File: lfit-builtin.c

package info (click to toggle)
fitsh 0.9.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster, sid, stretch
  • size: 2,768 kB
  • ctags: 4,050
  • sloc: ansic: 53,352; makefile: 1,120; sh: 25
file content (833 lines) | stat: -rw-r--r-- 35,877 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
/*****************************************************************************/
/* lfit-builtin.c							     */
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
/* LFIT - Symbolic fitting & arithmetic evaluating utility. 		     */
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
/* This file defines the built-in functions available in LFIT by default.    */
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
/* (c) 1996, 2002, 2004-2005, 2006, 2007-2008; Pal, A. (apal@szofi.elte.hu)  */
/*****************************************************************************/

#include <stdio.h>
#include <math.h>
#include <string.h>
#include <stdlib.h>

#if defined     _CHDET_SOURCE
	#include "psn.h"
#elif defined   _FITSH_SOURCE
	#include <psn/psn.h>
#else
	#include <psn/psn.h>
#endif

#if defined   _FITSH_SOURCE
        #include "math/elliptic/elliptic.h"
        #include "math/elliptic/ntiq.h"
	#include "math/spline/spline.h"
	#include "xfunct.h"
#elif defined	_ASTRO_EXTEN
        #include "elliptic/elliptic.h"
        #include "elliptic/ntiq.h"
	#include "spline/spline.h"
	#include "xfunct.h"
#endif

#include <lfit/lfit.h>

#include "lfit-builtin.h"

#ifndef M_PI
#define M_PI 3.1415926535897932384626433832795028841968
#endif

#ifndef	M_LN10
#define	M_LN10 2.3025850929940456840179914546843642076011
#endif

#ifndef	M_LOG10E
#define	M_LOG10E 0.4342944819032518276511289189166050822943
#endif

/*****************************************************************************/

static int bltf_o_add(double *s) { *(s-2)=(*(s-2))+(*(s-1));return(0);	}
static int bltf_o_sub(double *s) { *(s-2)=(*(s-2))-(*(s-1));return(0);	}
static int bltf_o_mul(double *s) { *(s-2)=(*(s-2))*(*(s-1));return(0);	}
static int bltf_o_div(double *s) { if ( *(s-1)==0.0 ) return(1);
				   *(s-2)=(*(s-2))/(*(s-1));return(0);	}
static int bltf_o_pow(double *s) { *(s-2)=pow(*(s-2),*(s-1));
				   return(0);				}

static int bltf_o_chs(double *s) { *(s-1)=-(*(s-1));return(0);		}

static int bltf_o_psq(double *s) { s--,(*s)*=*s;return(0);		}
static int bltf_o_rcp(double *s) { s--;if ( *s==0.0 ) return(1);
				   *s=1.0/(*s);return(0);		}

static int bltf_o_sqr(double *s) { s--;if ( *s<0.0 ) return(1);
				   *s=sqrt(*s);return(0);		}
static int bltf_o_abs(double *s) { s--;*s=fabs(*s);return(0);		}
static int bltf_o_sgn(double *s) { s--;	if ( *s>0 ) *s=1.0;
					else if ( *s<0 ) *s=-1.0;
					else *s=0.0;
				   return(0);				}
static int bltf_o_theta(double *s) { s--;if ( *s>0 ) *s=1.0;
					else if ( *s<0 ) *s=0.0;
					else *s=0.5;
				   return(0);				}
static int bltf_o_fmod(double *s) { double m,d;int k;
				   s-=2;m=*s,d=*(s+1);
				   if ( d<0.0 ) d=-d; else if ( d==0.0 ) return(1);
				   if ( m<0.0 ) k=(int)((-m)/d),m+=d*(double)(k+2);
				   k=(int)(m/d),m-=(double)k*d;
				   *s=m;return(0);			}
static int bltf_o_fint(double *s) { s--;*s=floor(*s);return(0);		}

static int bltf_o_fdiv(double *s) { double m,d;
				   s-=2;m=*s,d=*(s+1);
				   if ( d<0.0 ) d=-d; else if ( d==0.0 ) return(1);
				   m=floor(m/d);
				   *s=m;return(0);			}

static int bltf_o_vpi(double *s) { *s=M_PI;return(0); }

static int bltf_f_arg(double *s)   { s-=2; *s=atan2(*(s+1),*(s));return(0); }
static int bltf_f_atan2(double *s) { s-=2; *s=atan2(*(s),*(s+1));return(0); }
static int bltf_f_hypot(double *s) { s-=2; *s=sqrt((*s)*(*s)+(*(s+1))*(*(s+1)));return(0); }

static int bltf_f_exp(double *s) { s--;*s=exp(*s);return(0);		}
static int bltf_f_log(double *s) { s--;if ( *s<=0.0 ) return(1);
				   *s=log(*s);return(0);		}
static int bltf_f_exp10(double *s) { s--;*s=exp(*s*(M_LN10));return(0);	}
static int bltf_f_log10(double *s) { s--;if ( *s<=0.0 ) return(1);
				   *s=log(*s)*M_LOG10E;return(0);	}

static int bltf_f_sin(double *s) { *(s-1)=sin(*(s-1));return(0);	}
static int bltf_f_cos(double *s) { *(s-1)=cos(*(s-1));return(0);	}
static int bltf_f_tan(double *s) { *(s-1)=tan(*(s-1));return(0);	}
static int bltf_f_ctn(double *s) { *(s-1)=1.0/tan(*(s-1));return(0);	}

static int bltf_f_sina(double *s) { *(s-1)=sin(*(s-1)*M_PI/180.0);return(0);	 }
static int bltf_f_cosa(double *s) { *(s-1)=cos(*(s-1)*M_PI/180.0);return(0);	 }
static int bltf_f_tana(double *s) { *(s-1)=tan(*(s-1)*M_PI/180.0);return(0);	 }
static int bltf_f_ctna(double *s) { *(s-1)=1.0/tan(*(s-1)*M_PI/180.0);return(0); }

static int bltf_f_asin(double *s) { *(s-1)=asin(*(s-1));return(0); }
static int bltf_f_acos(double *s) { *(s-1)=acos(*(s-1));return(0); }
static int bltf_f_atan(double *s) { *(s-1)=atan(*(s-1));return(0); }
static int bltf_f_actn(double *s) { *(s-1)=atan(1.0/(*(s-1)));return(0); }

static int bltf_f_asina(double *s) { *(s-1)=asin(*(s-1))*180.0/M_PI;return(0); }
static int bltf_f_acosa(double *s) { *(s-1)=acos(*(s-1))*180.0/M_PI;return(0); }
static int bltf_f_atana(double *s) { *(s-1)=atan(*(s-1))*180.0/M_PI;return(0); }
static int bltf_f_actna(double *s) { *(s-1)=atan(1.0/(*(s-1)))*180.0/M_PI;return(0); }

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

static int bltf_f_ilinear(double *s)
{
 int	b;
 double	x,r;

 s-=3;
 b=(int)s[1];
 x=s[2];
 if ( x <= b-1 )
	r=0.0;
 else if ( x <= b )
	r=1.0-(b-x);
 else if ( x < b+1 )
	r=1.0-(x-b);
 else	
	r=0.0;
 *s=r;
 return(0);
}

static int bltf_f_ilinear_dx(double *s)
{
 int	b;
 double	x,r;

 s-=3;
 b=(int)s[1];
 x=s[2];
 if ( x <= b-1 )
	r=0.0;
 else if ( x <= b )
	r=+1.0;
 else if ( x < b+1 )
	r=-1.0;
 else	
	r=0.0;
 *s=r;
 return(0);
}

static int bltf_f_ispline(double *s)
{
 static	int	t_save=0;
 static double	*arr=NULL;
 int	n,t,b;
 double	x,r;

 s-=3;
 n=(int)s[0];
 b=(int)s[1];
 x=s[2];
 if ( n<0 || ! ( 0<=b && b<=n ) )
	return(-1);
 if ( x<0 )		x=0.0;
 else if ( x>n )	x=(double)n;

 t=n+1;
 if ( t_save != t )
  {	int	i,j;
	t_save=t;
	if ( arr != NULL )
	 {	free(arr);	
		arr=NULL;
	 }
	arr=(double *)malloc(sizeof(double)*(2*t*t));
	for ( i=0 ; i<t ; i++ )
	 {	for ( j=0 ; j<t ; j++ )
		 {	arr[i*t+j]=(i==j?1.0:0.0);		}
		natspline_coeff(&arr[i*t],t,&arr[(i+t)*t]);
	 }
  }
 r=natspline_inter(&arr[b*t],&arr[(b+t)*t],t,x);

 s[0]=r;

 return(0);
}

static int bltf_f_ispline_dx(double *s)
{
 static	int	t_save=0;
 static double	*arr=NULL;
 int	n,t,b;
 double	x,r;

 s-=3;
 n=(int)s[0];
 b=(int)s[1];
 x=s[2];
 if ( n<0 || ! ( 0<=b && b<=n ) )
	return(-1);
 if ( x<0 )		x=0.0;
 else if ( x>n )	x=(double)n;

 t=n+1;
 if ( t_save != t )
  {	int	i,j;
	t_save=t;
	if ( arr != NULL )
	 {	free(arr);	
		arr=NULL;
	 }
	arr=(double *)malloc(sizeof(double)*(2*t*t));
	for ( i=0 ; i<t ; i++ )
	 {	for ( j=0 ; j<t ; j++ )
		 {	arr[i*t+j]=(i==j?1.0:0.0);		}
		natspline_coeff(&arr[i*t],t,&arr[(i+t)*t]);
	 }
  }
 r=natspline_inter_der(&arr[b*t],&arr[(b+t)*t],t,x);

 s[0]=r;

 return(0);
}

static int bltf_f_icyspline(double *s)
{
 static	int	n_save=0;
 static double	*arr=NULL;
 int	n;
 double	x,r;

 s-=2;
 n=(int)s[0];
 x=s[1];
 if ( n<0 )
	return(-1);

 if ( n_save != n )
  {	int	i;
	n_save=n;
	if ( arr != NULL )
	 {	free(arr);	
		arr=NULL;
	 }
	arr=(double *)malloc(sizeof(double)*(2*n));
	for ( i=0 ; i<n ; i++ )
	 {	arr[i]=0.0;		}
	arr[0]=1.0;
	cyspline_coeff(arr,n,arr+n);
  }
 r=cyspline_inter(arr,arr+n,n,x);

 s[0]=r;

 return(0);
}

static int bltf_f_icyspline_dx(double *s)
{
 static	int	n_save=0;
 static double	*arr=NULL;
 int	n;
 double	x,r;

 s-=2;
 n=(int)s[0];
 x=s[1];
 if ( n<0 )
	return(-1);

 if ( n_save != n )
  {	int	i;
	n_save=n;
	if ( arr != NULL )
	 {	free(arr);	
		arr=NULL;
	 }
	arr=(double *)malloc(sizeof(double)*(2*n));
	for ( i=0 ; i<n ; i++ )
	 {	arr[i]=0.0;		}
	arr[0]=1.0;
	cyspline_coeff(arr,n,arr+n);
  }
 r=cyspline_inter_der(arr,arr+n,n,x);

 s[0]=r;

 return(0);
}

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

static int bltf_f_jbessel(double *s)
{
 double	x,y;
 int	n;

 s-=2;
 n=(int)floor(s[0]);
 x=s[1];

 if ( n==0 )		y=j0(x);
 else if ( n==1 )	y=j1(x);
 else if ( n==-1 )	y=-j1(x);
 else			y=jn(n,x);

 s[0]=y;

 return(0);
}

static int bltf_f_ybessel(double *s)
{
 double	x,y;
 int	n;

 s-=2;
 n=(int)floor(s[0]);
 x=s[1];

 if ( x<=0.0 )		return(1);

 if ( n==0 )		y=y0(x);
 else if ( n==1 )	y=y1(x);
 else if ( n==-1 )	y=-y1(x);
 else			y=yn(n,x);

 s[0]=y;

 return(0);
}


/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

/* Definitions of additional operators: relations and boolean operators: */

static int bltf_o_equ(double *s) { if ( *(s-1)==*(s-2) ) *(s-2)=1.0; else *(s-2)=0.0; return(0); }
static int bltf_o_neq(double *s) { if ( *(s-1)!=*(s-2) ) *(s-2)=1.0; else *(s-2)=0.0; return(0); }
static int bltf_o_ls(double *s)  { if ( *(s-2)< *(s-1) ) *(s-2)=1.0; else *(s-2)=0.0; return(0); }
static int bltf_o_gr(double *s)  { if ( *(s-2)> *(s-1) ) *(s-2)=1.0; else *(s-2)=0.0; return(0); }
static int bltf_o_le(double *s)  { if ( *(s-2)<=*(s-1) ) *(s-2)=1.0; else *(s-2)=0.0; return(0); }
static int bltf_o_ge(double *s)  { if ( *(s-2)>=*(s-1) ) *(s-2)=1.0; else *(s-2)=0.0; return(0); }
static int bltf_o_and(double *s) { if ( *(s-1)!=0 && *(s-2)!=0 ) *(s-2)=1.0; else *(s-2)=0.0; return(0); }
static int bltf_o_or(double *s)  { if ( *(s-1)!=0 || *(s-2)!=0 ) *(s-2)=1.0; else *(s-2)=0.0; return(0); }

/*****************************************************************************/

/* Derivative rules */

static	short	diffrule_o_add[]={ SS_D2,SS_D1,O_ADD,0 };
static	short	diffrule_o_sub[]={ SS_D2,SS_D1,O_SUB,0 };
static	short	diffrule_o_mul[]={ SS_D2,SS_N1,O_MUL,SS_D1,SS_N2,O_MUL,O_ADD,0 };
static	short	diffrule_o_div[]={ SS_D2,SS_N1,O_MUL,SS_D1,SS_N2,O_MUL,O_SUB,SS_N1,O_PSQ,O_DIV,0 };
static	short	diffrule_o_pow[]={ SS_N2,SS_N1,O_POW,SS_D1,O_MUL,SS_N2,F_LOG,O_MUL,SS_N2,SS_N1,CON_1,O_SUB,O_POW,SS_N1,O_MUL,SS_D2,O_MUL,O_ADD,0 };

static	short	diffrule_o_chs[]={ SS_D1,O_CHS,0 };
static	short	diffrule_o_psq[]={ SS_N1,CON_2,O_MUL,SS_D1,O_MUL,0 };
static	short	diffrule_o_rcp[]={ SS_N1,O_PSQ,O_RCP,O_CHS,SS_D1,O_MUL,0 };

static	short	diffrule_f_sqr[]={ SS_N1,F_SQR,CON_2,O_MUL,O_RCP,SS_D1,O_MUL,0 };
static	short	diffrule_f_abs[]={ SS_N1,F_SGN,SS_D1,O_MUL,0 };
static	short	diffrule_f_sgn[]  ={ CON_0,0 };
static	short	diffrule_f_theta[]={ CON_0,0 };
static	short	diffrule_f_fmod[]={ SS_D2,SS_N2,SS_N1,O_DIV,F_FINT,SS_D1,O_MUL,O_SUB,0 };
static	short	diffrule_f_fint[]={ CON_0,0 };
static	short	diffrule_f_fdiv[]={ CON_0,0 };
static	short	diffrule_f_vpi[]={ CON_0,0 };

static	short	diffrule_f_arg  []={ SS_N2,SS_D1,O_MUL,SS_N1,SS_D2,O_MUL,O_SUB,SS_N1,O_PSQ,SS_N2,O_PSQ,O_ADD,O_DIV,0 };
static	short	diffrule_f_atan2[]={ SS_N1,SS_D2,O_MUL,SS_N2,SS_D1,O_MUL,O_SUB,SS_N1,O_PSQ,SS_N2,O_PSQ,O_ADD,O_DIV,0 };
static	short	diffrule_f_hypot[]={ SS_N1,SS_D1,O_MUL,SS_N2,SS_D2,O_MUL,O_ADD,SS_N1,SS_N2,F_HYPOT,O_DIV,0 };

static	short 	diffrule_f_sin[]={ SS_N1,F_COS,SS_D1,O_MUL,0 };
static	short	diffrule_f_cos[]={ SS_N1,F_SIN,O_CHS,SS_D1,O_MUL,0 };
static	short	diffrule_f_tan[]={ SS_N1,F_COS,O_PSQ,O_RCP,SS_D1,O_MUL,0 };
static	short	diffrule_f_ctn[]={ SS_N1,F_SIN,O_PSQ,O_RCP,O_CHS,SS_D1,O_MUL,0 };

static	short 	diffrule_f_asin[]={ SS_D1,CON_1,SS_N1,O_PSQ,O_SUB,F_SQR,O_DIV,0 };
static	short	diffrule_f_acos[]={ SS_D1,CON_1,SS_N1,O_PSQ,O_SUB,F_SQR,O_DIV,O_CHS,0 };
static	short	diffrule_f_atan[]={ SS_D1,CON_1,SS_N1,O_PSQ,O_ADD,O_DIV,0 };
static	short	diffrule_f_actn[]={ SS_D1,CON_1,SS_N1,O_PSQ,O_ADD,O_DIV,O_CHS };

static	short	diffrule_f_exp[]={ SS_N1,F_EXP,SS_D1,O_MUL,0 };
static	short	diffrule_f_log[]={ SS_N1,O_RCP,SS_D1,O_MUL,0 };

static	short	diffrule_f_ilinear[]   = { SS_N3,SS_N2,SS_N1,F_ILINEAR_DX,SS_D1,O_MUL,0 };
static	short	diffrule_f_ispline[]   = { SS_N3,SS_N2,SS_N1,F_ISPLINE_DX,SS_D1,O_MUL,0 };
static	short	diffrule_f_icyspline[] = { SS_N2,SS_N1,F_ICYSPLINE_DX,SS_D1,O_MUL,0 };

static	short	diffrule_f_jbessel[] = { SS_N2,CON_1,O_SUB,SS_N1,F_JBESSEL,SS_N2,CON_1,O_ADD,SS_N1,F_JBESSEL,O_SUB,CON_2,O_DIV,SS_D1,O_MUL,0 };
static	short	diffrule_f_ybessel[] = { SS_N2,CON_1,O_SUB,SS_N1,F_YBESSEL,SS_N2,CON_1,O_ADD,SS_N1,F_YBESSEL,O_SUB,CON_2,O_DIV,SS_D1,O_MUL,0 };

/* Simplification rules: */
									/* Type */
		
static	short sim_o_add1[]={ S_EXP1,CON_0,O_ADD,0,S_EXP1,0 };		/* expr+0=expr		*/
static	short sim_o_add2[]={ CON_0,S_EXP1,O_ADD,0,S_EXP1,0 };		/* 0+expr=expr		*/

static	short sim_o_sub1[]={ S_EXP1,CON_0,O_SUB,0,S_EXP1,0 };		/* expr-0=expr		*/
static	short sim_o_sub2[]={ CON_0,S_EXP1,O_SUB,0,S_EXP1,O_CHS,0 };	/* 0-expr=-expr 	*/

static	short sim_o_mul1[]={ S_EXP1,CON_1 ,O_MUL,0,S_EXP1,0 };		/* expr*1=expr		*/
static	short sim_o_mul2[]={ CON_1 ,S_EXP1,O_MUL,0,S_EXP1,0 };		/* 1*expr=expr		*/
static	short sim_o_mul3[]={ S_EXP1,CON_0 ,O_MUL,0,CON_0,0  };		/* expr*0=0		*/
static	short sim_o_mul4[]={ CON_0 ,S_EXP1,O_MUL,0,CON_0,0  };		/* 0*expr=0		*/
static	short sim_o_mul5[]={ S_EXP1,S_EXP1,O_MUL,0,S_EXP1,O_PSQ,0 };	/* ex*ex=ex^(2)		*/

static	short sim_o_div1[]={ S_EXP1,CON_1 ,O_DIV,0,S_EXP1,0 };		/* expr/1=expr      	*/
static	short sim_o_div2[]={ CON_1 ,S_EXP1,O_DIV,0,S_EXP1,O_RCP,0 };	/* 1/expr=expr^(-1) 	*/
static	short sim_o_div3[]={ S_EXP1,CON_0 ,O_DIV,0,0 };			/* expr/0=UNDEF!     	*/
static	short sim_o_div4[]={ CON_0 ,S_EXP1,O_DIV,0,CON_0 ,0 };		/* 0/expr=0       	*/

static	short sim_o_pow1[]={ S_EXP1,CON_0,O_POW,0,CON_1 ,0 };		/* ex^0=1 		*/
static	short sim_o_pow2[]={ S_EXP1,CON_1,O_POW,0,S_EXP1,0 };		/* ex^1=ex		*/
static	short sim_o_pow3[]={ S_EXP1,CON_2,O_POW,0,S_EXP1,O_PSQ,0 };	/* ex^2=ex PSQ		*/

static	short sim_addmul_dis1[]={ S_EXP1,S_EXP2,O_MUL,S_EXP1,S_EXP3,O_MUL,O_ADD,0,S_EXP1,S_EXP2,S_EXP3,O_ADD,O_MUL,0 };	/* a*b+a*c=a*(b+c) */
static	short sim_addmul_dis2[]={ S_EXP2,S_EXP1,O_MUL,S_EXP1,S_EXP3,O_MUL,O_ADD,0,S_EXP1,S_EXP2,S_EXP3,O_ADD,O_MUL,0 }; /* a*b+c*a=a*(b+c) */
static	short sim_addmul_dis3[]={ S_EXP1,S_EXP2,O_MUL,S_EXP3,S_EXP1,O_MUL,O_ADD,0,S_EXP1,S_EXP2,S_EXP3,O_ADD,O_MUL,0 }; /* b*a+a*c=a*(b+c) */
static	short sim_addmul_dis4[]={ S_EXP2,S_EXP1,O_MUL,S_EXP3,S_EXP1,O_MUL,O_ADD,0,S_EXP1,S_EXP2,S_EXP3,O_ADD,O_MUL,0 }; /* b*a+c*a=a*(b+c) */
static	short sim_submul_dis1[]={ S_EXP1,S_EXP2,O_MUL,S_EXP1,S_EXP3,O_MUL,O_SUB,0,S_EXP1,S_EXP2,S_EXP3,O_SUB,O_MUL,0 }; /* a*b-a*c=a*(b-c) */
static	short sim_submul_dis2[]={ S_EXP2,S_EXP1,O_MUL,S_EXP1,S_EXP3,O_MUL,O_SUB,0,S_EXP1,S_EXP2,S_EXP3,O_SUB,O_MUL,0 }; /* a*b-c*a=a*(b-c) */
static	short sim_submul_dis3[]={ S_EXP1,S_EXP2,O_MUL,S_EXP3,S_EXP1,O_MUL,O_SUB,0,S_EXP1,S_EXP2,S_EXP3,O_SUB,O_MUL,0 }; /* b*a-a*c=a*(b-c) */
static	short sim_submul_dis4[]={ S_EXP2,S_EXP1,O_MUL,S_EXP3,S_EXP1,O_MUL,O_SUB,0,S_EXP1,S_EXP2,S_EXP3,O_SUB,O_MUL,0 }; /* b*a-c*a=a*(b-c) */
static	short sim_adddiv_dis []={ S_EXP2,S_EXP1,O_DIV,S_EXP3,S_EXP1,O_DIV,O_ADD,0,S_EXP2,S_EXP3,O_ADD,S_EXP1,O_DIV,0 }; /* b/a+c/a=(b+c)/a */
static	short sim_subdiv_dis []={ S_EXP2,S_EXP1,O_DIV,S_EXP3,S_EXP1,O_DIV,O_SUB,0,S_EXP2,S_EXP3,O_SUB,S_EXP1,O_DIV,0 }; /* b/a-c/a=(b-c)/a */
static	short sim_mulpow_dis []={ S_EXP2,S_EXP1,O_POW,S_EXP3,S_EXP1,O_POW,O_MUL,0,S_EXP2,S_EXP3,O_MUL,S_EXP1,O_POW,0 }; /* b^a*c^a=(b*c)^a */
static	short sim_divpow_dis []={ S_EXP2,S_EXP1,O_POW,S_EXP3,S_EXP1,O_POW,O_DIV,0,S_EXP2,S_EXP3,O_DIV,S_EXP1,O_POW,0 }; /* b^a/c^a=(b/c)^a */

static	short sim_tau1[]= { S_EXP1,S_EXP2,O_CHS,O_SUB,0,S_EXP1,S_EXP2,O_ADD,0 };	/* a-(-b)=a+b */

static  short sim_gon1[]= { S_EXP1,F_SIN,O_PSQ,S_EXP1,F_COS,O_PSQ,O_ADD,0,CON_1,0 };	/* sin^2(x)+cos^2(x)=1 */


short	*psn_lfit_simp[]=
 {	sim_o_add1,
	sim_o_add2,
	sim_o_sub1,
	sim_o_sub2,
	sim_o_mul1,
	sim_o_mul2,
	sim_o_mul3,
	sim_o_mul4,
	sim_o_mul5,
	sim_o_div1,
	sim_o_div2,
	sim_o_div3,
	sim_o_div4,
	sim_o_pow1,
	sim_o_pow2,
	sim_o_pow3,
	sim_addmul_dis1,
	sim_addmul_dis2,
	sim_addmul_dis3,
	sim_addmul_dis4,
	sim_submul_dis1,
	sim_submul_dis2,
	sim_submul_dis3,
	sim_submul_dis4,
	sim_adddiv_dis,
	sim_subdiv_dis,
	sim_mulpow_dis,
	sim_divpow_dis,
	sim_tau1,
	sim_gon1,
	NULL
 };

static psnfunctinfo	pfi_add		= { "addition" 		     		};
static psnfunctinfo	pfi_sub		= { "subtraction" 		     	};
static psnfunctinfo	pfi_chs		= { "negation" 		     		};
static psnfunctinfo	pfi_mul		= { "multiplication" 	     		};
static psnfunctinfo	pfi_div		= { "division"	 	     		};
static psnfunctinfo	pfi_pow		= { "power (right-associative)" 	};

static psnfunctinfo	pfi_sin		= { "sine function (argument in radians)" };
static psnfunctinfo	pfi_cos		= { "cosine function (argument in radians)" };
static psnfunctinfo	pfi_tan		= { "tangent function (argument in radians)" };
static psnfunctinfo	pfi_cot		= { "cotangent function (argument in radians)" };
static psnfunctinfo	pfi_asin	= { "inverse sine function (results radians)" };
static psnfunctinfo	pfi_acos	= { "inverse cosine function (results radians)" };
static psnfunctinfo	pfi_atan	= { "inverse tangent function (results radians)" };
static psnfunctinfo	pfi_acot	= { "inverse cotangent function (results radians)" };

static psnfunctinfo	pfi_exp 	= { "exponential function (natural, e-based)" };
static psnfunctinfo	pfi_log		= { "natural logarithm" };
static psnfunctinfo	pfi_exp10	= { "exponential function (base 10)" };
static psnfunctinfo	pfi_log10	= { "logarithm to the base 10" };

static psnfunctinfo	pfi_sgn		= { "sign function" };
static psnfunctinfo	pfi_theta	= { "Heaviside step function" };
static psnfunctinfo	pfi_abs		= { "absolute value function" };
static psnfunctinfo	pfi_sqrt	= { "square root function" };
static psnfunctinfo	pfi_fint	= { "integer part function (i.e. results the largest integer which is not larger than the argument)" };
static psnfunctinfo	pfi_fdiv	= { "integer division, div(x,y) is equivalent to int(x/y)" };
static psnfunctinfo	pfi_fmod	= { "real fractional remainder function" };
static psnfunctinfo	pfi_arg		= { "two dimensional argument function (results radians)" };
static psnfunctinfo	pfi_atan2	= { "two dimensional argument function, as defined in some programming languages, i.e. atan2(y,x)=arg(x,y) (results radians)" };
static psnfunctinfo	pfi_hypot	= { "hypotenuse function, it results the hypotenuse of a right triangle of which catheti are the two arguments of the function" };
static psnfunctinfo	pfi_vpi		= { "results the value of \\pi (a function with no arguments)" };

static psnfunctinfo	pfi_ilinear	= { "base function of linear interpolation" };
static psnfunctinfo	pfi_ispline	= { "base function of cubic spline interpolation" };
static psnfunctinfo	pfi_icyspline	= { "base function of cyclic cubic spline interpolation" };

static psnfunctinfo	pfi_jbessel	= { "Bessel function of the first kind" };
static psnfunctinfo	pfi_ybessel	= { "Bessel function of the second kind" };

/*****************************************************************************/

/*| sym     type  major   minor    | #|  P| assoc      | (*funct)()| diffrule      |  symstring   S  affix    | */
psnlfit	psnlfit_list_builtin_normal_operators[]=										
{ 
  { "+"    , T_OP, O_ADD  , TO_INFIX , 2, 20, ASSOC_LEFT , bltf_o_add  , diffrule_o_add  , "#(1)+#(2)", 0, TO_INFIX , &pfi_add	},
  { "+"    , T_OP, 0      , TO_PREFIX, 0,  0, 0          , NULL        , NULL            , NULL       , 0, 0        , NULL	},
  { "-"    , T_OP, O_SUB  , TO_INFIX , 2, 20, ASSOC_LEFT , bltf_o_sub  , diffrule_o_sub  , "#(1)-#[2]", 0, TO_INFIX , &pfi_sub	},
  { "-"    , T_OP, O_CHS  , TO_PREFIX, 1, 22, 0          , bltf_o_chs  , diffrule_o_chs  , "(-#(1))"  , 1, 0        , &pfi_chs	},
  { "*"    , T_OP, O_MUL  , TO_INFIX , 2, 21, ASSOC_LEFT , bltf_o_mul  , diffrule_o_mul  , "#(1)*#(2)", 0, TO_INFIX , &pfi_mul	},
  { "/"    , T_OP, O_DIV  , TO_INFIX , 2, 21, ASSOC_LEFT , bltf_o_div  , diffrule_o_div  , "#(1)/#[2]", 0, TO_INFIX , &pfi_div	},
  { "^"    , T_OP, O_POW  , TO_INFIX , 2, 23, ASSOC_RIGHT, bltf_o_pow  , diffrule_o_pow  , "#(1)^#(2)", 1, 0        , &pfi_pow	},
  { "RCP"  , T_OP, O_RCP  , 0        , 1, 23, 0          , bltf_o_rcp  , diffrule_o_rcp  , "1.0/#[1]" , 0, TO_INFIX , NULL	},
  { "PSQ"  , T_OP, O_PSQ  , 0        , 1, 23, 0          , bltf_o_psq  , diffrule_o_psq  , "#(1)^2"   , 1, 0        , NULL	}, 
  { NULL   , 0   , 0      , 0        , 0,  0, 0          , NULL        , NULL            , NULL       , 0, 0        , NULL	} 
};															
															
psnlfit	psnlfit_list_builtin_relational_operators[]=									
{															
  { "=="   , T_OP, O_EQU  , TO_INFIX , 2, 10, ASSOC_LEFT , bltf_o_equ  , NULL            , NULL          , 0, 0     , NULL	},
  { "!="   , T_OP, O_NEQ  , TO_INFIX , 2, 10, ASSOC_LEFT , bltf_o_neq  , NULL            , NULL          , 0, 0     , NULL	},
  { "<"    , T_OP, O_LS   , TO_INFIX , 2, 10, ASSOC_LEFT , bltf_o_ls   , NULL            , NULL          , 0, 0     , NULL	},
  { ">"    , T_OP, O_GR   , TO_INFIX , 2, 10, ASSOC_LEFT , bltf_o_gr   , NULL            , NULL          , 0, 0     , NULL	},
  { "<="   , T_OP, O_LE   , TO_INFIX , 2, 10, ASSOC_LEFT , bltf_o_le   , NULL            , NULL          , 0, 0     , NULL	},
  { ">="   , T_OP, O_GE   , TO_INFIX , 2, 10, ASSOC_LEFT , bltf_o_ge   , NULL            , NULL          , 0, 0     , NULL	},
  { "&&"   , T_OP, O_AND  , TO_INFIX , 2,  5, ASSOC_LEFT , bltf_o_and  , NULL            , NULL          , 0, 0     , NULL	},
  { "||"   , T_OP, O_OR   , TO_INFIX , 2,  4, ASSOC_LEFT , bltf_o_or   , NULL            , NULL          , 0, 0     , NULL	},
  { NULL   , 0   , 0      , 0        , 0,  0, 0          , NULL        , NULL            , NULL          , 0, 0     , NULL	},
};															
															
psnlfit psnlfit_list_builtin_elementary_functions[]=								
{															
  { "sin"  , T_FN, F_SIN  , 0        , 1,  0, 0          , bltf_f_sin  , diffrule_f_sin  , "sin(#1)"     , 0, 0     , &pfi_sin	},
  { "cos"  , T_FN, F_COS  , 0        , 1,  0, 0          , bltf_f_cos  , diffrule_f_cos  , "cos(#1)"     , 0, 0     , &pfi_cos	},
  { "tan"  , T_FN, F_TAN  , 0        , 1,  0, 0          , bltf_f_tan  , diffrule_f_tan  , "tan(#1)"     , 0, 0     , &pfi_tan	},
  { "cot"  , T_FN, F_CTN  , 0        , 1,  0, 0          , bltf_f_ctn  , diffrule_f_ctn  , "cot(#1)"     , 0, 0     , &pfi_cot	},
  { "asin" , T_FN, F_ASIN , 0        , 1,  0, 0          , bltf_f_asin , diffrule_f_asin , "asin(#1)"    , 0, 0     , &pfi_asin	},
  { "acos" , T_FN, F_ACOS , 0        , 1,  0, 0          , bltf_f_acos , diffrule_f_acos , "acos(#1)"    , 0, 0     , &pfi_acos	},
  { "atan" , T_FN, F_ATAN , 0        , 1,  0, 0          , bltf_f_atan , diffrule_f_atan , "atan(#1)"    , 0, 0     , &pfi_atan	},
  { "acot" , T_FN, F_ACTN , 0        , 1,  0, 0          , bltf_f_actn , diffrule_f_actn , "acot(#1)"    , 0, 0     , &pfi_acot	},
  { "sina" , T_FN, F_SINA , 0        , 1,  0, 0          , bltf_f_sina , NULL            , "sina(#1)"    , 0, 0     , NULL	},
  { "cosa" , T_FN, F_COSA , 0        , 1,  0, 0          , bltf_f_cosa , NULL            , "cosa(#1)"    , 0, 0     , NULL	},
  { "tana" , T_FN, F_TANA , 0        , 1,  0, 0          , bltf_f_tana , NULL            , "tana(#1)"    , 0, 0     , NULL	},
  { "ctga" , T_FN, F_CTNA , 0        , 1,  0, 0          , bltf_f_ctna , NULL            , "ctna(#1)"    , 0, 0     , NULL	},
  { "asina", T_FN, F_ASINA, 0        , 1,  0, 0          , bltf_f_asina, NULL            , "asina(#1)"   , 0, 0     , NULL	},
  { "acosa", T_FN, F_ACOSA, 0        , 1,  0, 0          , bltf_f_acosa, NULL            , "acosa(#1)"   , 0, 0     , NULL	},
  { "atana", T_FN, F_ATANA, 0        , 1,  0, 0          , bltf_f_atana, NULL            , "atana(#1)"   , 0, 0     , NULL	},
  { "actga", T_FN, F_ACTNA, 0        , 1,  0, 0          , bltf_f_actna, NULL            , "actna(#1)"   , 0, 0     , NULL	},
															
  { "exp"  , T_FN, F_EXP  , 0        , 1,  0, 0          , bltf_f_exp  , diffrule_f_exp  , "exp(#1)"     , 0, 0     , &pfi_exp	},
  { "log"  , T_FN, F_LOG  , 0        , 1,  0, 0          , bltf_f_log  , diffrule_f_log  , "log(#1)"     , 0, 0     , &pfi_log	},
  { "exp10", T_FN, F_EXP10, 0        , 1,  0, 0          , bltf_f_exp10, NULL            , "exp10(#1)"   , 0, 0     , &pfi_exp10},
  { "log10", T_FN, F_LOG10, 0        , 1,  0, 0          , bltf_f_log10, NULL            , "log10(#1)"   , 0, 0     , &pfi_log10},
  { "sqrt" , T_FN, F_SQR  , 0        , 1,  0, 0          , bltf_o_sqr  , diffrule_f_sqr  , "sqrt(#1)"    , 0, 0     , &pfi_sqrt	},
  { "abs"  , T_FN, F_ABS  , 0        , 1,  0, 0          , bltf_o_abs  , diffrule_f_abs  , "abs(#1)"     , 0, 0     , &pfi_abs	},
  { "sign" , T_FN, F_SGN  , 0        , 1,  0, 0          , bltf_o_sgn  , diffrule_f_sgn  , "sign(#1)"    , 0, 0     , &pfi_sgn	},
  { "theta", T_FN, F_THETA, 0        , 1,  0, 0          , bltf_o_theta, diffrule_f_theta, "theta(#1)"   , 0, 0     , &pfi_theta},
  { "int"  , T_FN, F_FINT , 0        , 1,  0, 0          , bltf_o_fint , diffrule_f_fint , "int(#1)"     , 0, 0     , &pfi_fint	},
  { "div"  , T_FN, F_FDIV , 0        , 2,  0, 0          , bltf_o_fdiv , diffrule_f_fdiv , "div(#1,#2)"  , 0, 0     , &pfi_fdiv	},
  { "mod"  , T_FN, F_FMOD , 0        , 2,  0, 0          , bltf_o_fmod , diffrule_f_fmod , "mod(#1,#2)"  , 0, 0     , &pfi_fmod	},
  { "arg"  , T_FN, F_ARG  , 0        , 2,  0, 0          , bltf_f_arg  , diffrule_f_arg  , "arg(#1,#2)"  , 0, 0     , &pfi_arg	},
  { "atan2", T_FN, F_ATAN2, 0        , 2,  0, 0          , bltf_f_atan2, diffrule_f_atan2, "atan2(#1,#2)", 0, 0     , &pfi_atan2},
  { "hypot", T_FN, F_HYPOT, 0        , 2,  0, 0          , bltf_f_hypot, diffrule_f_hypot, "hypot(#1,#2)", 0, 0     , &pfi_hypot},
  { "pi"   , T_FN, F_VPI  , 0        , 0,  0, 0          , bltf_o_vpi  , diffrule_f_vpi  , "pi()"        , 0, 0     , &pfi_vpi	},
  { NULL   , 0   , 0      , 0        , 0,  0, 0          , NULL        , NULL            , NULL          , 0, 0     , NULL	},
};																	

psnlfit psnlfit_list_builtin_interpolators[]=								
{															
  { "ilinear"     , T_FN, F_ILINEAR     , 0        , 3,  0, 0          , bltf_f_ilinear     , diffrule_f_ilinear  , "ilinear(#1,#2,#3)"     , 0, 0  , &pfi_ilinear	},
  { "ilinear_dx"  , T_FN, F_ILINEAR_DX  , 0        , 3,  0, 0          , bltf_f_ilinear_dx  , NULL                , "ilinear_dx(#1,#2,#3)"  , 0, 0  , NULL 		},
  { "ispline"     , T_FN, F_ISPLINE     , 0        , 3,  0, 0          , bltf_f_ispline     , diffrule_f_ispline  , "ispline(#1,#2,#3)"     , 0, 0  , &pfi_ispline	},
  { "ispline_dx"  , T_FN, F_ISPLINE_DX  , 0        , 3,  0, 0          , bltf_f_ispline_dx  , NULL                , "ispline_dx(#1,#2,#3)"  , 0, 0  , NULL 		},
  { "icyspline"   , T_FN, F_ICYSPLINE   , 0        , 2,  0, 0          , bltf_f_icyspline   , diffrule_f_icyspline, "icyspline(#1,#2)"      , 0, 0  , &pfi_icyspline	},
  { "icyspline_dx", T_FN, F_ICYSPLINE_DX, 0        , 2,  0, 0          , bltf_f_icyspline_dx, NULL                , "icyspline_dx(#1,#2)"   , 0, 0  , NULL 		},
  { NULL          , 0   , 0             , 0        , 0,  0, 0          , NULL               , NULL                , NULL                    , 0, 0  , NULL		},
};

psnlfit psnlfit_list_builtin_aa_functions[]=
{
  { "jbessel",	T_FN, F_JBESSEL, 0, 2, 0, 0, bltf_f_jbessel, diffrule_f_jbessel	, "jbessel(#1,#2)", 0, 0  , &pfi_jbessel	},
  { "ybessel",	T_FN, F_YBESSEL, 0, 2, 0, 0, bltf_f_ybessel, diffrule_f_ybessel	, "ybessel(#1,#2)", 0, 0  , &pfi_ybessel	},
  { NULL     ,  0   , 0        , 0, 0, 0, 0, NULL	   , NULL		, NULL		  , 0, 0  , NULL		}
};


/*****************************************************************************/
/* If 'lfit' is the part of the 'fi' package, we register some extra	     */
/* functions, declared and defined in xfunct.[ch]. 			     */
/*****************************************************************************/

#if defined _FITSH_SOURCE || defined _ASTRO_EXTEN

#define		F_EOQ		96		/* eoq(), eccentric offset   */
#define		F_EOP		97		/* eop(), eccentric offset   */
#define		F_ETC		98		/* etc(), eccentric trig.    */
#define		F_ETS		99		/* ets(), eccentric trig.    */

#define		F_ELL_K		100		/* E() , ell. integral, 1st  */
#define		F_ELL_E		101		/* K() , ell. integral, 2nd  */
#define		F_ELL_PI	102		/* Pi(), ell. integral, 3rd  */
#define		F_NTIU		104		/* ntiu(), norm. trans. int. */
#define		F_NTIQ		105		/* ntiq(), norm. trans. int. */
#define		F_NTIQ_DP	106		/* ntiq_diff(): [0]	     */
#define		F_NTIQ_DZ	107		/* ntiq_diff(): [1]	     */
#define		F_NTIQ_DG1	108		/* ntiq_diff(): [2]	     */
#define		F_NTIQ_DG2	109		/* ntiq_diff(): [3]	     */

#define		F_HJD		110		/* hjd(), helocentric JD     */
#define		F_BJD		111		/* bjd(), barycentric JD     */

static int funct_f_eoq(double *s)
 {	s-=3;
	*s=eccentric_offset_q(*s,*(s+1),*(s+2));
	return(0);
 }

static short    diffrule_f_eoq[]=
 {	SS_N3,SS_N2,SS_N1,F_EOP,SS_N3,O_ADD,F_COS,SS_N2,O_SUB,SS_D2,O_MUL,
	SS_N3,SS_N2,SS_N1,F_EOP,SS_N3,O_ADD,F_SIN,SS_N1,O_SUB,SS_D1,O_MUL,O_ADD,
	SS_N3,SS_N2,SS_N1,F_EOP,SS_D3,O_MUL,O_SUB,
	CON_1,SS_N3,SS_N2,SS_N1,F_EOQ,O_SUB,O_DIV,0 
 };

static int funct_f_eop(double *s) 
 {	s-=3;
	*s=eccentric_offset_p(*s,*(s+1),*(s+2));
	return(0);
 }

static short    diffrule_f_eop[]=
 {	SS_N3,SS_N2,SS_N1,F_EOP,SS_N3,O_ADD,F_SIN,SS_D2,O_MUL,
	SS_N3,SS_N2,SS_N1,F_EOP,SS_N3,O_ADD,F_COS,SS_D1,O_MUL,O_SUB,
	SS_N3,SS_N2,SS_N1,F_EOQ,SS_D3,O_MUL,O_ADD,
	CON_1,SS_N3,SS_N2,SS_N1,F_EOQ,O_SUB,O_DIV,0 
 };

static int funct_f_etc(double *s)
 {	s-=3;
	*s=cos((*s)+eccentric_offset_p(*s,*(s+1),*(s+2)));
	return(0);
 }

static short    diffrule_f_etc[]=
 {	SS_N3,SS_N2,SS_N1,F_ETS,O_CHS,SS_D3,O_MUL,
	SS_N3,SS_N2,SS_N1,F_ETS,O_PSQ,SS_D2,O_MUL,O_SUB,
	SS_N3,SS_N2,SS_N1,F_ETS,SS_N3,SS_N2,SS_N1,F_ETC,O_MUL,SS_D1,O_MUL,O_ADD,
	CON_1,SS_N3,SS_N2,SS_N1,F_EOQ,O_SUB,O_DIV,0 
 };

static int funct_f_ets(double *s)
 {	s-=3;
	*s=sin((*s)+eccentric_offset_p(*s,*(s+1),*(s+2)));
	return(0);
 }

static short    diffrule_f_ets[]=
 {	SS_N3,SS_N2,SS_N1,F_ETC,SS_D3,O_MUL,
	SS_N3,SS_N2,SS_N1,F_ETS,SS_N3,SS_N2,SS_N1,F_ETC,O_MUL,SS_D2,O_MUL,O_ADD,
	SS_N3,SS_N2,SS_N1,F_ETC,O_PSQ,SS_D1,O_MUL,O_SUB,
	CON_1,SS_N3,SS_N2,SS_N1,F_EOQ,O_SUB,O_DIV,0 
 };


static int funct_f_ntiu(double *s)
 {	s-=2;
	*s=1.0-ntiq(*s,*(s+1),0.0,0.0);
  	return(0);
 }


static short	diffrule_f_ntiq[]=
 {	SS_N4,SS_N3,SS_N2,SS_N1,F_NTIQ_DP ,SS_D4,O_MUL,
	SS_N4,SS_N3,SS_N2,SS_N1,F_NTIQ_DZ ,SS_D3,O_MUL,O_ADD,
	SS_N4,SS_N3,SS_N2,SS_N1,F_NTIQ_DG1,SS_D2,O_MUL,O_ADD,
	SS_N4,SS_N3,SS_N2,SS_N1,F_NTIQ_DG2,SS_D1,O_MUL,O_ADD,0
 };

static int funct_f_ntiq_diff(double *s,double *out)
{	static	double	st_args[4]={1,5,0,0},st_diff[5]={0,0,0,0,0};
	if ( memcmp(s,st_args,sizeof(double)*4) != 0 )
	 {	memcpy(st_args,s,sizeof(double)*4);
		st_diff[4]=ntiq_diff(s[0],s[1],s[2],s[3],st_diff);
	 }
	memcpy(out,st_diff,sizeof(double)*5);
	return(0);
}

static int funct_f_ntiq(double *s)
 {	double	st_diff[5];
	s-=4;
	funct_f_ntiq_diff(s,st_diff);
	*s=(1.0-st_diff[4]);
  	return(0);
 }

static int funct_f_ntiq_dp(double *s)
 {	double	st_diff[5];
	s-=4;
	funct_f_ntiq_diff(s,st_diff);
	*s=(-st_diff[0]);
	return(0);
 }
static int funct_f_ntiq_dz(double *s)
 {	double	st_diff[5];
	s-=4;
	funct_f_ntiq_diff(s,st_diff);
	*s=(-st_diff[1]);
	return(0);
 }
static int funct_f_ntiq_dg1(double *s)
 {	double	st_diff[5];
	s-=4;
	funct_f_ntiq_diff(s,st_diff);
	*s=(-st_diff[2]);
	return(0);
 }
static int funct_f_ntiq_dg2(double *s)
 {	double	st_diff[5];
	s-=4;
	funct_f_ntiq_diff(s,st_diff);
	*s=(-st_diff[3]);
	return(0);
 }

static int funct_f_hjd(double *s)
 {	s-=3;
	*s=get_hjd(*s,*(s+1),*(s+2));
	return(0);
 }

static int funct_f_bjd(double *s)
 {	s-=3;
	*s=get_bjd(*s,*(s+1),*(s+2));
	return(0);
 }

static int funct_f_elliptic_k(double *s)
{
	s-=1;
	if ( fabs(*s) < 1.0 )
	 {	*s=elliptic_complete_first(*s);
		return(0);
	 }
	else
		return(1);
}

static int funct_f_elliptic_e(double *s)
{
	s-=1;
	if ( fabs(*s) <= 1.0 )
	 {	*s=elliptic_complete_second(*s);
		return(0);
	 }
	else
		return(1);
}
static int funct_f_elliptic_pi(double *s)
{
	s-=2;
	if ( *s < 1.0 && fabs(*(s+1)) < 1.0 )
	 {	*s=elliptic_complete_third(*s,*(s+1));
		return(0);
	 }
	else
		return(1);
}

static psnfunctinfo	pfi_eoq		= { "eccentric offset function, `q` component (arguments: mean longitude in radians, k and h Lagrangian elements)" };
static psnfunctinfo	pfi_eop		= { "eccentric offset function, `p` component (arguments: mean longitude in radians, k and h Lagrangian elements)" };
static psnfunctinfo	pfi_etc		= { "eccentric trigonometric function, cosine component (arguments: mean longitude in radians, k and h Lagrangian elements)" };
static psnfunctinfo	pfi_ets		= { "eccentric trigonometric function, sine component (arguments: mean longitude in radians, k and h Lagrangian elements)" };
static psnfunctinfo	pfi_ntiu	= { "normalized transit intensity - uniform flux distribution (arguments: fractional radius, normalized distance)" };
static psnfunctinfo	pfi_ntiq	= { "normalized transit intensity - quadratic limb darkening assumption (arguments: fracional radius, normalized distance, the two limb darkening coefficients)" };
static psnfunctinfo	pfi_hjd		= { "heliocentric Julian date (arguments: julian day, RA and DEC, in degrees)" };
static psnfunctinfo	pfi_bjd		= { "barycentric Julian date (arguments: julian day, RA and DEC, in degrees)" };
static psnfunctinfo	pfi_ell_k	= { "complete elliptic integral of the first kind" };
static psnfunctinfo	pfi_ell_e	= { "complete elliptic integral of the second kind" };
static psnfunctinfo	pfi_ell_pi	= { "complete elliptic integral of the third kind" };

psnlfit psnlfit_list_builtin_xfuncts[]=
{                                                                               
  { "eoq"       , T_FN, F_EOQ     , 0        , 3,  0, 0          , funct_f_eoq        , diffrule_f_eoq  , "eoq(#1,#2,#3)"        , 0, 0   , &pfi_eoq  	},
  { "eop"       , T_FN, F_EOP     , 0        , 3,  0, 0          , funct_f_eop        , diffrule_f_eop  , "eop(#1,#2,#3)"        , 0, 0   , &pfi_eop  	},
  { "etc"       , T_FN, F_ETC     , 0        , 3,  0, 0          , funct_f_etc        , diffrule_f_etc  , "etc(#1,#2,#3)"        , 0, 0   , &pfi_etc  	},
  { "ets"       , T_FN, F_ETS     , 0        , 3,  0, 0          , funct_f_ets        , diffrule_f_ets  , "ets(#1,#2,#3)"        , 0, 0   , &pfi_ets  	},
  { "ntiu"      , T_FN, F_NTIU    , 0        , 2,  0, 0          , funct_f_ntiu       , NULL            , "ntiu(#1,#2)"          , 0, 0   , &pfi_ntiu  	},
  { "ntiq"      , T_FN, F_NTIQ    , 0        , 4,  0, 0          , funct_f_ntiq       , diffrule_f_ntiq , "ntiq(#1,#2,#3,#4)"    , 0, 0   , &pfi_ntiq  	},
  { "ntiq_dp"   , T_FN, F_NTIQ_DP , 0        , 4,  0, 0          , funct_f_ntiq_dp    , NULL            , "ntiq_dp(#1,#2,#3,#4)" , 0, 0   , NULL  	},
  { "ntiq_dz"   , T_FN, F_NTIQ_DZ , 0        , 4,  0, 0          , funct_f_ntiq_dz    , NULL            , "ntiq_dz(#1,#2,#3,#4)" , 0, 0   , NULL  	},
  { "ntiq_dg1"  , T_FN, F_NTIQ_DG1, 0        , 4,  0, 0          , funct_f_ntiq_dg1   , NULL            , "ntiq_dg1(#1,#2,#3,#4)", 0, 0   , NULL  	},
  { "ntiq_dg2"  , T_FN, F_NTIQ_DG2, 0        , 4,  0, 0          , funct_f_ntiq_dg2   , NULL            , "ntiq_dg2(#1,#2,#3,#4)", 0, 0   , NULL  	},
  { "hjd"       , T_FN, F_HJD     , 0        , 3,  0, 0          , funct_f_hjd        , NULL            , "hjd(#1,#2,#3)"        , 0, 0   , &pfi_hjd	},
  { "bjd"       , T_FN, F_BJD     , 0        , 3,  0, 0          , funct_f_bjd        , NULL            , "bjd(#1,#2,#3)"        , 0, 0   , &pfi_bjd	},
  { "ellipticK" , T_FN, F_ELL_K   , 0        , 1,  0, 0          , funct_f_elliptic_k , NULL            , "ellipticK(#1)"        , 0, 0   , &pfi_ell_k	},
  { "ellipticE" , T_FN, F_ELL_E   , 0        , 1,  0, 0          , funct_f_elliptic_e , NULL            , "ellipticE(#1)"        , 0, 0   , &pfi_ell_e	},
  { "ellipticPi", T_FN, F_ELL_PI  , 0        , 2,  0, 0          , funct_f_elliptic_pi, NULL            , "ellipticPi(#1)"       , 0, 0   , &pfi_ell_pi	},
  { NULL        , 0   , 0         , 0        , 0,  0, 0          , NULL               , NULL            , NULL                   , 0, 0   , NULL  	}
};

#endif

/*****************************************************************************/