1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
|
#!/usr/bin/python3
"""
Created on Fri Aug 31 2012 14:05
Copyright (c) 2012, Martin S. Lindner and Maximilian Kollock,
Robert Koch-Institut, Germany,
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* The name of the author may not be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL MARTIN S. LINDNER OR MAXIMILIAN KOLLOCK BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
"""
usage = """
%prog [options] NAME
Help on python3 script fitGCP.py
Fits mixtures of probability distributions to genome coverage profiles using an
EM-like iterative algorithm.
The script uses a SAM file as input and parses the mapping information and
creates a Genome Coverage Profile (GCP). The GCP is written to a file, such that
this step can be skipped the next time.
The user provides a mixture model that is fitted to the GCP. Furthermore, the
user may specify initial parameters for each model.
As output, the script generates a text file containing the final set of fit
parameters and additional information about the fitting process. A log file
contains the the current set of parameters in each step of the iteration. If
requested, a plot of the GCP and the fitted distributions can be created.
PARAMETER:
NAME: Name of SAM file to analyze.
"""
import pysam
import numpy as np
import scipy.stats as stats
import sys
import os
from collections import namedtuple
import time
import pickle
from optparse import OptionParser
from scipy.special import digamma, betainc
from scipy.optimize import newton
"""----------------------------------------------------------------------------
Define the distributions
----------------------------------------------------------------------------"""
class Distribution:
_p1 = None
_p2 = None
_name = "General Distribution"
_dof = 0 # Number of degrees of freedom
alpha = 1.
def __str__(self):
""" return the name of the distribution """
return self._name
def set_par(self,p1=None, p2=None):
""" explicitly set a parameter """
if p1 != None:
self._p1 = p1
if p2 != None:
self._p2 = p2
def pmf(self, x):
""" return the value of the probability mass function at x """
return x*0.
def estimate_par(self, data=None, weights=None):
""" estimate the distribution parameters from the data and the weights
(if provided) """
pass
def init_par(self, mean=None, var=None):
""" estimate initial distribution parameters given the mean and
variance of the data"""
pass
def report_stats(self, width=20):
""" return a string that reports information about the distribution """
return str(self._name).ljust(width) + str(self.alpha).ljust(width) + \
str(self._p1).ljust(width) + str(self._p2).ljust(width)
class Zero(Distribution):
_name = "Zero"
_dof = 1
def pmf(self,x):
if isinstance(x,np.ndarray):
return (x==0).astype(np.float)
else:
return float(x==0)
class NBinom(Distribution):
_name = "NBinom"
_dof = 3
_use_MOM = False
def pmf(self, x):
return stats.nbinom.pmf(x,self._p1,self._p2)
def estimate_par(self, data, weights=None):
if weights is None:
weights = data*0. + 1.
norm = np.sum(weights)
mean = np.sum(data*weights)/(norm + 10**(-25))
var = np.sum((data - mean)**2 * weights) / (norm + 10**(-25))
if self._use_MOM:
if var < mean:
print("Warning: var < mean")
var = 1.01*mean
self._p1 = mean**2 / (var - mean)
self._p2 = mean / var
else:
def dp1_llnbinom(param,obs,obs_w):
# param: parameter 1
# obs: observed values
# obs_w: weight of each value
N = np.sum(obs_w)
data_mean = np.sum(obs*obs_w)/(N)
return np.sum(digamma(obs+param)*obs_w) - N*digamma(param) + \
N*np.log(data_mean/(param+data_mean))
try:
self._p1 = newton(dp1_llnbinom,self._p1, args=(data,weights),
maxiter=10000)
self._p2 = (self._p1)/(self._p1+mean)
except:
print("Warning: MLE for negative binomial failed. Using MOM.")
if var < mean:
print("Warning: var < mean")
var = 1.01*mean
self._p1 = mean**2 / (var - mean)
self._p2 = mean / var
def report_stats(self, width=20):
""" return a string that reports information about the distribution """
return str(self._name).ljust(width) + str(self.alpha).ljust(width) + \
str(self._p1).ljust(width) + str(self._p2).ljust(width) + \
str(stats.nbinom.mean(self._p1,self._p2)).ljust(width)
class Poisson(Distribution):
_name = "Poisson"
_dof = 2
def pmf(self,x):
return stats.poisson.pmf(x,self._p1)
def estimate_par(self, data, weights=None):
mean = np.sum(data*weights) / (np.sum(weights) )
self._p1 = mean
class TailDistribution(Distribution):
_name = "Tail"
_dof = 1
_norm = False # normalization; recalculate only if necessary
_parent = None
_active = True # switch tail on/off
def set_par(self,p1=None, p2=None):
""" explicitly set a parameter """
if p1 != None:
self._p1 = p1
if p2 != None:
self._p2 = p2
self._norm = False
def estimate_par(self, data=None, weights=None):
""" Do not estimate parameters, but obtain parameters from parent
distribution """
self._p1 = self._parent._p1
self._p2 = self._parent._p2
self._norm = False
class NbTail(TailDistribution):
_name = "Tail"
_dof = 1
def __init__(self, nbinom):
""" NbTail distribution must be connected to a negative binomial"""
if isinstance(nbinom, NBinom):
self._parent = nbinom
else:
raise Exception
def pmf(self, x):
if np.isscalar(x) and x == 0:
return 0.
if self._active == False:
return 0*x
if stats.nbinom.mean(self._p1, self._p2) < 1.:
self._active = False # switch tail permanently off
def betaincreg(x,p1,p2):
return 1-betainc(p1,x+1,p2)
# calculate normalization up to certain precision
if not self._norm:
ks = int(max(2,stats.nbinom.ppf(0.999999,self._p1,self._p2)))
norm = np.sum(betaincreg(np.arange(1,ks),self._p1,self._p2))
else:
norm = self._norm
# now return the value(s)
ret = betaincreg(x,self._p1,self._p2) / norm
if not np.isscalar(x):
ret[np.where(x==0)] = 0.
return ret
class PoissonTail(TailDistribution):
_name = "Tail of Poisson"
_dof = 1
def __init__(self, poisson):
""" PoissonTail distribution must be connected to a poisson
distribution """
if isinstance(poisson, Poisson):
self._parent = poisson
else:
raise Exception
def pmf(self, x):
if self._p1 < 1.:
self._active = False # switch tail permanently off
if self._active == False:
return 0*x
if np.isscalar(x) and x == 0:
return 0.
xmax = int(max(np.max(x),5,stats.poisson.ppf(0.999999,self._p1)))+1
xs = np.arange(0,xmax, dtype=np.float)
#backward cumulative sum
tx = np.cumsum((stats.poisson.pmf(xs, self._p1)/xs)[::-1])[::-1]
tx[0] = 0
tx /= np.sum(tx)
return tx[x]
def build_mixture_model(dist_str):
""" Build a mixture model from a string """
num_dist = len(dist_str)
mm = np.array([Zero()]*num_dist)
it = 0
for dist in dist_str:
if dist == "z":
it += 1
elif dist=="n":
mm[it] = NBinom()
mm[it]._use_MOM = True
it += 1
elif dist=="N":
mm[it] = NBinom()
mm[it]._use_MOM = False
it += 1
elif dist == "t":
if it > 0 and isinstance(mm[it-1], NBinom):
mm[it] = NbTail(mm[it-1])
it += 1
elif it > 0 and isinstance(mm[it-1], Poisson):
mm[it] = PoissonTail(mm[it-1])
it += 1
else:
raise Exception("Error: wrong input '%s'. A Tail distribution "
"(t) must follow a Negative Binomial (n|N) or "
"Poisson (p)."%dist_str)
elif dist == "p":
mm[it] = Poisson()
it+=1
else:
raise Exception("Input Error: distribution %s not recognized!"%dist)
# initialize all distributions with equal weights
alpha = 1./len(mm)
for dist in mm:
dist.alpha = alpha
return mm
def init_gamma(mixture_model, dataset):
""" create initial responsibilities gamma. The probability that a coverage
belongs to a distribution is equal for all distributions."""
N_mm = len(mixture_model)
N_cov = len(dataset.cov)
return np.array([[1./N_mm for d in mixture_model] for i in range(N_cov)])
"""----------------------------------------------------------------------------
Define DataSet to store all relevant information (incl. GCP)
----------------------------------------------------------------------------"""
class DataSet:
fname = "" # path to original SAM file
cov = np.array([],dtype=np.int) # observed coverage values
count = np.array([],dtype=np.int) # number of observations for each cov
rlen = 0 # average read length of mapped reads
rds = 0 # total number of reads
glen = 0 # length of the genome
def read_from_pickle(self,filename):
""" read a genome coverage profile from a pickle file. """
data = pickle.load(open(filename,'rb'))
self.cov = np.array(data[0],dtype=np.int)
self.count = np.array(data[1],dtype=np.int)
self.rlen = data[2]
self.rds = data[3]
self.glen = data[4]
if len(data) == 6:
self.fname = data[5]
def read_from_sam(self, filename):
""" extract a genome coverage profile from a sam file. """
sf = pysam.Samfile(filename,'r')
cov = np.zeros((sum(sf.lengths),))
start_pos = np.zeros((len(sf.lengths),))
start_pos[1:] = np.cumsum(sf.lengths[:-1])
read_length = 0
num_reads = 0
for read in sf:
if not read.is_unmapped:
r_start = start_pos[read.tid] + read.pos # start position
r_end = start_pos[read.tid] + read.pos + read.qlen # end
cov[int(r_start):int(r_end)] += 1
num_reads += 1
read_length += r_end-r_start
self.fname = filename
self.rds = num_reads
self.rlen = read_length/float(num_reads) # average length mapped reads
self.glen = len(cov)
self.cov = np.unique(cov)
self.count = np.array( [np.sum(cov==ucov) for ucov in self.cov] )
def write_to_pickle(self, filename):
""" store dataset in a pickle file. """
return pickle.dump([self.cov, self.count, self.rlen, self.rds,
self.glen, self.fname], open(filename,'wb'))
"""----------------------------------------------------------------------------
Iterative Method function definitions
----------------------------------------------------------------------------"""
def update_gamma(data_set, mixture_model, gamma):
""" Update the probability gamma_i(x), that a position with coverage x
belongs to distribution i
"""
num_dist = len(mixture_model)
for it in range(len(data_set.cov)):
# calculate probability that coverages[it] belongs to a distribution
prob = [dist.alpha*dist.pmf(data_set.cov[it]) for dist in mixture_model]
if sum(prob) <= 0:
gamma[it,:] = 0.
else:
gamma[it,:] = np.array([prob[i]/sum(prob) for i in range(num_dist)])
return 1
def update_alpha(data_set, mixture_model, gamma):
""" Update alpha_i, the proportion of data that belongs to
distribution i """
for i in range(len(mixture_model)-1):
w_probs = np.array([p*w for p,w in zip(gamma[:,i],data_set.count)])
mixture_model[i].alpha = np.sum(w_probs) / np.sum(data_set.count)
mixture_model[-1].alpha = 1 - sum([d.alpha for d in mixture_model[:-1]])
return 1
def iterative_fitting(data_set, mixture_model, gamma, iterations):
""" Generator fuction to run the iterative method. Operates directly on the
data structures mixture_model and gamma. """
for i in range(iterations):
# Expectation-step: update gammas
update_gamma(data_set, mixture_model, gamma)
# temporarily store old parameters
old_p1 = np.array([d._p1 or 0 for d in mixture_model])
old_p2 = np.array([d._p2 or 0 for d in mixture_model])
old_alpha = np.array([d.alpha for d in mixture_model])
# Parameter estimation step
for j,dist in enumerate(mixture_model):
dist_weights = gamma[:,j]*data_set.count
dist.estimate_par(data_set.cov, dist_weights)
update_alpha(data_set, mixture_model, gamma)
# calculate relative change of the parameters
new_p1 = np.array([d._p1 or 0 for d in mixture_model])
new_p2 = np.array([d._p2 or 0 for d in mixture_model])
new_alpha = np.array([d.alpha for d in mixture_model])
rel_p1 = np.max(np.abs(new_p1-old_p1) / (new_p1 + 1e-20))
rel_p2 = np.max(np.abs(new_p2-old_p2) / (new_p2 + 1e-20))
rel_alpha = np.max(np.abs(new_alpha-old_alpha) / (new_alpha + 1e-20))
max_change = np.max([rel_p1, rel_p2, rel_alpha])
# maximum CDF difference
xs = np.arange(np.max(data_set.cov)+1)
ref_pdf = np.zeros((int(np.max(data_set.cov))+1,))
for dist in mixture_model:
ref_pdf += dist.pmf(xs)*dist.alpha
obs_pdf = np.zeros((int(np.max(data_set.cov))+1,))
obs_pdf[data_set.cov.astype(np.int)] = data_set.count/float(np.sum(data_set.count))
max_cdf_diff = np.max(np.abs(np.cumsum(ref_pdf)-np.cumsum(obs_pdf)))
yield i, max_change, max_cdf_diff
"""----------------------------------------------------------------------------
Auxiliary code
----------------------------------------------------------------------------"""
class Logger:
""" simple logger class """
log_file = None
def __init__(self, filename=None):
if filename:
self.log_file = open(filename,'w')
def log(self, s, c=True):
""" write string s to log file and print to console (if c) """
if c:
print(s)
if self.log_file:
self.log_file.write(s+'\n')
def create_plot(ds, mm, filename):
""" create a plot showing the data and the fitted distributions """
plt.figure()
xmax = np.max(ds.cov)+1
plotXs = np.arange(xmax)
plt.plot(ds.cov[np.where(ds.cov<xmax)],ds.count[np.where(ds.cov<xmax)]/
float(ds.glen),'k', lw=2, label="GCP")
plotY_total = np.zeros((len(plotXs),))
for dist in mm:
if isinstance(dist,Poisson):
format_string = "--"
color = 'r'
elif isinstance(dist,NBinom):
format_string = "-."
color = 'b'
elif isinstance(dist,TailDistribution):
format_string = ":"
color = 'Purple'
elif isinstance(dist,Zero):
format_string = "-"
color = 'YellowGreen'
plotYs = dist.pmf(plotXs)*dist.alpha
plotY_total += plotYs
plt.plot(plotXs,plotYs, format_string, color=color, lw=2, label=dist._name)
plt.plot(plotXs,plotY_total,'--',color='gray',lw=2, label="Mixture")
plt.xlabel('coverage')
plt.ylabel('')
plt.xlim(xmin=0, xmax=xmax)
plt.legend()
plt.savefig(filename, dpi=300, bbox_inches='tight')
"""----------------------------------------------------------------------------
Main function
----------------------------------------------------------------------------"""
if __name__ == "__main__":
# Define command line interface using OptionParser
parser = OptionParser(usage=usage)
parser.add_option("-d", "--distributions", dest="dist",
help="Distributions to fit. z->zero; n: nbinom (MOM); N: nbinom (MLE); "
"p:binom; t: tail. Default: %default", default="zn")
parser.add_option("-i", "--iterations", dest="steps", type='int',
help="Maximum number of iterations. Default: %default", default=50)
parser.add_option("-t", "--threshold", dest="thr", type='float', help="Set"
" the convergence threshold for the iteration. Stop if the change between "
"two iterations is less than THR. Default: %default", default=0.01)
parser.add_option("-c", "--cutoff", dest="cutoff", type='float',
help="Specifies a coverage cutoff quantile such that only coverage values"
" below this quantile are considered. Default: %default", default=0.95)
parser.add_option("-p", "--plot", action="store_true", dest="plot",
help="Create a plot of the fitted mixture model. Default: %default",
default=False)
parser.add_option("-m", "--means", dest="mean", type='float',
action="append", help="Specifies the initial values for the mean of each "
"Poisson or Negative Binomial distribution. Usage: -m 12.4 -m 16.1 will "
"specify the means for the first two non-zero/tail distributions. The "
"default is calculated from the data.", default=None)
parser.add_option("-a", "--alpha", dest="alpha", action="append",
help="Specifies the initial values for the proportion alpha of each "
"distribution. Usage: For three distributions -a 0.3 -a 0.3 specifies the "
"proportions 0.3, 0.3 and 0.4. The default is "
"equal proportions for all distributions.", default=None)
parser.add_option("-l", "--log", action="store_true", dest="log",
help="Enable logging. Default: %default", default=False)
parser.add_option("--view", action="store_true", dest="view",
help="Only view the GCP. Do not fit any distribution. Respects cutoff "
"(-c). Default: %default", default=False)
(options, args) = parser.parse_args()
if len(args) != 1:
parser.print_help()
sys.exit(1)
# process command line input
# check input file name
name = args[0] # filename is the first (and only) argument
if not os.path.exists(name):
raise Exception("Could not find file with name '%s'."%name)
if name.endswith('.sam'):
name = name[:-4]
# enable logging
if options.log and not options.view:
logfile = name + '_%s_log.txt'%options.dist
else:
logfile = None
lg = Logger(logfile)
# load data
DS = DataSet()
if os.path.exists(name+'.pcl'):
print('found pickle file')
DS.read_from_pickle(name+'.pcl')
else:
DS.read_from_sam(name+'.sam')
DS.write_to_pickle(name+'.pcl')
# weight cutoff. Coverages above this value have no weight in parameter estimation
try:
cutoff = max(int(np.max(DS.cov[np.where(np.cumsum(DS.count)<= \
options.cutoff*DS.glen)])+1),10)
except:
cutoff = np.max(DS.cov)+1
lg.log("Using coverage cutoff: %i"%cutoff)
DS.count = DS.count[np.where(DS.cov < cutoff)]
DS.cov = DS.cov[np.where(DS.cov < cutoff)]
num_unique = len(DS.cov)
DS.glen = np.sum(DS.count)
mean_cov = np.sum(DS.cov*DS.count)/np.sum(DS.count).astype(np.float)
# only view the GCP
if options.view:
try:
import matplotlib.pyplot as plt
except:
raise Exception("Error: could not import matplotlib.")
# create empty mixture model
MM = np.array([])
create_plot(DS,MM,name+'.png')
print("Wrote GCP plot to file %s."%(name+'.png'))
sys.exit(0)
# Plotting: check if matplotlib is installed
plot = options.plot
if plot:
try:
import matplotlib.pyplot as plt
except:
lg.log("Warning: could not import matplotlib. Plotting disabled.")
plot = False
# create the mixture model
if options.dist.count('z') > 1:
raise Exception("Error: only one Zero disribution is allowed!")
if options.dist.count("t") > 1:
lg.log("Warning: more than one tail distribution may yield inaccurate "
"estimates!")
MM = build_mixture_model(options.dist)
num_dist = len(MM)
the_zero = options.dist.find('z')
if options.alpha != None:
if len(options.alpha) >= num_dist:
raise Exception("Error: the number of alpha values (%i) exceeds "
"the number of distributions (%i)!"%(len(options.alpha,num_dist)))
# set initial proportions for each distribution
if options.alpha:
alpha = options.alpha
if len(options.alpha) < len(MM):
rest_alpha = 1. - sum(options.alpha)
rest_models = len(MM) - len(options.alpha)
alpha.append([rest_alpha / rest_models] * rest_models)
for dist,a in zip(MM,alpha):
dist.alpha = float(a)
# initialize distribution parameters
n_dist = options.dist.count('n') + options.dist.count('N') + \
options.dist.count('p')
factors = np.linspace(-n_dist,n_dist,n_dist)
data_mean = np.power(np.abs(factors),np.sign(factors))*np.mean(DS.cov[1:]*\
DS.count[1:]/np.mean(DS.count))
if options.mean:
# use mean values provided by the user, where possible
for i,m in enumerate(options.mean):
data_mean[i] = m
data_var = np.array([np.sum((DS.cov-m)**2*DS.count)/DS.glen \
for m in data_mean])
it = 0
for dist in MM:
if isinstance(dist,Zero) or isinstance(dist,NbTail) \
or isinstance(dist,PoissonTail):
dist.estimate_par()
continue
if isinstance(dist,NBinom):
m,v = data_mean[it],data_var[it]
if m > v:
v = 1.01*m
dist.set_par(m**2 / (v - m) , m / v )
it += 1
continue
if isinstance(dist,Poisson):
dist.set_par(data_mean[it])
it += 1
# set initial values for the responsibilities gamma
GAMMA = init_gamma(MM,DS)
# write initial values to log file
lg.log('Initial values',False)
lg.log('distribution'.ljust(20)+'alpha'.ljust(20)+'parameter 1'.ljust(20)+
'parameter 2',False)
for i in range(num_dist):
lg.log(str(MM[i]).ljust(20)+str(MM[i].alpha).ljust(20)+
str(MM[i]._p1).ljust(20)+str(MM[i]._p2),False)
lg.log('\n',False)
# run the iteration, repeatedly update the variables MM and GAMMA
t_start = time.time()
for i,change,diff in iterative_fitting(DS, MM, GAMMA, options.steps):
print(i)
t_step = time.time() - t_start
lg.log(('step#: '+str(i+1)).ljust(20)+'time: '+str(round(t_step,1))+'s'
+'\n',False)
lg.log('distribution'.ljust(20)+'alpha'.ljust(20)+
'parameter 1'.ljust(20)+'parameter 2',False)
for d in MM:
lg.log(d.report_stats(20),False)
lg.log('Max. CDF diff:'.ljust(20)+'%f'%diff,False)
lg.log('\n',False)
if change < options.thr:
break
t_start = time.time()
# Estimate genome fragmentation and correct the zero-coverage estimate,
# if a tail distribution was used
zero_frac = MM[the_zero].alpha
tail = False
for dist in MM:
if isinstance(dist,PoissonTail) and dist.alpha > 0:
p_tail = dist.alpha
p_parent = dist._parent.alpha
part_cov = dist._parent._p1
elif isinstance(dist,NbTail) and dist.alpha > 0:
p_tail = dist.alpha
p_parent = dist._parent.alpha
part_cov = stats.nbinom.mean(dist._parent._p1,dist._parent._p2)
else:
continue
tail=True
gfrag = DS.glen/(1.+p_parent/p_tail)/2./DS.rlen*(p_parent+p_tail)
start_prob = 1. - stats.poisson.cdf(0,part_cov/float(DS.rlen))
zero_corr = (2*gfrag-1)*(min(stats.nbinom.mean(1,start_prob),DS.rlen)
- start_prob/3.*4./9.)
zero_est = DS.glen*MM[the_zero].alpha
zero_frac = (zero_est-zero_corr)/float(DS.glen)
# write results to file
res = open(name+'_'+str(options.dist)+'_results.txt','w')
res.write('Genome length: %i\n'%DS.glen)
res.write('Number of reads: %i\n'%DS.rds)
res.write('Average read length: %i\n'%DS.rlen)
#res.write('Average Coverage: %f\n'%mean_cov)
res.write('Max. CDF difference: %f\n\n'%diff)
res.write('Distribution'.ljust(20)+'alpha'.ljust(20)+
'parameter 1'.ljust(20)+'parameter 2'.ljust(20)+'[Mean]\n')
for d in MM:
res.write(d.report_stats(20)+'\n')
if tail:
res.write('\nNum. Fragments:'.ljust(20)+'%.01f'%gfrag+'\n')
res.write('Observed Zeros:'.ljust(20)+
'%.04f'%(zero_est/float(DS.glen))+'\n')
res.write('Corrected Zeros:'.ljust(20)+
'%.04f'%((zero_est-zero_corr)/float(DS.glen))+'\n')
res.close()
lg.log('\nFinal Results:\n')
#lg.log('Average Coverage: %f'%mean_cov)
lg.log('Max. CDF difference: %f\n'%diff)
lg.log('Distribution'.ljust(20)+'alpha'.ljust(20)+'parameter 1'.ljust(20)+
'parameter 2'.ljust(20)+'[Mean]')
for d in MM:
lg.log(d.report_stats(20))
if tail:
lg.log('Num. Fragments:'.ljust(20)+'%.01f'%gfrag)
lg.log('Observed Zeros:'.ljust(20)+'%.04f'%(zero_est/float(DS.glen)))
lg.log('Corrected Zeros:'.ljust(20)+'%.04f'%((zero_est-zero_corr)/
float(DS.glen)))
# plot the figure, if requested
if plot:
create_plot(DS,MM,name+'_'+options.dist+'.png')
print("\nFinished.")
|