File: flt_mod.c

package info (click to toggle)
fis-gtm 6.3-014-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 36,680 kB
  • sloc: ansic: 333,039; asm: 5,180; csh: 4,956; sh: 1,924; awk: 291; makefile: 66; sed: 13
file content (131 lines) | stat: -rwxr-xr-x 3,089 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
/****************************************************************
 *								*
 *	Copyright 2001 Sanchez Computer Associates, Inc.	*
 *								*
 *	This source code contains the intellectual property	*
 *	of its copyright holder(s), and is made available	*
 *	under a license.  If you do not know the terms of	*
 *	the license, please stop and do not read further.	*
 *								*
 ****************************************************************/

/*	flt_mod.(u, v) = u - (v*floor.(u/v))  where  x-1 < floor.x <= x ^ int.x */

#include "mdef.h"

#include "arit.h"
#include "op.h"
#include "eb_muldiv.h"
#include "promodemo.h"
#include "flt_mod.h"

LITREF mval	literal_zero;
LITREF int4	ten_pwr[];

void	flt_mod (mval *u, mval *v, mval *q)
{
	int	exp;
	int4	z, x;
	mval	w;			/* temporary mval for division result */
	mval	y;			/* temporary mval for extended precision promotion
					   to prevent modifying caller's data */
	mval	*u_orig;		/* original (caller's) value of u */
	error_def(ERR_DIVZERO);

	u_orig = u;
	MV_FORCE_NUM(u);
	MV_FORCE_NUM(v);

	if ((v->mvtype & MV_INT) != 0  &&  v->m[1] == 0)
		rts_error(VARLSTCNT(1) ERR_DIVZERO);

	if ((u->mvtype & MV_INT & v->mvtype) != 0)
	{
		/* Both are INT's; use shortcut.  */
		q->mvtype = MV_NM | MV_INT;
		eb_int_mod(u->m[1], v->m[1], q->m);
		return;
	}
	else if ((u->mvtype & MV_INT) != 0)
	{
		/* u is INT; promote to extended precision for compatibility with v.  */
		y = *u;
		promote(&y);		/* y will be normalized, but not in canonical form */
		u = &y;			/* this is why we need u_orig */
	}
	else if ((v->mvtype & MV_INT) != 0)
	{
		/* v is INT; promote to extended precision for compatibility with u.  */
		y = *v;
		promote(&y);
		v = &y;
	}

	/* At this point, both u and v are in extended precision format.  */

	/* Set w = floor(u/v).  */
	op_div (u, v, &w);
	if ((w.mvtype & MV_INT) != 0)
		promote(&w);
	exp = w.e;
	if (exp <= MV_XBIAS)
	{
		/* Magnitude of w, floor(u/v), is < 1.  */
		if (u->sgn != v->sgn  &&  w.m[1] != 0  &&  exp >= EXPLO)
		{
			/* Signs differ (=> floor(u/v) < 0) and (w != 0) and (no underflow) => floor(u/v) == -1 */
			w.sgn = 1;
			w.e = MV_XBIAS + 1;
			w.m[1] = MANT_LO;
			w.m[0] = 0;
		}
		else
		{
			/* Signs same (=> floor(u/v) >= 0) or (w == 0) or (underflow) => floor(u/v) == 0 */
			*q = *u_orig;	/* u - floor(u/v)*v == u - 0*v == u */
			return;
		}
	}
	else if (exp < EXP_IDX_BIAL)
	{
		z = ten_pwr[EXP_IDX_BIAL - exp];
		x = (w.m[1]/z)*z;
		if (u->sgn != v->sgn  &&  (w.m[1] != x  ||  w.m[0] != 0))
		{
			w.m[0] = 0;
			w.m[1] = x + z;
			if (w.m[1] >= MANT_HI)
			{
				w.m[0] = w.m[0]/10 + (w.m[1]%10)*MANT_LO;
				w.m[1] /= 10;
				w.e++;
			}
		}
		else
		{
			w.m[0] = 0;
			w.m[1] = x;
		}
	}
	else if (exp < EXP_IDX_BIAQ)
	{
		z = ten_pwr[EXP_IDX_BIAQ - exp];
		x = (w.m[0]/z)*z;
		if (u->sgn != v->sgn  &&  w.m[0] != x)
		{
			w.m[0] = x + z;
			if (w.m[0] >= MANT_HI)
			{
				w.m[0] -= MANT_HI;
				w.m[1]++;
			}
		}
		else
		{
			w.m[0] = x;
		}
	}

	op_mul (&w, v, &w);		/* w = w*v = floor(u/v)*v       */
	op_sub (u_orig, &w, q);		/* q = u - w = u - floor(u/v)*v */
}