1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
|
/*****************************************************************************/
/* cmath.c */
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
/* Common basic functions used by other modules. */
/* This part of the library (cmath.[ch]) is standalone. */
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
/* (c) 2003-2006, Pal A. (apal@szofi.elte.hu). */
/*****************************************************************************/
#include <stdio.h>
#include <math.h>
#include <astro/cmath.h>
#ifndef M_PI
#define M_PI 3.1415926535897932384626433832795028841968
#endif
/*****************************************************************************/
double sina(double x) { return(sin(x*M_PI/180.0)); }
double cosa(double x) { return(cos(x*M_PI/180.0)); }
double asina(double x) { return(asin(x)*180.0/M_PI); }
double acosa(double x) { return(acos(x)*180.0/M_PI); }
/*****************************************************************************/
void rotate(double *x,double *y,double phi)
{
double wx,wy;
phi=phi*M_PI/180.0;
wx=(*x)*cos(phi)-(*y)*sin(phi);
wy=(*x)*sin(phi)+(*y)*cos(phi);
*x=wx,*y=wy;
}
double getpcoords(double x,double y)
{
if ( x==0 && y==0 ) return(0.0);
x=atan2(y,x)*180.0/M_PI;
if ( x<0.0 ) x+=360.0;
return(x);
}
void get3dpcoords(double x,double y,double z,double *longi,double *latit)
{
double r;
r=sqrt(x*x+y*y+z*z);
if ( r==0.0 ) *latit=*longi=0;
else *latit=asina(z/r),*longi=getpcoords(x,y);
}
double get_angular_distance(double lon1,double lat1,double lon2,double lat2)
{
double d,r;
d=sina(lat1)*sina(lat2)+cosa(lat1)*cosa(lat2)*cosa(lon1-lon2);
if ( d>1.0 ) r=0.0;
else if ( d<-1.0 ) r=180.0;
else r=acosa(d);
return(r);
}
/*****************************************************************************/
double hypot3d(double x,double y,double z)
{
return( sqrt(x*x+y*y+z*z) );
}
/*
double solve_kepler_equ(double m,double ex)
{
double e,e0;
int n;
e=m+ex*sin(m)/(1-sin(m+ex)+sin(m));
for ( n=15,e0=0.0 ; e != e0 && n>0 ; n-- )
{ e0=e;
e=e+(m+ex*sin(e)-e)/(1-ex*cos(e));
};
return(e);
}
*/
double solve_kepler_equ(double m,double e)
{
double s,d,d0;
int n;
s=sin(m);
if ( s==0.0 )
return(m);
else if ( e>=0.8 && s*s<0.1 && cos(m)>0.0 )
{ if ( s>0 ) d=+pow(+6*s,1.0/3.0);
else d=-pow(-6*s,1.0/3.0);
}
else
{ d=e*s/(1-sin(m+e)+s);
if ( d<-e ) d=-e;
else if ( d>e ) d=+e;
}
for ( n=15,d0=0.0 ; d != d0 && n>0 ; n-- )
{ d0=d;
d=d-(d-e*sin(m+d))/(1-e*cos(m+d));
};
return(m+d);
}
/*****************************************************************************/
void matrix_rotation(matrix m,int ax,double fi)
{
int i,j,vi,vj;
double cfi,sfi;
cfi=cosa(fi),sfi=sina(fi);
ax=ax%3;
for ( i=0 ; i<3 ; i++ )
{ for ( j=0 ; j<3 ; j++ )
{ vi=(i-ax+3)%3,vj=(j-ax+3)%3;
if ( vi==0 && vj==0 ) m[i][j]=1.0;
else if ( vi==0 || vj==0 ) m[i][j]=0.0;
else if ( vi==vj ) m[i][j]=cfi;
else if ( vi==1 ) m[i][j]=-sfi;
else m[i][j]=+sfi;
}
}
}
void matrix_mul(matrix r,matrix m1,matrix m2) /* r = m1 * m2 ... */
{
int i,j;
matrix w;
for ( i=0 ; i<3 ; i++ )
{ for ( j=0 ; j<3 ; j++ )
w[i][j]=m1[i][0]*m2[0][j]+m1[i][1]*m2[1][j]+m1[i][2]*m2[2][j];
}
for ( i=0 ; i<3 ; i++ )
{ for ( j=0 ; j<3 ; j++ )
r[i][j]=w[i][j];
}
}
/*****************************************************************************/
|