1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
|
// Author: Marcin Wojdyr
// Licence: GNU General Public License ver. 2+
#include "ceria.h"
#ifdef _MSC_VER
#define _USE_MATH_DEFINES
#endif
#include <stdio.h>
#include <ctype.h>
#include <cmath>
#include <assert.h>
#include <string.h>
#include <algorithm>
using namespace std;
static
Pos apply_seitz(Pos const& p0, SeitzMatrix const& s)
{
Pos p;
p.x = s.R[0]*p0.x + s.R[1]*p0.y + s.R[2]*p0.z + s.T[0]/12.;
p.y = s.R[3]*p0.x + s.R[4]*p0.y + s.R[5]*p0.z + s.T[1]/12.;
p.z = s.R[6]*p0.x + s.R[7]*p0.y + s.R[8]*p0.z + s.T[2]/12.;
return p;
}
string fullHM(const SpaceGroupSetting *sgs)
{
if (sgs == NULL)
return "";
else if (sgs->ext == 0)
return sgs->HM;
else
return string(sgs->HM) + ":" + sgs->ext;
}
static
bool check_symmetric_hkl(const SgOps &sg_ops, const Miller &p1,
const Miller &p2)
{
for (size_t i = 0; i < sg_ops.seitz.size(); ++i)
{
const int* R = sg_ops.seitz[i].R;
int h = R[0] * p1.h + R[3] * p1.k + R[6] * p1.l;
int k = R[1] * p1.h + R[4] * p1.k + R[7] * p1.l;
int l = R[2] * p1.h + R[5] * p1.k + R[8] * p1.l;
if (h == p2.h && k == p2.k && l == p2.l)
return true;
// we assume Friedel symmetry here
if (h == -p2.h && k == -p2.k && l == -p2.l)
return true;
}
return false;
}
static
bool is_position_empty(const vector<Pos>& pp, const Pos& p)
{
const double eps = 0.01;
for (vector<Pos>::const_iterator j = pp.begin(); j != pp.end(); ++j) {
if ((fabs(p.x - j->x) < eps || fabs(p.x - j->x) > 1 - eps) &&
(fabs(p.y - j->y) < eps || fabs(p.y - j->y) > 1 - eps) &&
(fabs(p.z - j->z) < eps || fabs(p.z - j->z) > 1 - eps))
return false;
}
return true;
}
static
double mod1(double x) { return x - floor(x); }
void add_symmetric_images(Atom& a, const SgOps& sg_ops)
{
assert(a.pos.size() == 1);
// iterate over translation, Seitz matrices and inversion
for (size_t nt = 0; nt != sg_ops.tr.size(); ++nt) {
const TransVec& t = sg_ops.tr[nt];
for (size_t ns = 0; ns != sg_ops.seitz.size(); ++ns) {
Pos ps = apply_seitz(a.pos[0], sg_ops.seitz[ns]);
Pos p = { mod1(ps.x + t.x/12.),
mod1(ps.y + t.y/12.),
mod1(ps.z + t.z/12.) };
if (is_position_empty(a.pos, p)) {
a.pos.push_back(p);
}
if (sg_ops.inv) {
Pos p2 = { mod1(-ps.x + t.x/12.),
mod1(-ps.y + t.y/12.),
mod1(-ps.z + t.z/12.) };
if (is_position_empty(a.pos, p2)) {
a.pos.push_back(p2);
}
}
}
}
}
int parse_atoms(const char* s, Crystal& cr)
{
int line_with_error = -1;
int atom_count = 0;
// to avoid not necessary copying, don't use atoms.clear()
for (int line_nr = 1; ; ++line_nr) {
// skip whitespace
while(isspace(*s) && *s != '\n')
++s;
if (*s == '\n') {
++s;
continue;
}
if (*s == '\0')
break;
// usually the atom is not changed, so we first parse data
// into a new struct Atom, and if it is different we copy it
// and do calculations
Atom a;
// parse symbol
const char* word_end = s;
while (isalnum(*word_end))
++word_end;
int symbol_len = word_end - s;
if (symbol_len == 0 || symbol_len >= 8) {
line_with_error = line_nr;
break;
}
memcpy(a.symbol, s, symbol_len);
a.symbol[symbol_len] = '\0';
s = word_end;
// parse x, y, z
char *endptr;
a.pos[0].x = strtod(s, &endptr);
s = endptr;
a.pos[0].y = strtod(s, &endptr);
s = endptr;
a.pos[0].z = strtod(s, &endptr);
// check if the numbers were parsed
if (endptr == s || // one or more numbers were not parsed
(!isspace(*endptr) && *endptr != '\0')) // e.g. "Si 0 0 0foo"
{
line_with_error = line_nr;
break;
}
s = endptr;
// if there is more than 4 words in the line, ignore the extra words
while (*s != '\n' && *s != '\0')
++s;
if (*s == '\n')
++s;
// check if the atom needs to be copied, and copy it if necessary
if (atom_count == (int) cr.atoms.size()) {
a.xray_sf = find_in_it92(a.symbol);
a.neutron_sf = find_in_nn92(a.symbol);
cr.atoms.push_back(a);
add_symmetric_images(cr.atoms[atom_count], cr.sg_ops);
} else {
Atom &b = cr.atoms[atom_count];
if (strcmp(a.symbol, b.symbol) != 0) {
memcpy(b.symbol, a.symbol, 8);
b.xray_sf = find_in_it92(b.symbol);
b.neutron_sf = find_in_nn92(b.symbol);
}
if (a.pos[0].x != b.pos[0].x
|| a.pos[0].y != b.pos[0].y
|| a.pos[0].z != b.pos[0].z) {
b.pos.resize(1);
b.pos[0] = a.pos[0];
add_symmetric_images(b, cr.sg_ops);
}
}
++atom_count;
}
// vector cr.atoms may be longer than necessary
cr.atoms.resize(atom_count);
return line_with_error;
}
void PlanesWithSameD::add(Miller const& hkl, const SgOps& sg_ops)
{
for (vector<Plane>::iterator i = planes.begin(); i != planes.end(); ++i) {
if (check_symmetric_hkl(sg_ops, *i, hkl)) {
i->multiplicity++;
return;
}
}
// equivalent plane not found
planes.push_back(Plane(hkl));
}
Crystal::Crystal()
: uc(NULL)
{
atoms.reserve(16);
sg_ops.tr.push_back(TransVec(0, 0, 0)); // always keep trivial tr
// add unit seitz matrix
SeitzMatrix sm = { { 1, 0, 0,
0, 1, 0,
0, 0, 1, },
{ 0, 0, 0 } };
sg_ops.seitz.push_back(sm);
}
Crystal::~Crystal()
{
delete uc;
}
// in the same order as in enum CrystalSystem
const char *CrystalSystemNames[] = {
"Undefined", // 0
NULL,
"Triclinic", // 2
"Monoclinic",
"Orthorhombic",
"Tetragonal",
"Trigonal",
"Hexagonal",
"Cubic" // 8
};
const char* get_crystal_system_name(CrystalSystem xs)
{
return CrystalSystemNames[xs];
}
CrystalSystem get_crystal_system(int space_group)
{
if (space_group <= 2)
return TriclinicSystem;
else if (space_group <= 15)
return MonoclinicSystem;
else if (space_group <= 74)
return OrthorhombicSystem;
else if (space_group <= 142)
return TetragonalSystem;
else if (space_group <= 167)
return TrigonalSystem;
else if (space_group <= 194)
return HexagonalSystem;
else
return CubicSystem;
}
int get_sg_order(const SgOps& sg_ops)
{
return sg_ops.tr.size() * sg_ops.seitz.size() * (sg_ops.inv ? 2 : 1);
}
static
char parse_sg_extension(const char *symbol, char *qualif)
{
if (symbol == NULL || *symbol == '\0') {
if (qualif != NULL)
qualif[0] = '\0';
return 0;
}
char ext = 0;
while (isspace(*symbol) || *symbol == ':')
++symbol;
if (isdigit(*symbol) || *symbol == 'R' || *symbol == 'H') {
ext = *symbol;
++symbol;
while (isspace(*symbol) || *symbol == ':')
++symbol;
}
if (qualif != NULL) {
strncpy(qualif, symbol, 4);
qualif[4] = '\0';
}
return ext;
}
static
const SpaceGroupSetting* parse_hm_or_hall(const char *symbol)
{
// copy and 'normalize' symbol (up to ':') to table s
char s[32];
for (int i = 0; i < 32; ++i) {
if (*symbol == '\0' || *symbol == ':') {
s[i] = '\0';
break;
} else if (isspace(*symbol)) {
s[i] = ' ';
++symbol;
while (isspace(*symbol))
++symbol;
} else {
// In HM symbols, first character is upper case letter.
// In Hall symbols, the second character is upper case.
// The first and second chars are either upper or ' ' or '-'.
// The rest of alpha chars is lower case.
s[i] = (i < 2 ? toupper(*symbol) : tolower(*symbol));
++symbol;
}
}
// now *symbol is either '\0' or ':'
for (const SpaceGroupSetting *p = space_group_settings;
p->sgnumber != 0; ++p) {
if (strcmp(p->HM, s) == 0) {
if (*symbol == ':') {
char ext = parse_sg_extension(symbol+1, NULL);
while (p->ext != ext) {
++p;
if (strcmp(p->HM, s) != 0) // full match not found
return NULL;
}
}
return p;
} else if (strcmp(p->Hall + (p->Hall[0] == ' ' ? 1 : 0), s) == 0) {
return p;
}
}
return NULL;
}
static
const SpaceGroupSetting* find_space_group_setting(int sgn, const char *setting)
{
char qualif[5];
char ext = parse_sg_extension(setting, qualif);
const SpaceGroupSetting *p = find_first_sg_with_number(sgn);
if (p == NULL)
return NULL;
while (p->ext != ext || strcmp(p->qualif, qualif) != 0) {
++p;
if (p->sgnumber != sgn) // not found
return NULL;
}
return p;
}
const SpaceGroupSetting* parse_any_sg_symbol(const char *symbol)
{
if (symbol == NULL)
return NULL;
while (isspace(*symbol))
++symbol;
if (isdigit(*symbol)) {
const char* colon = strchr(symbol, ':');
int sgn = strtol(symbol, NULL, 10);
return find_space_group_setting(sgn, colon);
} else {
return parse_hm_or_hall(symbol);
}
}
void Crystal::set_space_group(const SpaceGroupSetting* sgs_)
{
sgs = sgs_;
sg_ops.tr.resize(1); // leave only the trivial tr (0, 0, 0)
sg_ops.inv = false;
sg_ops.inv_t.x = sg_ops.inv_t.y = sg_ops.inv_t.z = 0;
if (sgs == NULL)
return;
int n_seitz = get_seitz_mx_count(sgs);
// the first seitz matrix is unit matrix
sg_ops.seitz.resize(n_seitz + 1);
for (int i = 0; i != n_seitz; ++i)
get_seitz_mx(sgs, i, &sg_ops.seitz[i+1]);
switch (sgs->Hall[1])
{
case 'A': sg_ops.tr.push_back(TransVec(0,6,6)); break;
case 'B': sg_ops.tr.push_back(TransVec(6,0,6)); break;
case 'C': sg_ops.tr.push_back(TransVec(6,6,0)); break;
case 'I': sg_ops.tr.push_back(TransVec(6,6,6)); break;
case 'P': break;
case 'R': sg_ops.tr.push_back(TransVec(8,4,4));
sg_ops.tr.push_back(TransVec(4,8,8));
break;
case 'F': sg_ops.tr.push_back(TransVec(0,6,6));
sg_ops.tr.push_back(TransVec(6,0,6));
sg_ops.tr.push_back(TransVec(6,6,0));
break;
default: assert(0);
}
if (sgs->Hall[0] == '-') {
sg_ops.inv = true;
} else {
const char* t = strstr(sgs->Hall, " -1");
if (t != NULL) {
sg_ops.inv = true;
t += 3;
if (strcmp(t, "ab") == 0) sg_ops.inv_t = TransVec(6, 6, 0);
else if (strcmp(t, "ac") == 0) sg_ops.inv_t = TransVec(6, 0, 6);
else if (strcmp(t, "bc") == 0) sg_ops.inv_t = TransVec(0, 6, 6);
else if (strcmp(t, "ad") == 0) sg_ops.inv_t = TransVec(9, 3, 3);
else if (strcmp(t, "bw") == 0) sg_ops.inv_t = TransVec(0, 6, 3);
else if (strcmp(t, "d" ) == 0) sg_ops.inv_t = TransVec(3, 3, 3);
else if (strcmp(t, "n" ) == 0) sg_ops.inv_t = TransVec(6, 6, 6);
else assert(0);
}
}
}
// returns true if exists t in sg_ops.tr, such that: h*(t+T) != n
// used by is_sys_absent()
static
bool has_nonunit_tr(const SgOps& sg_ops, const int* T, int h, int k, int l)
{
for (vector<TransVec>::const_iterator t = sg_ops.tr.begin();
t != sg_ops.tr.end(); ++t)
if (((T[0]+t->x) * h + (T[1]+t->y) * k + (T[2]+t->z) * l) % 12 != 0)
return true;
return false;
}
static
bool is_sys_absent(const SgOps& sg_ops, int h, int k, int l)
{
for (size_t i = 0; i < sg_ops.seitz.size(); ++i) {
const int* R = sg_ops.seitz[i].R;
const int* T = sg_ops.seitz[i].T;
int M[3] = { h * R[0] + k * R[3] + l * R[6],
h * R[1] + k * R[4] + l * R[7],
h * R[2] + k * R[5] + l * R[8] };
if (h == M[0] && k == M[1] && l == M[2]) {
if (has_nonunit_tr(sg_ops, T, h, k, l))
return true;
} else if (h == -M[0] && k == -M[1] && l == -M[2] && sg_ops.inv) {
int ts[3] = { sg_ops.inv_t.x - T[0],
sg_ops.inv_t.y - T[1],
sg_ops.inv_t.z - T[2] };
if (has_nonunit_tr(sg_ops, ts, h, k, l))
return true;
}
}
return false;
}
// helper to generate sequence 0, 1, -1, 2, -2, 3, ...
static int inc_neg(int h) { return h > 0 ? -h : -h+1; }
void Crystal::generate_reflections(double min_d)
{
bp.clear();
UnitCell reciprocal = uc->get_reciprocal();
// set upper limit for iteration of Miller indices
// TODO: smarter algorithm, like in uctbx::unit_cell::max_miller_indices()
int max_h = 20;
int max_k = 20;
int max_l = 20;
if (fabs(uc->alpha - M_PI/2) < 1e-9 && fabs(uc->beta - M_PI/2) < 1e-9 &&
fabs(uc->gamma - M_PI/2) < 1e-9) {
max_h = (int) (uc->a / min_d);
max_k = (int) (uc->b / min_d);
max_l = (int) (uc->c / min_d);
}
// Don't generate too many reflections (it could happen
// when user chooses Q instead of 2T, or puts wrong wavelength)
if (max_h * max_k * max_l > 8000)
max_h = max_k = max_l = 20;
for (int h = 0; h != max_h+1; h = inc_neg(h))
for (int k = 0; k != max_k+1; k = inc_neg(k))
for (int l = (h==0 && k==0 ? 1 : 0); l != max_l+1; l = inc_neg(l)) {
double d = 1 / reciprocal.calculate_distance(h, k, l);
//double d = uc->calculate_d(h, k, l); // the same
if (d < min_d)
continue;
// check for systematic absence
if (is_sys_absent(sg_ops, h, k, l))
continue;
Miller hkl = { h, k, l };
bool found = false;
for (vector<PlanesWithSameD>::iterator i = bp.begin();
i != bp.end(); ++i) {
if (fabs(d - i->d) < 1e-9) {
i->add(hkl, sg_ops);
found = true;
break;
}
}
if (!found) {
PlanesWithSameD new_p;
new_p.planes.push_back(Plane(hkl));
new_p.d = d;
new_p.lpf = 0.;
new_p.intensity = 0.;
new_p.enabled = true;
bp.push_back(new_p);
}
}
sort(bp.begin(), bp.end());
old_min_d = min_d;
}
// stol = sin(theta)/lambda
static
void set_F2(Plane& p, const vector<Atom>& atoms,
RadiationType radiation, double stol)
{
// calculating F_hkl, (Pecharsky & Zavalij, eq. (2.89) and (2.103))
// assuming population g = 1
// assuming temperature factor t = 1
double F_real = 0.;
double F_img = 0;
for (vector<Atom>::const_iterator i = atoms.begin(); i != atoms.end(); ++i){
double f = 1.;
if (radiation == kXRay && i->xray_sf)
f = calculate_it92_factor(i->xray_sf, stol*stol);
else if (radiation == kNeutron && i->neutron_sf)
f = i->neutron_sf->bond_coh_scatt_length;
for (vector<Pos>::const_iterator j = i->pos.begin();
j != i->pos.end(); ++j) {
double hx = p.h * j->x + p.k * j->y + p.l * j->z;
F_real += f * cos(2*M_PI * hx);
F_img += f * sin(2*M_PI * hx);
}
}
p.F2 = F_real*F_real + F_img*F_img;
//printf("hkl=(%d %d %d) F=(%g, %g) F2=%g\n",
// p.h, p.k, p.l, F_real, F_img, p.F2);
}
static
void set_lpf(PlanesWithSameD &bp, RadiationType radiation, double lambda)
{
if (lambda == 0)
bp.lpf = 1.;
else {
double T = asin(bp.stol() * lambda); // theta
if (radiation == kXRay) {
// for x-rays, we assume K=0.5 and
// LP = (1 + cos(2T)^2) / (cos(T) sin(T)^2)
// (Pecharsky & Zavalij, eq. (2.70), p. 192)
bp.lpf = (1 + cos(2*T)*cos(2*T)) / (cos(T)*sin(T)*sin(T));
} else if (radiation == kNeutron) {
// Kisi & Howard, Applications of Neutron Powder Diffraction (2.38)
// no polarization only the Lorentz factor:
// L = 1 / (4 sin^2(T) cos(T))
bp.lpf = 1 / (4 * sin(T)*sin(T)*cos(T));
// for TOF diffractometers with a fixed diffraction angle:
// L = d^4 sin(theta)
}
}
}
void Crystal::update_intensities(RadiationType r, double lambda)
{
if (atoms.empty())
return;
for (vector<PlanesWithSameD>::iterator i = bp.begin(); i != bp.end(); ++i) {
set_lpf(*i, r, lambda);
double t = 0;
for (vector<Plane>::iterator j = i->planes.begin();
j != i->planes.end(); ++j) {
set_F2(*j, atoms, r, i->stol());
t += j->multiplicity * j->F2;
}
i->intensity = i->lpf * t;
}
}
double UnitCell::calculate_V() const
{
// Giacovazzo p.62
double cosA = cos(alpha), cosB = cos(beta), cosG = cos(gamma);
double t = 1 - cosA*cosA - cosB*cosB - cosG*cosG + 2*cosA*cosB*cosG;
return a*b*c * sqrt(t);
}
/*
double UnitCell::calculate_d(int h, int k, int l) const
{
double sinA=sin(alpha), sinB=sin(beta), sinG=sin(gamma),
cosA=cos(alpha), cosB=cos(beta), cosG=cos(gamma);
return
sqrt((1 - cosA*cosA - cosB*cosB - cosG*cosG + 2*cosA*cosB*cosG)
/ ( (h/a*sinA) * (h/a*sinA) //(h/a*sinA)^2
+ (k/b*sinB) * (k/b*sinB) //(k/b*sinB)^2
+ (l/c*sinG) * (l/c*sinG) //(l/c*sinG)^2
+ 2*h*l/a/c*(cosA*cosG-cosB)
+ 2*h*k/a/b*(cosA*cosB-cosG)
+ 2*k*l/b/c*(cosB*cosG-cosA)
)
);
}
*/
// [ 1/a 0 0 ]
// M = [ -cosG/(a sinG) 1/(b sinG) 0 ]
// [ a*cosB* b*cosA* c* ]
//
// where A is alpha, B is beta, G is gamma, * means reciprocal space.
// (Giacovazzo, p.68)
void UnitCell::set_M()
{
double sinA=sin(alpha), sinB=sin(beta), sinG=sin(gamma),
cosA=cos(alpha), cosB=cos(beta), cosG=cos(gamma);
M[0][0] = 1/a;
M[0][1] = 0.;
M[0][2] = 0.;
M[1][0] = -cosG/(a*sinG);
M[1][1] = 1/(b*sinG);
M[1][2] = 0.;
M[2][0] = b * c * sinA / V // a*
* (cosA*cosG-cosB) / (sinA*sinG); //cosB*
M[2][1] = a * c * sinB / V // b*
* (cosB*cosG-cosA) / (sinB*sinG); //cosA*
M[2][2] = a * b * sinG / V; // c*
M_1[0][0] = a;
M_1[0][1] = 0;
M_1[0][2] = 0;
M_1[1][0] = b * cosG;
M_1[1][1] = b * sinG;
M_1[1][2] = 0;
M_1[2][0] = c * cosB;
M_1[2][1] = -c * sinB * (cosB*cosG-cosA) / (sinB*sinG);
M_1[2][2] = 1 / M[2][2];
}
// returns UnitCell reciprocal to this, i.e. that has parameters a*, b*, ...
// (Giacovazzo, p. 64)
UnitCell UnitCell::get_reciprocal() const
{
double ar = b * c * sin(alpha) / V;
double br = a * c * sin(beta) / V;
double cr = a * b * sin(gamma) / V;
double cosAr = (cos(beta)*cos(gamma)-cos(alpha)) / (sin(beta)*sin(gamma));
double cosBr = (cos(alpha)*cos(gamma)-cos(beta)) / (sin(alpha)*sin(gamma));
double cosGr = (cos(alpha)*cos(beta)-cos(gamma)) / (sin(alpha)*sin(beta));
return UnitCell(ar, br, cr, acos(cosAr), acos(cosBr), acos(cosGr));
}
// returns 1/|v|, where v = M * [h k l];
double UnitCell::calculate_distance(double h, double k, double l) const
{
double v2 = 0.;
for (int i = 0; i != 3; ++i) {
double t = h * M_1[0][i] + k * M_1[1][i] + l * M_1[2][i];
v2 += t*t;
}
return sqrt(v2);
}
const Anode anodes[] = {
{ "Cu", 1.54056, 1.54439 },
{ "Cr", 2.28970, 2.29361 },
{ "Fe", 1.93604, 1.93998 },
{ "Mo", 0.70930, 0.71359 },
{ "Ag", 0.55941, 0.56380 },
{ "Co", 1.78901, 1.79290 },
{ NULL, 0, 0 }
};
static
const char* default_cel_files[][2] = {
{"bSiC",
"cell 4.358 4.358 4.358 90 90 90\n"
"Si 14 0 0 0\n"
"C 6 0.25 0.25 0.25\n"
"rgnr 216"
},
{"aSiC",
"cell 3.082 3.082 15.123 90 90 120\n"
"SI1 14 0 0 0\n"
"SI2 14 0.3333 0.6667 0.1667\n"
"SI3 14 0.3333 0.6667 0.8333\n"
"C1 6 0.0 0.0 0.125\n"
"C2 6 0.3333 0.6667 0.2917\n"
"C3 6 0.3333 0.6667 0.9583\n"
"rgnr 186",
},
{"NaCl",
"cell 5.64009 5.64009 5.64009 90 90 90\n"
"Na 11 0 0 0\n"
"Cl 17 0.5 0 0\n"
"rgnr 225"
},
{"diamond",
"cell 3.5595 3.5595 3.5595 90 90 90\n"
"C 6 0 0 0\n"
"rgnr 227"
},
{"Si",
"cell 5.4309 5.4309 5.4309 90 90 90\n"
"Si 14 0 0 0\n"
"rgnr 227"
},
{"CeO2",
"cell 5.41 5.41 5.41 90 90 90\n"
"Ce 58 0 0 0\n"
"O 8 0.25 0.25 0.25\n"
"rgnr 225"
},
{"Zn",
"cell 2.665 2.665 4.946 90 90 120\n"
"Zn 30 0.33333 0.66667 0.25\n"
"rgnr 194"
},
{NULL, NULL}
};
CelFile read_cel_file(FILE *f)
{
CelFile cel = { 0., 0., 0., 0., 0., 0., NULL, vector<AtomInCell>() };
if (!f)
return cel;
char s[20];
int r = fscanf(f, "%4s %lf %lf %lf %lf %lf %lf",
s, &cel.a, &cel.b, &cel.c, &cel.alpha, &cel.beta, &cel.gamma);
if (r != 7)
return cel;
if (strcmp(s, "cell") != 0 && strcmp(s, "CELL") != 0
&& strcmp(s, "Cell") != 0) {
return cel;
}
while (1) {
r = fscanf(f, "%12s", s);
if (r != 1)
return cel;
if (strcmp(s, "RGNR") == 0 || strcmp(s, "rgnr") == 0
|| strcmp(s, "Rgnr") == 0)
break;
AtomInCell atom;
r = fscanf(f, "%d %lf %lf %lf", &atom.Z, &atom.x, &atom.y, &atom.z);
if (r != 4) {
return cel;
}
cel.atoms.push_back(atom);
// skip the rest of the line
for (int c = fgetc(f); c != '\n' && c != EOF; c = fgetc(f))
;
}
int sgn;
r = fscanf(f, "%d", &sgn);
if (r != 1)
return cel;
if (sgn < 1 || sgn > 230)
return cel;
cel.sgs = find_first_sg_with_number(sgn);
for (int c = fgetc(f); c != '\n' && c != EOF; c = fgetc(f)) {
if (c == ':') {
r = fscanf(f, "%8s", s);
if (r == 1)
cel.sgs = find_space_group_setting(sgn, s);
break;
} else if (isdigit(c)) {
ungetc(c, f);
int pc_setting;
r = fscanf(f, "%d", &pc_setting);
if (r == 1)
cel.sgs = get_sg_from_powdercell_rgnr(sgn, pc_setting);
break;
} else if (!isspace(c))
break;
}
return cel;
}
void write_cel_file(CelFile const& cel, FILE *f)
{
//for (int i = 1; i != 104; ++i)
// assert(find_Z_in_pse(i)->Z == i);
fprintf(f, "cell %g %g %g %g %g %g\n", cel.a, cel.b, cel.c,
cel.alpha, cel.beta, cel.gamma);
for (vector<AtomInCell>::const_iterator i = cel.atoms.begin();
i != cel.atoms.end(); ++i) {
const t_pse* pse = find_Z_in_pse(i->Z);
fprintf(f, "%-2s %2d %g %g %g\n",
pse->symbol, i->Z, i->x, i->y, i->z);
}
int sgn = cel.sgs->sgnumber;
fprintf(f, "rgnr %d", sgn);
if (sgn != 1 && (cel.sgs-1)->sgnumber == sgn) {
fprintf(f, " :");
if (cel.sgs->ext != 0)
fprintf(f, "%c", cel.sgs->ext);
fprintf(f, "%s", cel.sgs->qualif);
}
fprintf(f, "\n");
}
void write_default_cel_files(const char* path_prefix)
{
for (const char*(*s)[2] = default_cel_files; (*s)[0] != NULL; ++s) {
string filename = string(path_prefix) + (*s)[0] + ".cel";
FILE *f = fopen(filename.c_str(), "w");
if (!f)
continue;
fprintf(f, "%s\n", (*s)[1]);
fclose(f);
}
}
|