1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
|
.. _model:
Models
======
From `Numerical Recipes <http://www.nrbook.com/a/bookcpdf.php>`_,
chapter 15.0:
Given a set of observations, one often wants to condense and summarize
the data by fitting it to a "model" that depends on adjustable
parameters. Sometimes the model is simply a convenient class of
functions, such as polynomials or Gaussians, and the fit supplies the
appropriate coefficients. Other times, the model's parameters come
from some underlying theory that the data are supposed to satisfy;
examples are coefficients of rate equations in a complex network of
chemical reactions, or orbital elements of a binary star. Modeling can
also be used as a kind of constrained interpolation, where you want to
extend a few data points into a continuous function, but with some
underlying idea of what that function should look like.
This chapter shows how to construct the model.
Complex models are often a sum of many functions. That is why in Fityk
the model *F* is constructed as a list of component functions
and is computed as :math:`F = \sum_i f_i`.
Each component function :math:`f_i` is one of predefined functions,
such as Gaussian or polynomial.
This is not a limitation, because the user can add any function
to the predefined functions.
To avoid confusion, the name *function* will be used only when referring
to a component function, not when when referring to the sum (model),
which mathematically is also a function. The predefined functions
will be sometimes called *function types*.
Function :math:`f_i=f_i(x; \boldsymbol{a})` is a function of *x*,
and depends on a vector of parameters :math:`\boldsymbol{a}`.
The parameters :math:`\boldsymbol{a}` will be fitted to achieve agreement
of the model and data.
In experiments we often have the situation that the measured *x* values
are subject to systematic errors caused, for example, by instrumental
zero shift or, in powder diffraction measurements,
by displacement of sample in the instrument.
If this is the case, such errors should be a part of the model.
In Fityk, this part of the model is called :dfn:`x-correction`.
The final formula for the model is:
.. _model_formula:
.. math::
F(x; \boldsymbol{a}) = \sum_i f_i(x+Z(x; \boldsymbol{a}); \boldsymbol{a})
where :math:`Z(x; \boldsymbol{a}) = \sum_i z_i(x; \boldsymbol{a})`
is the *x*-correction. *Z* is constructed as a list of components,
analogously to *F*, although in practice it has rarely more than
one component.
Each component function is created by specifying a function type
and binding *variables* to type's parameters. The next section explains
what are *variables* in Fityk, and then we get back to functions.
.. _variables:
Variables
---------
Variables have names prefixed with the dollar symbol ($)
and are created by assigning a value::
$foo=~5.3 # simple-variable
$bar=5*sin($foo) # compound-variable
$c=3.1 # constant (the simplest compound-variable)
The numbers prefixed with the tilde (~) are adjustable when the model
is fitted to the data.
Variable created by assigning ``~``\ *number*
(like ``$foo`` in the example above)
will be called a :dfn:`simple-variable`.
All other variables are called :dfn:`compound-variables`.
Compound variables either depend on other variables (``$bar`` above)
or are constant (``$c``).
.. important::
Unlike in popular programming languages, variable can store either a single
numeric (floating-point) value or a mathematical expression. Nothing else.
In case of expression, if we define ``$b=2*$a``
the value of ``$b`` will be recalculated every time ``$a`` changes.
To assign a value (constant) of another variable, use:
``$b={$a}``. Braces return the current value of the enclosed expression.
The left brace can be preceded by the tilde (``~``).
The assignment ``$b=~{$a}`` creates a simple variable.
Compound-variables can be build using operators +, -, \*, /, ^
and the functions
``sqrt``,
``exp``,
``log10``,
``ln``,
``sin``,
``cos``,
``tan``,
``sinh``,
``cosh``,
``tanh``,
``atan``,
``asin``,
``acos``,
``erf``,
``erfc``,
``lgamma``,
``abs``,
``voigt``.
This is a subset of the functions used in
:ref:`data transformations <transform>`.
The braces may contain any data expression::
$x0 = {x[0]}
$min_y = {min(y if a)}
$c = {max2($a, $b)}
$t = {max(x) < 78 ? $a : $b}
Sometimes it is useful to freeze a variable, i.e. to prevent it from
changing while fitting::
$a = ~12.3 # $a is fittable (simple-variable)
$a = {$a} # $a is not fittable (constant)
$a = ~{$a} # $a is fittable (simple-variable) again
.. admonition:: In the GUI
a variable can be switched between constant and simple-variable
by clicking the padlock button on the sidebar.
The icons |open-lock-icon| and |lock-icon|
show that the variable is fittable and frozen, respectively.
.. |open-lock-icon| image:: img/open_lock_icon.png
:alt: open lock
.. |lock-icon| image:: img/lock_icon.png
:alt: lock
If the assigned expression contains tildes::
$bleh=~9.1*exp(~2)
it automatically creates simple-variables corresponding
to the tilde-prefixed numbers.
In the example above two simple-variables (with values 9.1 and 2) are created.
Automatically created variables are named ``$_1``, ``$_2``, ``$_3``, and so on.
Variables can be deleted using the command::
delete $variable
.. _domain:
Domains
-------
Simple-variables may have a :dfn:`domain`,
which is used for two things when fitting.
Most importantly, fitting methods that support bound constraints
use the domain as lower and/or upper bounds.
See the section :ref:`bound_constraints` for details.
The other use is for randomizing parameters (simple-variables) of the model.
Methods that stochastically initialize or modify parameters
(usually generating a set of initial points) need well-defined
domains (minimum and maximum values for parameters) to work effectively.
Such methods include Nelder-Mead simplex and Genetic Algorithms,
but not the default Lev-Mar method, so in most cases you
do not need to worry about it.
The syntax is as follows::
$a = ~12.3 [0:20] # initial values are drawn from the (0, 20) range
$a = ~12.3 [0:] # only lower bound
$a = ~12.3 [:20] # only upper bound
$a = ~15.0 # domain stays the same
$a = ~15.0 [] # no domain
$a = ~{$a} [0:20] # domain is set again
If the domain is not specified but it is required (for the latter use)
by the fitting method, we assume it to be ±\ *p*\ % of the current value,
where *p* can be set using the :option:`domain_percent` option.
Function Types and Functions
----------------------------
Function types have names that start with upper case letter
(``Linear``, ``Voigt``).
Functions have names prefixed with the percent symbol (``%func``).
Every function has a type and variables bound to its parameters.
One way to create a function is to specify both type and variables::
%f1 = Gaussian(~66254., ~24.7, ~0.264)
%f2 = Gaussian(~6e4, $ctr, $b+$c)
%f3 = Gaussian(height=~66254., hwhm=~0.264, center=~24.7)
Every expression which is valid on the right-hand side of a variable
assignment can be used as a variable.
If it is not just a name of a variable, an automatic variable is created.
In the above examples, two variables were implicitely created for ``%f2``:
first for value ``6e4`` and the second for ``$b+$c``).
If the names of function's parameters are given (like for ``%f3`` above),
the variables can be given in any order.
Function types can can have specified default values for
some parameters. The variables for such parameters can be omitted,
e.g.::
=-> i Pearson7
Pearson7(height, center, hwhm, shape=2) = height/(1+((x-center)/hwhm)^2*(2^(1/shape)-1))^shape
=-> %f4 = Pearson7(height=~66254., center=~24.7, hwhm=~0.264) # no shape is given
New function %f4 was created.
Functions can be copied. The following command creates a deep copy
(i.e. all variables are also duplicated) of %foo::
%bar = copy(%foo)
Functions can be also created with the command ``guess``,
as described in :ref:`guess`.
Variables bound to the function parameters can be changed at any time::
=-> %f = Pearson7(height=~66254., center=~24.7, fwhm=~0.264)
New function %f was created.
=-> %f.center=~24.8
=-> $h = ~66254
=-> %f.height=$h
=-> info %f
%f = Pearson7($h, $_5, $_3, $_4)
=-> $h = ~60000 # variables are kept by name, so this also changes %f
=-> %p1.center = %p2.center + 3 # keep fixed distance between %p1 and %p2
Functions can be deleted using the command::
delete %function
.. _flist:
Built-In Functions
------------------
The list of all functions can be obtained using ``i types``.
Some formulae here have long parameter names
(like "height", "center" and "hwhm") replaced with :math:`a_i`
:ftype:`Gaussian`:
.. math::
y = a_0
\exp\left[-\ln(2)\left(\frac{x-a_1}{a_2}\right)^{2}\right]
:math:`a_2` here is half width at half maximum (HWHM=FWHM/2,
where FWHM stands for full width...), which is proportional to the standard
deviation: :math:`a_2=\sqrt{2\ln2}\sigma`.
:ftype:`SplitGaussian`:
.. math::
y(x;a_0,a_1,a_2,a_3) = \begin{cases}
\textrm{Gaussian}(x;a_0,a_1,a_2) & x\leq a_1\\
\textrm{Gaussian}(x;a_0,a_1,a_3) & x>a_1\end{cases}
:ftype:`GaussianA`:
.. math::
y = \sqrt{\frac{\ln(2)}{\pi}}\frac{a_0}{a_2}
\exp\left[-\ln(2)\left(\frac{x-a_1}{a_2}\right)^{2}\right]
:ftype:`Lorentzian`:
.. math::
y = \frac{a_0}{1+\left(\frac{x-a_1}{a_2}\right)^2}
:ftype:`SplitLorentzian`:
.. math::
y(x;a_0,a_1,a_2,a_3) = \begin{cases}
\textrm{Lorentzian}(x;a_0,a_1,a_2) & x\leq a_1\\
\textrm{Lorentzian}(x;a_0,a_1,a_3) & x>a_1\end{cases}
:ftype:`LorentzianA`:
.. math::
y = \frac{a_0}{\pi a_2\left[1+\left(\frac{x-a_1}{a_2}\right)^2\right]}
:ftype:`Pearson VII (Pearson7)`:
.. math::
y = \frac{a_0} {\left[1+\left(\frac{x-a_1}{a_2}\right)^2
\left(2^{\frac{1}{a_3}}-1\right)\right]^{a_3}}
:ftype:`split Pearson VII (SplitPearson7)`:
.. math::
y(x;a_{0},a_{1},a_{2},a_{3},a_{4},a_{5}) = \begin{cases}
\textrm{Pearson7}(x;a_0,a_1,a_2,a_4) & x\leq a_1\\
\textrm{Pearson7}(x;a_0,a_1,a_3,a_5) & x>a_1\end{cases}
:ftype:`Pearson VII Area (Pearson7A)`:
.. math::
y = \frac{a_0\Gamma(a_3)\sqrt{2^{\frac{1}{a_3}}-1}}
{a_2\Gamma(a_3-\frac{1}{2})\sqrt{\pi} \left[
1 + \left(\frac{x-a_1}{a_2}\right)^2
\left(2^{\frac{1}{a_3}}-1\right)
\right]^{a_3}}
:ftype:`Pseudo-Voigt (PseudoVoigt)`:
.. math::
y = a_0 \left[(1-a_3)\exp\left(-\ln(2)\left(\frac{x-a_1}{a_2}\right)^2\right)
+ \frac{a_3}{1+\left(\frac{x-a_1}{a_2}\right)^2}
\right]
Pseudo-Voigt is a name given to the sum of Gaussian and Lorentzian.
:math:`a_3` parameters in Pearson VII and Pseudo-Voigt
are not related.
:ftype:`split Pseudo-Voigt (SplitPseudoVoigt)`:
.. math::
y(x;a_{0},a_{1},a_{2},a_{3},a_{4},a_{5}) = \begin{cases}
\textrm{PseudoVoigt}(x;a_0,a_1,a_2,a_4) & x\leq a_1\\
\textrm{PseudoVoigt}(x;a_0,a_1,a_3,a_5) & x>a_1\end{cases}
:ftype:`Pseudo-Voigt Area (PseudoVoigtA)`:
.. math::
y = a_0 \left[\frac{(1-a_3)\sqrt{\ln(2)}}{a_2\sqrt{\pi}}
\exp\left(-\ln2\left(\frac{x-a_1}{a_2}\right)^2\right)
+ \frac{a_3}{\pi a_2
\left[1+\left(\frac{x-a_1}{a_2}\right)^2\right]}
\right]
:ftype:`Voigt`:
.. math::
y = \frac
{a_0 \int_{-\infty}^{+\infty}
\frac{\exp(-t^2)}{a_3^2+(\frac{x-a_1}{a_2}-t)^2} dt}
{\int_{-\infty}^{+\infty}
\frac{\exp(-t^2)}{a_3^2+t^2} dt}
The Voigt function is a convolution of Gaussian and Lorentzian functions.
:math:`a_0` = heigth,
:math:`a_1` = center,
:math:`a_2` is proportional to the Gaussian width, and
:math:`a_3` is proportional to the ratio of Lorentzian and Gaussian widths.
Voigt is computed according to R.J.Wells,
*Rapid approximation to the Voigt/Faddeeva function and its derivatives*,
Journal of Quantitative Spectroscopy & Radiative Transfer
62 (1999) 29-48.
The approximation is very fast, but not very exact.
FWHM is estimated using an approximation called *modified Whiting*
(`Olivero and Longbothum, 1977, JQSRT 17, 233`__):
:math:`0.5346 w_L + \sqrt{0.2169 w_L^2 + w_G^2}`,
where :math:`w_G=2\sqrt{\ln(2)} |a_2|, w_L=2 |a_2| a_3`.
__ http://dx.doi.org/10.1016/0022-4073(77)90161-3
:ftype:`VoigtA`:
.. math::
y = \frac{a_0}{\sqrt{\pi}a_2}
\int_{-\infty}^{+\infty}
\frac{\exp(-t^2)}{a_3^2+(\frac{x-a_1}{a_2}-t)^2} dt
:ftype:`split Voigt (SplitVoigt)`:
.. math::
y(x;a_{0},a_{1},a_{2},a_{3},a_{4},a_{5}) = \begin{cases}
\textrm{Voigt}(x;a_0,a_1,a_2,a_4) & x\leq a_1\\
\textrm{Voigt}(x;a_0,a_1,a_3,a_5) & x>a_1\end{cases}
:ftype:`Exponentially Modified Gaussian (EMG)`:
.. math::
y = \frac{ac\sqrt{2\pi}}{2d}
\exp\left(\frac{c^2}{2d^2}-\frac{x-b}{d}\right)
\left[\frac{d}{\left|d\right|}
+\textrm{erf}\left(\frac{x-b}{\sqrt{2}c}
- \frac{c}{\sqrt{2}d}\right)
\right]
The exponentially modified Gaussian is a convolution of Gaussian and
exponential probability density.
*a* = Gaussian heigth,
*b* = location parameter (Gaussian center),
*c* = Gaussian width,
*d* = distortion parameter (a.k.a. modification factor or time constant).
:ftype:`LogNormal`:
.. math::
y = h \exp\left\{ -\ln(2) \left[
\frac{\ln\left(1+2b\frac{x-c}{w}\right)}{b}
\right]^{2} \right\}
:ftype:`Doniach-Sunjic (DoniachSunjic)`:
.. math::
y = \frac{h\left[\frac{\pi a}{2}
+ (1-a)\arctan\left(\frac{x-E}{F}\right)\right]}
{F+(x-E)^2}
:ftype:`Polynomial5`:
.. math::
y = a_0 + a_1 x +a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5
:ftype:`Sigmoid`:
.. math::
y = L + \frac{U-L}{1+\exp\left(-\frac{x-x_{mid}}{w}\right)}
:ftype:`FCJAsymm`:
Axial asymmetry peak shape in the Finger, Cox and Jephcoat model, see
`J. Appl. Cryst. (1994) 27, 892 <http://dx.doi.org/10.1107/S0021889894004218>`_
and `J. Appl. Cryst. (2013) 46, 1219
<http://dx.doi.org/10.1107/S0021889813016233>`_.
Variadic Functions
------------------
*Variadic* function types have variable number of parameters.
Two variadic function types are defined::
Spline(x1, y1, x2, y2, ...)
Polyline(x1, y1, x2, y2, ...)
This example::
%f = Spline(22.1, 37.9, 48.1, 17.2, 93.0, 20.7)
creates a function that is a *natural cubic spline* interpolation
through points (22.1, 37.9), (48.1, 17.2), ....
The ``Polyline`` function is a polyline interpolation (spline of order 1).
Both ``Spline`` and ``Polyline`` functions are primarily used
for the manual baseline subtraction via the GUI.
The derivatives of Spline function are not calculated, so this function
is not refined by the default, derivative-based fitting algorithm.
Since the Polyline derivatives are calculated, it is possible to perform
weighted least squares approximation by broken lines, although
non-linear fitting algorithms are not optimal for this task.
.. _udf:
User-Defined Functions (UDF)
----------------------------
User-defined function types can be added using command ``define``,
and then used in the same way as built-in functions.
Example::
define MyGaussian(height, center, hwhm) = height*exp(-ln(2)*((x-center)/hwhm)^2)
- The name of new type must start with an upper-case letter,
contain only letters and digits and have at least two characters.
- The name of the type is followed by parameters in brackets.
- Parameter name must start with lowercase letter and,
contain only lowercase letters, digits and the underscore ('_').
- The name "x" is reserved, do not put it into parameter list,
just use it on the right-hand side of the definition.
- There are special names of parameters that Fityk understands:
* if the functions is peak-like (bell-shaped):
``height``, ``center``, ``hwhm``, ``area``,
* if the functions is S-shaped (sigmoidal) or step-like:
``lower``, ``upper``, ``xmid``, ``wsig``,
* if the function is more like linear:
``slope``, ``intercept``, ``avgy``.
The initial values of these parameters can be guessed (command ``guess``)
from the data. ``hwhm`` means half width at half maximum,
the other names are self-explaining.
- Each parameter may have a default value (see the examples below).
The default value can be either a number or an expression that depends
on the parameters listed above (e.g. ``0.8*hwhm``).
The default value always binds a simple-variable to the parameter.
UDFs can be defined in a few ways:
- by giving a full formula, like in the example above,
- as a :dfn:`re-parametrization` of existing function
(see the ``GaussianArea`` example below),
- as a sum of already defined functions
(see the ``GLSum`` example below),
- as a split (bifurcated) function:
``x <`` *expression* ``?`` *Function1(...)* ``:`` *Function2(...)*
(see the ``SplitL`` example below).
When giving a full formula, the right-hand side of the equality sign
is similar to the :ref:`definiton of variable <variables>`,
but the formula can also depend on *x*.
Hopefully the examples can make the syntax clear::
# this is how some built-in functions could be defined
define MyGaussian(height, center, hwhm) = height*exp(-ln(2)*((x-center)/hwhm)^2)
define MyLorentzian(height, center, hwhm) = height/(1+((x-center)/hwhm)^2)
define MyCubic(a0=height,a1=0, a2=0, a3=0) = a0 + a1*x + a2*x^2 + a3*x^3
# supersonic beam arrival time distribution
define SuBeArTiDi(c, s, v0, dv) = c*(s/x)^3*exp(-(((s/x)-v0)/dv)^2)/x
# area-based Gaussian can be defined as modification of built-in Gaussian
# (it is the same as built-in GaussianA function)
define GaussianArea(area, center, hwhm) = Gaussian(area/hwhm/sqrt(pi/ln(2)), center, hwhm)
# sum of Gaussian and Lorentzian, a.k.a. PseudoVoigt (should be in one line)
define GLSum(height, center, hwhm, shape) = Gaussian(height*(1-shape), center, hwhm)
+ Lorentzian(height*shape, center, hwhm)
# split-Gaussian, the same as built-in SplitGaussian (should be in one line)
define SplitG(height, center, hwhm1=fwhm*0.5, hwhm2=fwhm*0.5) =
x < center ? Lorentzian(height, center, hwhm1)
: Lorentzian(height, center, hwhm2)
There is a simple substitution mechanism that makes writing complicated
functions easier.
Substitutions must be assigned in the same line, after the keyword ``where``.
Example::
define ReadShockley(sigma0=1, a=1) = sigma0 * t * (a - ln(t)) where t=x*pi/180
# more complicated example, with nested substitutions
define FullGBE(k, alpha) = k * alpha * eta * (eta / tanh(eta) - ln (2*sinh(eta))) where eta = 2*pi/alpha * sin(theta/2), theta=x*pi/180
.. admonition:: How it works internally
The formula is parsed,
derivatives of the formula are calculated symbolically,
expressions are simplified
and bytecode for virtual machine (VM) is created.
When fitting, the VM calculates the value of the function
and derivatives for every point.
Defined functions can be undefined using command ``undefine``::
undefine GaussianArea
It is common to add own definitions to the :file:`init` file.
See the section :ref:`invoking` for details.
.. _function_cutoff:
Cutoff
------
With default settings, the value of every function is calculated
at every point. Peak functions, such as Gaussian, often have non-negligible
values only in a small fraction of all points,
so if you have many narrow peaks
(like `here <http://commons.wikimedia.org/wiki/File:Diff_NaBr.png>`_),
the basic optimization is to calculate values of each peak function
only near the function's center.
If the option :option:`function_cutoff` is set to a non-zero value,
each function is evaluated only in the range where its values are
greater than the :option:`function_cutoff`.
This optimization is supported only by some built-in functions.
Model, F and Z
--------------
As already discussed, each dataset has a separate model
that can be fitted to the data.
As can be seen from the :ref:`formula <model_formula>` at the beginning
of this chapter, the model is defined as a set functions :math:`f_i`
and a set of functions :math:`z_i`.
These sets are named *F* and *Z* respectively.
The model is constructed by specifying names of functions in these two sets.
In many cases :dfn:`x-correction` Z is not used.
The fitted curve is thus the sum of all functions in F.
Command::
F += %function
adds *%function* to F, and
::
Z += %function
adds *%function* to Z.
A few examples::
# create and add function to F
%g = Gaussian(height=~66254., hwhm=~0.264, center=~24.7)
F += %g
# create unnamed function and add it to F
F += Gaussian(height=~66254., hwhm=~0.264, center=~24.7)
# clear F
F = 0
# clear F and put three functions in it
F = %a + %b + %c
# show info about the first and the last function in F
info F[0], F[-1]
The next sections shows an easier way to add a function (command ``guess``).
If there is more than one dataset, F and Z can be prefixed
with the dataset number (e.g. ``@1.F``).
The model can be copied. To copy the model from ``@0`` to ``@1``
we type one of the two commands::
@1.F = @0.F # shallow copy
@1.F = copy(@0.F) # deep copy
The former command uses the same functions in both models: if you shift
a peak in ``@1``, it will be also shifted in ``@0``. The latter command
(deep copy) duplicates all functions and variables and makes an independent
model.
.. admonition:: In the GUI
click the button |copyfunc-icon| on the sidebar to make a deep copy.
.. |copyfunc-icon| image:: img/copyfunc_icon.png
:alt: Copy-Model
:class: icon
It is often required to keep the width or shape of peaks constant
for all peaks in the dataset. To change the variables bound to parameters
with a given name for all functions in F, use the command::
F[*].param = variable
Examples::
# Set hwhm of all functions in F that have a parameter hwhm to $foo
# (hwhm here means half-width-at-half-maximum)
F[*].hwhm = $foo
# Bound the variable used for the shape of peak %_1 to shapes of all
# functions in F
F[*].shape = %_1.shape
# Create a new simple-variable for each function in F and bound the
# variable to parameter hwhm. All hwhm parameters will be independent.
F[*].hwhm = ~0.2
.. admonition:: In the GUI
buttons |same-hwhm-icon| and |same-shape-icon| on the sidebar make,
respectively, the HWHM and shape of all functions the same.
Pressing the buttons again will make all the parameters independent.
.. |same-hwhm-icon| image:: img/eq_fwhm_icon.png
:alt: =W
:class: icon
.. |same-shape-icon| image:: img/eq_shape_icon.png
:alt: =S
:class: icon
.. _guess:
Guessing Initial Parameters
---------------------------
The program can automatically set initial parameters of peaks (using
peak-detection algorithm) and lines (using linear regression).
Choosing initial parameters of a function by the program
will be called :dfn:`guessing`.
It is possible to guess peak location and add it to *F* with the command::
guess [%name =] PeakType [(initial values...)] [[x1:x2]]
Examples::
# add Gaussian in the given range
@0: guess Gaussian [22.1:30.5]
# the same, but name the new function %f1
@0: guess %f1 = Gaussian [22.1:30.5]
# search for the peak in the whole dataset
@0: guess Gaussian
# add one Gaussian to each dataset
@*: guess Gaussian
# set the center and shape explicitely (determine height and width)
guess PseudoVoigt(center=$ctr, shape=~0.3) [22.1:30.5]
- Name of the function is optional.
- Some of the parameters can be specified in brackets.
- If the range is omitted, the whole dataset will be searched.
Fityk offers a simple algorithm for peak-detection.
It finds the highest point in the given range (``center`` and ``height``),
and than tries to find the width of the peak (``hwhm``, and ``area``
= *height* × *hwhm*).
If the highest point is at boundary of the given range,
the points from the boundary to the nearest local minimum are ignored.
The values of height and width found by the algorithm
are multiplied by the values of options :option:`height_correction`
and :option:`width_correction`, respectively. The default value for both
options is 1.
Another simple algorithm can roughly estimate initial parameters of sigmoidal
functions.
The linear traits ``slope`` and ``intercept`` are calculated using linear
regression (without weights of points).
``avgy`` is calculated as average value of *y*.
.. admonition:: In the GUI
select a function from the list of functions on the toolbar
and press |add-peak-icon| to add (guess) the selected function.
To choose a data range change the GUI mode to |mode-add-icon|
and select the range with the right mouse button.
.. |add-peak-icon| image:: img/add_peak_icon.png
:alt: Auto Add
:class: icon
.. |mode-add-icon| image:: img/mode_add_icon.png
:alt: Add-Peak Mode
:class: icon
Displaying Information
----------------------
The ``info`` command can be show useful information when constructing
the model.
``info types``
shows the list of available function types.
``info FunctionType``
(e.g. ``info Pearson7``) shows the formula (definition).
``info guess [range]``
shows where the ``guess`` command would locate a peak.
``info functions``
lists all defined functions.
``info variables``
lists all defined variables.
``info F``
lists components of *F*.
``info Z``
lists components of *Z*.
``info formula``
shows the full mathematical formula of the fitted model.
``info simplified_formula``
shows the same, but the formula is simplified.
``info gnuplot_formula``
shows same as ``formula``, but the output is readable by gnuplot,
e.g. ``x^2`` is replaced by ``x**2``.
``info simplified_gnuplot_formula``
shows the simplified formula in the gnuplot format.
``info peaks``
show a formatted list of parameters of functions in *F*.
``info peaks_err``
shows the same data, additionally including uncertainties of the parameters.
``info models``
a script that reconstructs all variables, functions and models.
The last two commands are often redirected to a file
(``info peaks > filename``).
The complete list of ``info`` arguments can be found in :ref:`info`.
.. admonition:: In the GUI
most of the above commands has clickable equivalents.
|