOT, LINK, TYPE, FIELD, VALUE, LENGTH, FILL_LEN)	\
{										\
	int	diff;								\
	TYPE	*cur_node, **target_node;					\
										\
	target_node = &ROOT;							\
	while (cur_node = *target_node)	/* NOTE: Assignment!!! */		\
	{									\
		diff = memcmp(cur_node->FIELD, VALUE, LENGTH);			\
		assert(0 != diff);						\
		if (diff < 0)							\
			target_node = &cur_node->left;				\
		else								\
			target_node = &cur_node->right;				\
	}									\
	GC_ALLOCATE_KEYSTORE_LINK(*target_node, TYPE);				\
	(*target_node)->link = LINK;						\
	memset((*target_node)->FIELD, 0, FILL_LEN);				\
	memcpy((*target_node)->FIELD, VALUE, LENGTH);				\
}

/* Find a particular key based on a binary tree with a specific search criterion, such
 * as the key's name or hash. The macro causes the caller to return the found node.
 */
#define LOOKUP_KEY(ROOT, TYPE, FIELD, VALUE, LENGTH, CHECK_NULL)		\
{										\
	int	diff;								\
	TYPE	*cur_node;							\
										\
	cur_node = ROOT;							\
	while (cur_node)							\
	{									\
		diff = memcmp(cur_node->FIELD, VALUE, LENGTH);			\
		if (0 < diff)							\
			cur_node = cur_node->right;				\
		else if ((0 == diff) &&						\
			(CHECK_NULL						\
			 ? '\0' == *(((char *)cur_node->FIELD) + LENGTH)	\
			 : TRUE))						\
			return cur_node->link;					\
		else								\
			cur_node = cur_node->left;				\
	}									\
	return NULL;								\
}

/* Insert a new gtm_keystore_unres_keyname_link_t element in the unresolved keys list. */
#define INSERT_UNRESOLVED_KEY_LINK(KEY, HASH, KEYNAME)				\
{										\
	gtm_keystore_unres_keyname_link_t *node;				\
										\
	node = (gtm_keystore_unres_keyname_link_t *)MALLOC(			\
		SIZEOF(gtm_keystore_unres_keyname_link_t));			\
	memcpy(node->key, KEY, SYMMETRIC_KEY_MAX);				\
	memcpy(node->key_hash, HASH, GTMCRYPT_HASH_LEN);			\
	memset(node->key_name, 0, GTM_PATH_MAX);				\
	strncpy(node->key_name, KEYNAME, GTM_PATH_MAX);				\
	node->next = keystore_by_unres_keyname_head;				\
	keystore_by_unres_keyname_head = node;					\
}

/* Remove all elements from the unresolved keys tree. */
#define REMOVE_UNRESOLVED_KEY_LINKS						\
{										\
	gtm_keystore_unres_keyname_link_t *curr, *temp;				\
										\
	curr = keystore_by_unres_keyname_head;					\
	while (curr)								\
	{									\
		temp = curr->next;						\
		FREE(curr);							\
		curr = temp;							\
	}									\
	keystore_by_unres_keyname_head = NULL;					\
}

#endif /* GTMCRYPT_DBK_REF_H */