1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
|
/****************************************************************
* *
* Copyright (c) 2012-2023 Fidelity National Information *
* Services, Inc. and/or its subsidiaries. All rights reserved. *
* *
* This source code contains the intellectual property *
* of its copyright holder(s), and is made available *
* under a license. If you do not know the terms of *
* the license, please stop and do not read further. *
* *
****************************************************************/
#include "mdef.h"
#include "gtm_string.h"
#include "cdb_sc.h"
#include "gdsroot.h"
#include "gdsblk.h"
#include "gtm_facility.h"
#include "fileinfo.h"
#include "gdsbt.h"
#include "gdsfhead.h"
#include "filestruct.h"
#include "gdsblkops.h"
#include "gdskill.h"
#include "gdscc.h"
#include "interlock.h"
#include "muextr.h"
#include "mu_reorg.h"
/* Include prototypes */
#include "t_end.h"
#include "t_retry.h"
#include "collseq.h"
#include "mu_getkey.h"
#include "mupip_size.h"
#include "util.h"
#include "t_begin.h"
#include "op.h"
#include "gvcst_protos.h" /* for gvcst_rtsib,gvcst_search prototype */
#include "gvcst_bmp_mark_free.h"
#include "gvcst_kill_sort.h"
#include "gtmmsg.h"
#include "add_inter.h"
#include "t_abort.h"
#include "sleep_cnt.h"
#include "wcs_sleep.h"
#include "memcoherency.h"
#include "change_reg.h"
#include "gtm_time.h"
#include "mvalconv.h"
#include "longset.h" /* needed for cws_insert.h */
#include "cws_insert.h"
#include "min_max.h"
#include <math.h>
error_def(ERR_GBLNOEXIST);
error_def(ERR_MUSIZEFAIL);
GBLREF bool mu_ctrlc_occurred;
GBLREF bool mu_ctrly_occurred;
GBLREF gv_namehead *gv_target;
GBLREF inctn_opcode_t inctn_opcode;
GBLREF int muint_adj;
GBLREF int4 mu_int_adj[];
GBLREF uint4 process_id;
GBLREF sgmnt_addrs *cs_addrs;
GBLREF sgmnt_data_ptr_t cs_data;
GBLREF unsigned int t_tries;
GBLREF boolean_t mu_key;
GBLREF boolean_t null_coll_key;
GBLREF gv_key *mu_start_key;
GBLREF gv_key *mu_end_key;
#define APPROX_F_MAX 500 /* Approximate upper bound for the number of records per index block in
* a database. The estimated max fanning factor is initially APPROX_F_MAX.
* After DYNAMIC_F_MAX samples, we try to get a closer approximation, by
* dynamically adjusting the estimated max fanning factor to be EXTRA_F_MAX
* more than the maximum fanning observed ("fanning" is number of records in
* a block a particular level). We want a closer approximation so that we reject
* fewer samples, and therefore get a size estimation more quickly
*/
#define DYNAMIC_F_MAX 10 /* Choice of these two constants relates to choice of APPROX_F_MAX - how? */
#define EXTRA_F_MAX 50
typedef struct
{ /* cumulative running stats */
int n; /* number of previous traversals */
int N[MAX_BT_DEPTH + 1]; /* number of accepted samples at each given level (more are likely for higher levels) */
double M[MAX_BT_DEPTH + 1]; /* M[j] := mean of r[j]'s over previous n traversals
* Note: M_n = M_{n-1} + (r_n - M_{n-1}) / n
*/
double S[MAX_BT_DEPTH + 1]; /* S[j] := sum of (r_i[j] - M[j])^2 over each previous traversal, i=1..n
* Note: S_n = S_{n-1} + (r_n - M_n) * (r_n - M_{n-1})
* Later, S values are divided by number of samples to give a plugin estimate of variance
* and subsequently are divided by the sample size to give the variance of the mean
*/
double f_max[MAX_BT_DEPTH + 1]; /* estimated max fanning factor */
double r_max[MAX_BT_DEPTH + 1]; /* max records found in a block at a given level */
double A[MAX_BT_DEPTH + 1]; /* A[j] := mean of a[j] over previous n traversals]; see note on M */
/* Final estimates */
double blktot[MAX_BT_DEPTH + 1]; /* estimated #blocks at each level */
double blkerr[MAX_BT_DEPTH + 1]; /* approximate variance of blktot */
double rectot[MAX_BT_DEPTH + 1]; /* estimated #records at each level */
double B; /* estimated total blocks */
double error; /* approximate error in estimate B */
double R; /* estimated total records */
double AT; /* estimated total adjacency */
} stat_t;
/* macro makes it convenient to manange initialization with changes to stat_t */
#define INIT_STATS(stat) \
{ \
int J; \
\
stat.n = 0; \
for (J = 0; MAX_BT_DEPTH >= J; J++) \
{ \
stat.f_max[J] = APPROX_F_MAX; \
stat.r_max[J] = 1; \
} \
CLEAR_VECTOR(stat.N); \
CLEAR_VECTOR(stat.M); \
CLEAR_VECTOR(stat.S); \
CLEAR_VECTOR(stat.blktot); \
CLEAR_VECTOR(stat.blkerr); \
CLEAR_VECTOR(stat.rectot); \
CLEAR_VECTOR(stat.A); \
}
STATICFNDCL void accum_stats_ar(stat_t *stat, double *r, double *a);
STATICFNDCL void finalize_stats_ar(stat_t *stat);
int4 mu_size_arsample(glist *gl_ptr, uint4 M, int seed)
{
boolean_t tn_aborted;
double a[MAX_BT_DEPTH + 1]; /* a[j] is # of adjacent block pointers in level j block of cur traversal */
double r[MAX_BT_DEPTH + 1]; /* r[j] is #records in level j block of current traversal */
enum cdb_sc status;
int k, h;
stat_t rstat;
trans_num ret_tn;
unsigned int lcl_t_tries;
DCL_THREADGBL_ACCESS;
SETUP_THREADGBL_ACCESS;
inctn_opcode = inctn_invalid_op;
/* set gv_target/gv_currkey/gv_cur_region/cs_addrs/cs_data to correspond to <globalname,reg> in gl_ptr */
DO_OP_GVNAME(gl_ptr);
if (0 == gv_target->root)
{ /* Global does not exist (online rollback). Not an error. */
gtm_putmsg_csa(CSA_ARG(NULL) VARLSTCNT(4) ERR_GBLNOEXIST, 2, GNAME(gl_ptr).len, GNAME(gl_ptr).addr);
return EXIT_NRM;
}
if (!seed)
seed = (int4)(time(0) * process_id);
srand48(seed);
if (MUKEY_NULLSUBS == mu_key)
CHECK_COLL_KEY(gl_ptr, null_coll_key);
/* do random traversals until M of them are accepted at level 1 */
INIT_STATS(rstat);
for (k = 1; rstat.N[1] < M; k++)
{
if (mu_ctrlc_occurred || mu_ctrly_occurred)
return EXIT_ERR;
t_begin(ERR_MUSIZEFAIL, 0);
for (;;)
{
CLEAR_VECTOR(r);
CLEAR_VECTOR(a);
if (cdb_sc_normal != (status = mu_size_rand_traverse(r, a))) /* WARNING assignment */
{
assert(UPDATE_CAN_RETRY(t_tries, status));
t_retry(status);
continue;
}
gv_target->clue.end = 0;
gv_target->hist.h[0] = gv_target->hist.h[1]; /* No level 0 block to validate */
DEBUG_ONLY(lcl_t_tries = t_tries);
if ((trans_num)0 == (ret_tn = t_end(&gv_target->hist, NULL, TN_NOT_SPECIFIED))) /* WARNING: assignment */
{
ABORT_TRANS_IF_GBL_EXIST_NOMORE(lcl_t_tries, tn_aborted);
if (tn_aborted)
{ /* Global does not exist (online rollback). Not an error. */
gtm_putmsg_csa(CSA_ARG(NULL)
VARLSTCNT(4) ERR_GBLNOEXIST, 2, GNAME(gl_ptr).len, GNAME(gl_ptr).addr);
return EXIT_NRM;
}
continue;
}
accum_stats_ar(&rstat, r, a);
break;
}
}
finalize_stats_ar(&rstat);
/* display rstat data
* Showing error as 2 standard deviations which is a 95% confidence interval for the mean number of blocks at each level
*/
util_out_print("!/Number of generated samples = !UL", FLUSH, rstat.n);
util_out_print("Number of accepted samples = !UL", FLUSH, rstat.N[1]);
util_out_print("Level Blocks Adjacent 2 sigma(+/-) % Accepted", FLUSH);
for (h = MAX_BT_DEPTH; (0 <= h) && (rstat.blktot[h] < EPS); h--)
;
for ( ; h > 0; h--)
util_out_print("!5UL !15UL !15UL !15UL ~ !3UL% !15UL", FLUSH, h, (int)ROUND(rstat.blktot[h]),
(int)ROUND(sqrt(rstat.blkerr[h]) * 2),
(int)ROUND(mu_int_adj[h]),
(int)ROUND(sqrt(rstat.blkerr[h]) * 2 / rstat.blktot[h] * 100),
(int)ROUND(100.0 * rstat.N[h] / rstat.n)
);
util_out_print("!5UL !15UL !15UL !15UL ~ !3UL% N/A", FLUSH, h, (int)ROUND(rstat.blktot[h]),
(int)ROUND(mu_int_adj[h]),
(int)ROUND(sqrt(rstat.blkerr[h]) * 2),
(int)ROUND(sqrt(rstat.blkerr[h]) * 2 / rstat.blktot[h] * 100.0)
);
util_out_print("Total !15UL !15UL !15UL ~ !3UL% N/A", FLUSH, (int)ROUND(rstat.B),
(int)ROUND(rstat.AT),
(int)ROUND(sqrt(rstat.error) * 2),
(int)ROUND(sqrt(rstat.error) * 2 / rstat.B * 100.0)
);
return EXIT_NRM;
}
STATICFNDCL void accum_stats_ar(stat_t *stat, double *r, double *a)
{
double random, M0, accept[MAX_BT_DEPTH + 1];
int j, depth, n;
++stat->n;
for (j = MAX_BT_DEPTH; (0 <= j) && (r[j] < EPS); j--)
accept[j] = 0;
depth = j;
assertpro(0 <= depth); /* r[0] should remain zero since we don't maintain it */
if (0 > depth) /* Placate compiler warning on old gcc */
return;
accept[depth] = 1; /* always accept the root */
for (; 2 <= j; j--)
accept[j - 1] = accept[j] * ((j == depth) ? 1 : (r[j] / stat->f_max[j]));
accept[0] = 0; /* computing #blks (e.g #recs in lvl 1+), not #recs in lvl 0+ */
random = drand48();
for (j = 0; MAX_BT_DEPTH >= j; j++)
{
if (random < accept[j])
{
n = ++stat->N[j];
M0 = stat->M[j];
stat->M[j] += ((r[j] - M0) / n);
stat->S[j] += (r[j] - stat->M[j]) * (r[j] - M0);
if (n > DYNAMIC_F_MAX)
stat->f_max[j] = stat->r_max[j] + EXTRA_F_MAX;
stat->A[j] += ((a[j] - stat->A[j]) / n);
}
stat->r_max[j] = MAX(stat->r_max[j], r[j]);
}
}
STATICFNDCL void finalize_stats_ar(stat_t *stat)
{
int j, k;
for (j = 0; MAX_BT_DEPTH >= j; j++)
/* Variance of the mean (mean referes to avg number of records per block) is Var(R)/N where N is samples size */
if (stat->N[j] > 0)
{
stat->S[j] /= stat->N[j];
stat->S[j] /= stat->N[j];
}
stat->N[0] = stat->n; /* for arithmetic below */
/* Note: stat->M[0] should remain zero since we don't maintain it. Also stat->M[1] should be > EPS.
* So "j" is guaranteed to be at least 1 at the end of the for loop. Assert that.
* In "pro" we be safe and add the "(0 < j)" check in the for loop below to prevent "j" from becoming negative.
*/
assert(0 == stat->M[0]);
assert(EPS > 0);
assert(EPS < 1);
assert(1 <= stat->M[1]);
for (j = MAX_BT_DEPTH; (0 < j) && (stat->M[j] < EPS); j--)
;
assert(0 < j);
mu_int_adj[j] = stat->AT = stat->blkerr[j] = stat->error = 0;
stat->B = stat->blktot[j] = 1;
for (k = j - 1; j > 0; j--, k--)
{
if (0 == stat->M[j])
stat->M[j] = EPS; /* remove any chance of division by zero */
stat->blktot[k] = stat->blktot[j] * stat->M[j];
stat->B += stat->blktot[k];
mu_int_adj[k] = stat->blktot[j] * stat->A[j];
stat->AT += mu_int_adj[k];
/* Var(XY) assuming X and Y are independent = E[X]^2*Var(Y) + E[Y]^2*Var(X) + Var(X)*Var(Y) */
stat->blkerr[k] = SQR(stat->M[j]) * stat->blkerr[j]
+ SQR(stat->blktot[j]) * stat->S[j] + stat->blkerr[j] * stat->S[j];
stat->error += stat->blkerr[k];
}
stat->R = 0;
for (j = 0; MAX_BT_DEPTH >= j; j++)
{
stat->rectot[j] = stat->blktot[j] * stat->M[j];
stat->R += stat->rectot[j];
}
}
|