File: ceria.cpp

package info (click to toggle)
fityk 1.3.2-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 3,772 kB
  • sloc: cpp: 34,595; ansic: 4,676; python: 963; makefile: 384; sh: 119; xml: 91; java: 31; ruby: 27; perl: 25
file content (814 lines) | stat: -rw-r--r-- 24,737 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
// Author: Marcin Wojdyr
// Licence: GNU General Public License ver. 2+

#include "ceria.h"

#ifdef _MSC_VER
#define _USE_MATH_DEFINES
#endif
#include <stdio.h>
#include <ctype.h>
#include <cmath>
#include <assert.h>
#include <string.h>
#include <algorithm>

using namespace std;

static
Pos apply_seitz(Pos const& p0, SeitzMatrix const& s)
{
    Pos p;
    p.x = s.R[0]*p0.x + s.R[1]*p0.y + s.R[2]*p0.z + s.T[0]/12.;
    p.y = s.R[3]*p0.x + s.R[4]*p0.y + s.R[5]*p0.z + s.T[1]/12.;
    p.z = s.R[6]*p0.x + s.R[7]*p0.y + s.R[8]*p0.z + s.T[2]/12.;
    return p;
}


string fullHM(const SpaceGroupSetting *sgs)
{
    if (sgs == NULL)
        return "";
    else if (sgs->ext == 0)
        return sgs->HM;
    else
        return string(sgs->HM) + ":" + sgs->ext;
}

static
bool check_symmetric_hkl(const SgOps &sg_ops, const Miller &p1,
                                              const Miller &p2)
{
    for (size_t i = 0; i < sg_ops.seitz.size(); ++i)
    {
        const int* R = sg_ops.seitz[i].R;
        int h = R[0] * p1.h + R[3] * p1.k + R[6] * p1.l;
        int k = R[1] * p1.h + R[4] * p1.k + R[7] * p1.l;
        int l = R[2] * p1.h + R[5] * p1.k + R[8] * p1.l;
        if (h == p2.h && k == p2.k && l == p2.l)
            return  true;
        // we assume Friedel symmetry here
        if (h == -p2.h && k == -p2.k && l == -p2.l)
            return true;
    }
    return false;
}

static
bool is_position_empty(const vector<Pos>& pp, const Pos& p)
{
    const double eps = 0.01;
    for (vector<Pos>::const_iterator j = pp.begin(); j != pp.end(); ++j) {
        if ((fabs(p.x - j->x) < eps || fabs(p.x - j->x) > 1 - eps) &&
            (fabs(p.y - j->y) < eps || fabs(p.y - j->y) > 1 - eps) &&
            (fabs(p.z - j->z) < eps || fabs(p.z - j->z) > 1 - eps))
            return false;
    }
    return true;
}

static
double mod1(double x) { return x - floor(x); }

void add_symmetric_images(Atom& a, const SgOps& sg_ops)
{
    assert(a.pos.size() == 1);
    // iterate over translation, Seitz matrices and inversion
    for (size_t nt = 0; nt != sg_ops.tr.size(); ++nt) {
        const TransVec& t = sg_ops.tr[nt];
        for (size_t ns = 0; ns != sg_ops.seitz.size(); ++ns) {
            Pos ps = apply_seitz(a.pos[0], sg_ops.seitz[ns]);
            Pos p = { mod1(ps.x + t.x/12.),
                      mod1(ps.y + t.y/12.),
                      mod1(ps.z + t.z/12.) };
            if (is_position_empty(a.pos, p)) {
                a.pos.push_back(p);
            }
            if (sg_ops.inv) {
                Pos p2 = { mod1(-ps.x + t.x/12.),
                           mod1(-ps.y + t.y/12.),
                           mod1(-ps.z + t.z/12.) };
                if (is_position_empty(a.pos, p2)) {
                    a.pos.push_back(p2);
                }
            }
        }
    }
}

int parse_atoms(const char* s, Crystal& cr)
{
    int line_with_error = -1;

    int atom_count = 0;
    // to avoid not necessary copying, don't use atoms.clear()
    for (int line_nr = 1; ; ++line_nr) {
        // skip whitespace
        while(isspace(*s) && *s != '\n')
            ++s;
        if (*s == '\n') {
            ++s;
            continue;
        }
        if (*s == '\0')
            break;

        // usually the atom is not changed, so we first parse data
        // into a new struct Atom, and if it is different we copy it
        // and do calculations
        Atom a;

        // parse symbol
        const char* word_end = s;
        while (isalnum(*word_end))
            ++word_end;
        int symbol_len = word_end - s;
        if (symbol_len == 0 || symbol_len >= 8) {
            line_with_error = line_nr;
            break;
        }
        memcpy(a.symbol, s, symbol_len);
        a.symbol[symbol_len] = '\0';
        s = word_end;

        // parse x, y, z
        char *endptr;
        a.pos[0].x = strtod(s, &endptr);
        s = endptr;
        a.pos[0].y = strtod(s, &endptr);
        s = endptr;
        a.pos[0].z = strtod(s, &endptr);

        // check if the numbers were parsed
        if (endptr == s || // one or more numbers were not parsed
            (!isspace(*endptr) && *endptr != '\0')) // e.g. "Si 0 0 0foo"
        {
            line_with_error = line_nr;
            break;
        }

        s = endptr;

        // if there is more than 4 words in the line, ignore the extra words
        while (*s != '\n' && *s != '\0')
            ++s;
        if (*s == '\n')
            ++s;

        // check if the atom needs to be copied, and copy it if necessary
        if (atom_count == (int) cr.atoms.size()) {
            a.xray_sf = find_in_it92(a.symbol);
            a.neutron_sf = find_in_nn92(a.symbol);
            cr.atoms.push_back(a);
            add_symmetric_images(cr.atoms[atom_count], cr.sg_ops);
        } else {
            Atom &b = cr.atoms[atom_count];
            if (strcmp(a.symbol, b.symbol) != 0) {
                memcpy(b.symbol, a.symbol, 8);
                b.xray_sf = find_in_it92(b.symbol);
                b.neutron_sf = find_in_nn92(b.symbol);
            }
            if (a.pos[0].x != b.pos[0].x
                    || a.pos[0].y != b.pos[0].y
                    || a.pos[0].z != b.pos[0].z) {
                b.pos.resize(1);
                b.pos[0] = a.pos[0];
                add_symmetric_images(b, cr.sg_ops);
            }
        }
        ++atom_count;
    }
    // vector cr.atoms may be longer than necessary
    cr.atoms.resize(atom_count);
    return line_with_error;
}


void PlanesWithSameD::add(Miller const& hkl, const SgOps& sg_ops)
{
    for (vector<Plane>::iterator i = planes.begin(); i != planes.end(); ++i) {
        if (check_symmetric_hkl(sg_ops, *i, hkl)) {
            i->multiplicity++;
            return;
        }
    }
    // equivalent plane not found
    planes.push_back(Plane(hkl));
}

Crystal::Crystal()
    : uc(NULL)
{
    atoms.reserve(16);
    sg_ops.tr.push_back(TransVec(0, 0, 0)); // always keep trivial tr
    // add unit seitz matrix
    SeitzMatrix sm = { { 1, 0, 0,
                         0, 1, 0,
                         0, 0, 1, },
                       { 0, 0, 0 } };
    sg_ops.seitz.push_back(sm);
}

Crystal::~Crystal()
{
    delete uc;
}

// in the same order as in enum CrystalSystem
const char *CrystalSystemNames[] = {
    "Undefined", // 0
    NULL,
    "Triclinic", // 2
    "Monoclinic",
    "Orthorhombic",
    "Tetragonal",
    "Trigonal",
    "Hexagonal",
    "Cubic" // 8
};

const char* get_crystal_system_name(CrystalSystem xs)
{
    return CrystalSystemNames[xs];
}

CrystalSystem get_crystal_system(int space_group)
{
    if (space_group <= 2)
        return TriclinicSystem;
    else if (space_group <= 15)
        return MonoclinicSystem;
    else if (space_group <= 74)
        return OrthorhombicSystem;
    else if (space_group <= 142)
        return TetragonalSystem;
    else if (space_group <= 167)
        return TrigonalSystem;
    else if (space_group <= 194)
        return HexagonalSystem;
    else
        return CubicSystem;
}

int get_sg_order(const SgOps& sg_ops)
{
    return sg_ops.tr.size() * sg_ops.seitz.size() * (sg_ops.inv ? 2 : 1);
}

static
char parse_sg_extension(const char *symbol, char *qualif)
{
    if (symbol == NULL || *symbol == '\0') {
        if (qualif != NULL)
            qualif[0] = '\0';
        return 0;
    }
    char ext = 0;
    while (isspace(*symbol) || *symbol == ':')
        ++symbol;
    if (isdigit(*symbol) || *symbol == 'R' || *symbol == 'H') {
        ext = *symbol;
        ++symbol;
        while (isspace(*symbol) || *symbol == ':')
            ++symbol;
    }
    if (qualif != NULL) {
        strncpy(qualif, symbol, 4);
        qualif[4] = '\0';
    }
    return ext;
}

static
const SpaceGroupSetting* parse_hm_or_hall(const char *symbol)
{
    // copy and 'normalize' symbol (up to ':') to table s
    char s[32];
    for (int i = 0; i < 32; ++i) {
        if (*symbol == '\0' || *symbol == ':') {
            s[i] = '\0';
            break;
        } else if (isspace(*symbol)) {
            s[i] = ' ';
            ++symbol;
            while (isspace(*symbol))
                ++symbol;
        } else {
            // In HM symbols, first character is upper case letter.
            // In Hall symbols, the second character is upper case.
            // The first and second chars are either upper or ' ' or '-'.
            // The rest of alpha chars is lower case. 
            s[i] = (i < 2 ? toupper(*symbol) : tolower(*symbol));
            ++symbol;
        }
    }
    // now *symbol is either '\0' or ':'
    for (const SpaceGroupSetting *p = space_group_settings;
                                                p->sgnumber != 0; ++p) {
        if (strcmp(p->HM, s) == 0) {
            if (*symbol == ':') {
                char ext = parse_sg_extension(symbol+1, NULL);
                while (p->ext != ext) {
                    ++p;
                    if (strcmp(p->HM, s) != 0) // full match not found
                        return NULL;
                }
            }
            return p;
        } else if (strcmp(p->Hall + (p->Hall[0] == ' ' ? 1 : 0), s) == 0) {
            return p;
        }
    }
    return NULL;
}

static
const SpaceGroupSetting* find_space_group_setting(int sgn, const char *setting)
{
    char qualif[5];
    char ext = parse_sg_extension(setting, qualif);
    const SpaceGroupSetting *p = find_first_sg_with_number(sgn);
    if (p == NULL)
        return NULL;
    while (p->ext != ext || strcmp(p->qualif, qualif) != 0) {
        ++p;
        if (p->sgnumber != sgn) // not found
            return NULL;
    }
    return p;
}

const SpaceGroupSetting* parse_any_sg_symbol(const char *symbol)
{
    if (symbol == NULL)
        return NULL;
    while (isspace(*symbol))
        ++symbol;
    if (isdigit(*symbol)) {
        const char* colon = strchr(symbol, ':');
        int sgn = strtol(symbol, NULL, 10);
        return find_space_group_setting(sgn, colon);
    } else {
        return parse_hm_or_hall(symbol);
    }
}

void Crystal::set_space_group(const SpaceGroupSetting* sgs_)
{
    sgs = sgs_;
    sg_ops.tr.resize(1); // leave only the trivial tr (0, 0, 0)
    sg_ops.inv = false;
    sg_ops.inv_t.x = sg_ops.inv_t.y = sg_ops.inv_t.z = 0;
    if (sgs == NULL)
        return;

    int n_seitz = get_seitz_mx_count(sgs);
    // the first seitz matrix is unit matrix
    sg_ops.seitz.resize(n_seitz + 1);
    for (int i = 0; i != n_seitz; ++i)
        get_seitz_mx(sgs, i, &sg_ops.seitz[i+1]);

    switch (sgs->Hall[1])
    {
        case 'A': sg_ops.tr.push_back(TransVec(0,6,6)); break;
        case 'B': sg_ops.tr.push_back(TransVec(6,0,6)); break;
        case 'C': sg_ops.tr.push_back(TransVec(6,6,0)); break;
        case 'I': sg_ops.tr.push_back(TransVec(6,6,6)); break;
        case 'P': break;
        case 'R': sg_ops.tr.push_back(TransVec(8,4,4));
                  sg_ops.tr.push_back(TransVec(4,8,8));
                  break;
        case 'F': sg_ops.tr.push_back(TransVec(0,6,6));
                  sg_ops.tr.push_back(TransVec(6,0,6));
                  sg_ops.tr.push_back(TransVec(6,6,0));
                  break;
        default: assert(0);
    }
    if (sgs->Hall[0] == '-') {
        sg_ops.inv = true;
    } else {
        const char* t = strstr(sgs->Hall, " -1");
        if (t != NULL) {
            sg_ops.inv = true;
            t += 3;
            if      (strcmp(t, "ab") == 0) sg_ops.inv_t = TransVec(6, 6, 0);
            else if (strcmp(t, "ac") == 0) sg_ops.inv_t = TransVec(6, 0, 6);
            else if (strcmp(t, "bc") == 0) sg_ops.inv_t = TransVec(0, 6, 6);
            else if (strcmp(t, "ad") == 0) sg_ops.inv_t = TransVec(9, 3, 3);
            else if (strcmp(t, "bw") == 0) sg_ops.inv_t = TransVec(0, 6, 3);
            else if (strcmp(t, "d" ) == 0) sg_ops.inv_t = TransVec(3, 3, 3);
            else if (strcmp(t, "n" ) == 0) sg_ops.inv_t = TransVec(6, 6, 6);
            else assert(0);
        }
    }
}

// returns true if exists t in sg_ops.tr, such that: h*(t+T) != n
// used by is_sys_absent()
static
bool has_nonunit_tr(const SgOps& sg_ops, const int* T, int h, int k, int l)
{
    for (vector<TransVec>::const_iterator t = sg_ops.tr.begin();
                                                t != sg_ops.tr.end(); ++t)
        if (((T[0]+t->x) * h + (T[1]+t->y) * k + (T[2]+t->z) * l) % 12 != 0)
            return true;
    return false;
}

static
bool is_sys_absent(const SgOps& sg_ops, int h, int k, int l)
{
    for (size_t i = 0; i < sg_ops.seitz.size(); ++i) {
        const int* R = sg_ops.seitz[i].R;
        const int* T = sg_ops.seitz[i].T;
        int M[3] = { h * R[0] + k * R[3] + l * R[6],
                     h * R[1] + k * R[4] + l * R[7],
                     h * R[2] + k * R[5] + l * R[8] };
        if (h == M[0] && k == M[1] && l == M[2]) {
            if (has_nonunit_tr(sg_ops, T, h, k, l))
                return true;
        } else if (h == -M[0] && k == -M[1] && l == -M[2] && sg_ops.inv) {
            int ts[3] = { sg_ops.inv_t.x - T[0],
                          sg_ops.inv_t.y - T[1],
                          sg_ops.inv_t.z - T[2] };
            if (has_nonunit_tr(sg_ops, ts, h, k, l))
                return true;
        }
    }
    return false;
}


// helper to generate sequence 0, 1, -1, 2, -2, 3, ...
static int inc_neg(int h) { return h > 0 ? -h : -h+1; }

void Crystal::generate_reflections(double min_d)
{
    bp.clear();
    UnitCell reciprocal = uc->get_reciprocal();

    // set upper limit for iteration of Miller indices
    // TODO: smarter algorithm, like in uctbx::unit_cell::max_miller_indices()
    int max_h = 20;
    int max_k = 20;
    int max_l = 20;
    if (fabs(uc->alpha - M_PI/2) < 1e-9 && fabs(uc->beta - M_PI/2) < 1e-9 &&
                                          fabs(uc->gamma - M_PI/2) < 1e-9) {
        max_h = (int) (uc->a / min_d);
        max_k = (int) (uc->b / min_d);
        max_l = (int) (uc->c / min_d);
    }
    // Don't generate too many reflections (it could happen
    // when user chooses Q instead of 2T, or puts wrong wavelength)
    if (max_h * max_k * max_l > 8000)
        max_h = max_k = max_l = 20;

    for (int h = 0; h != max_h+1; h = inc_neg(h))
        for (int k = 0; k != max_k+1; k = inc_neg(k))
            for (int l = (h==0 && k==0 ? 1 : 0); l != max_l+1; l = inc_neg(l)) {
                double d = 1 / reciprocal.calculate_distance(h, k, l);
                //double d = uc->calculate_d(h, k, l); // the same
                if (d < min_d)
                    continue;

                // check for systematic absence
                if (is_sys_absent(sg_ops, h, k, l))
                    continue;

                Miller hkl = { h, k, l };
                bool found = false;
                for (vector<PlanesWithSameD>::iterator i = bp.begin();
                        i != bp.end(); ++i) {
                    if (fabs(d - i->d) < 1e-9) {
                        i->add(hkl, sg_ops);
                        found = true;
                        break;
                    }
                }
                if (!found) {
                    PlanesWithSameD new_p;
                    new_p.planes.push_back(Plane(hkl));
                    new_p.d = d;
                    new_p.lpf = 0.;
                    new_p.intensity = 0.;
                    new_p.enabled = true;
                    bp.push_back(new_p);
                }
            }
    sort(bp.begin(), bp.end());
    old_min_d = min_d;
}


// stol = sin(theta)/lambda
static
void set_F2(Plane& p, const vector<Atom>& atoms,
                 RadiationType radiation, double stol)
{
    // calculating F_hkl, (Pecharsky & Zavalij, eq. (2.89) and (2.103))
    // assuming population g = 1
    // assuming temperature factor t = 1
    double F_real = 0.;
    double F_img = 0;
    for (vector<Atom>::const_iterator i = atoms.begin(); i != atoms.end(); ++i){
        double f = 1.;
        if (radiation == kXRay && i->xray_sf)
            f = calculate_it92_factor(i->xray_sf, stol*stol);
        else if (radiation == kNeutron && i->neutron_sf)
            f = i->neutron_sf->bond_coh_scatt_length;
        for (vector<Pos>::const_iterator j = i->pos.begin();
                                                j != i->pos.end(); ++j) {
            double hx = p.h * j->x + p.k * j->y + p.l * j->z;
            F_real += f * cos(2*M_PI * hx);
            F_img += f * sin(2*M_PI * hx);
        }
    }
    p.F2 = F_real*F_real + F_img*F_img;
    //printf("hkl=(%d %d %d) F=(%g, %g) F2=%g\n",
    //       p.h, p.k, p.l, F_real, F_img, p.F2);
}

static
void set_lpf(PlanesWithSameD &bp, RadiationType radiation, double lambda)
{
    if (lambda == 0)
        bp.lpf = 1.;
    else {
        double T = asin(bp.stol() * lambda); // theta
        if (radiation == kXRay) {
            // for x-rays, we assume K=0.5 and
            // LP = (1 + cos(2T)^2) / (cos(T) sin(T)^2)
            //  (Pecharsky & Zavalij, eq. (2.70), p. 192)
            bp.lpf = (1 + cos(2*T)*cos(2*T)) / (cos(T)*sin(T)*sin(T));
        } else if (radiation == kNeutron) {
            // Kisi & Howard, Applications of Neutron Powder Diffraction (2.38)
            // no polarization only the Lorentz factor:
            // L = 1 / (4 sin^2(T) cos(T))
            bp.lpf = 1 / (4 * sin(T)*sin(T)*cos(T));
            // for TOF diffractometers with a fixed diffraction angle:
            // L = d^4 sin(theta)
        }
    }
}

void Crystal::update_intensities(RadiationType r, double lambda)
{
    if (atoms.empty())
        return;
    for (vector<PlanesWithSameD>::iterator i = bp.begin(); i != bp.end(); ++i) {
        set_lpf(*i, r, lambda);
        double t = 0;
        for (vector<Plane>::iterator j = i->planes.begin();
                                     j != i->planes.end(); ++j) {
            set_F2(*j, atoms, r, i->stol());
            t += j->multiplicity * j->F2;
        }
        i->intensity = i->lpf * t;
    }
}

double UnitCell::calculate_V() const
{
    // Giacovazzo p.62
    double cosA = cos(alpha), cosB = cos(beta), cosG = cos(gamma);
    double t = 1 - cosA*cosA - cosB*cosB - cosG*cosG + 2*cosA*cosB*cosG;
    return a*b*c * sqrt(t);
}

/*
double UnitCell::calculate_d(int h, int k, int l) const
{
    double sinA=sin(alpha), sinB=sin(beta), sinG=sin(gamma),
           cosA=cos(alpha), cosB=cos(beta), cosG=cos(gamma);
    return
      sqrt((1 - cosA*cosA - cosB*cosB - cosG*cosG + 2*cosA*cosB*cosG)
              / (  (h/a*sinA) * (h/a*sinA)  //(h/a*sinA)^2
                 + (k/b*sinB) * (k/b*sinB)  //(k/b*sinB)^2
                 + (l/c*sinG) * (l/c*sinG)  //(l/c*sinG)^2
                 + 2*h*l/a/c*(cosA*cosG-cosB)
                 + 2*h*k/a/b*(cosA*cosB-cosG)
                 + 2*k*l/b/c*(cosB*cosG-cosA)
                )
          );
}
*/

//     [       1/a               0        0   ]
// M = [  -cosG/(a sinG)    1/(b sinG)    0   ]
//     [     a*cosB*         b*cosA*      c*  ]
//
// where A is alpha, B is beta, G is gamma, * means reciprocal space.
// (Giacovazzo, p.68)
void UnitCell::set_M()
{
    double sinA=sin(alpha), sinB=sin(beta), sinG=sin(gamma),
           cosA=cos(alpha), cosB=cos(beta), cosG=cos(gamma);
    M[0][0] = 1/a;
    M[0][1] = 0.;
    M[0][2] = 0.;
    M[1][0] = -cosG/(a*sinG);
    M[1][1] = 1/(b*sinG);
    M[1][2] = 0.;
    M[2][0] = b * c * sinA / V // a*
              * (cosA*cosG-cosB) / (sinA*sinG); //cosB*
    M[2][1] = a * c * sinB / V // b*
              * (cosB*cosG-cosA) / (sinB*sinG); //cosA*
    M[2][2] = a * b * sinG / V; // c*

    M_1[0][0] = a;
    M_1[0][1] = 0;
    M_1[0][2] = 0;
    M_1[1][0] = b * cosG;
    M_1[1][1] = b * sinG;
    M_1[1][2] = 0;
    M_1[2][0] = c * cosB;
    M_1[2][1] = -c * sinB * (cosB*cosG-cosA) / (sinB*sinG);
    M_1[2][2] = 1 / M[2][2];
}

// returns UnitCell reciprocal to this, i.e. that has parameters a*, b*, ...
// (Giacovazzo, p. 64)
UnitCell UnitCell::get_reciprocal() const
{
    double ar = b * c * sin(alpha) / V;
    double br = a * c * sin(beta) / V;
    double cr = a * b * sin(gamma) / V;
    double cosAr = (cos(beta)*cos(gamma)-cos(alpha)) / (sin(beta)*sin(gamma));
    double cosBr = (cos(alpha)*cos(gamma)-cos(beta)) / (sin(alpha)*sin(gamma));
    double cosGr = (cos(alpha)*cos(beta)-cos(gamma)) / (sin(alpha)*sin(beta));
    return UnitCell(ar, br, cr, acos(cosAr), acos(cosBr), acos(cosGr));
}

// returns 1/|v|, where v = M * [h k l]; 
double UnitCell::calculate_distance(double h, double k, double l) const
{
    double v2 = 0.;
    for (int i = 0; i != 3; ++i) {
        double t = h * M_1[0][i] + k * M_1[1][i] + l * M_1[2][i];
        v2 += t*t;
    }
    return sqrt(v2);
}

const Anode anodes[] = {
    { "Cu", 1.54056, 1.54439 },
    { "Cr", 2.28970, 2.29361 },
    { "Fe", 1.93604, 1.93998 },
    { "Mo", 0.70930, 0.71359 },
    { "Ag", 0.55941, 0.56380 },
    { "Co", 1.78901, 1.79290 },
    { NULL, 0, 0 }
};


static
const char* default_cel_files[][2] = {

{"bSiC",
"cell  4.358 4.358 4.358  90 90 90\n"
"Si   14  0 0 0\n"
"C     6  0.25 0.25 0.25\n"
"rgnr 216"
},

{"aSiC",
"cell  3.082 3.082 15.123  90 90 120\n"
"SI1  14  0       0       0\n"
"SI2  14  0.3333  0.6667  0.1667\n"
"SI3  14  0.3333  0.6667  0.8333\n"
"C1    6  0.0     0.0     0.125\n"
"C2    6  0.3333  0.6667  0.2917\n"
"C3    6  0.3333  0.6667  0.9583\n"
"rgnr 186",
},

{"NaCl",
"cell  5.64009 5.64009 5.64009  90 90 90\n"
"Na   11   0   0   0\n"
"Cl   17   0.5 0   0\n"
"rgnr 225"
},

{"diamond",
"cell  3.5595 3.5595 3.5595  90 90 90\n"
"C     6  0 0 0\n"
"rgnr 227"
},

{"Si",
"cell  5.4309 5.4309 5.4309  90 90 90\n"
"Si   14  0 0 0\n"
"rgnr 227"
},

{"CeO2",
"cell  5.41 5.41 5.41  90 90 90\n"
"Ce   58  0   0   0\n"
"O     8  0.25 0.25 0.25\n"
"rgnr 225"
},

{"Zn",
"cell  2.665 2.665 4.946  90 90 120\n"
"Zn   30  0.33333 0.66667 0.25\n"
"rgnr 194"
},

{NULL, NULL}
};


CelFile read_cel_file(FILE *f)
{
    CelFile cel = { 0., 0., 0., 0., 0., 0., NULL, vector<AtomInCell>() };
    if (!f)
        return cel;
    char s[20];
    int r = fscanf(f, "%4s %lf %lf %lf %lf %lf %lf",
               s, &cel.a, &cel.b, &cel.c, &cel.alpha, &cel.beta, &cel.gamma);
    if (r != 7)
        return cel;
    if (strcmp(s, "cell") != 0 && strcmp(s, "CELL") != 0
            && strcmp(s, "Cell") != 0) {
        return cel;
    }
    while (1) {
        r = fscanf(f, "%12s", s);
        if (r != 1)
            return cel;
        if (strcmp(s, "RGNR") == 0 || strcmp(s, "rgnr") == 0
                || strcmp(s, "Rgnr") == 0)
            break;
        AtomInCell atom;
        r = fscanf(f, "%d %lf %lf %lf", &atom.Z, &atom.x, &atom.y, &atom.z);
        if (r != 4) {
            return cel;
        }
        cel.atoms.push_back(atom);
        // skip the rest of the line
        for (int c = fgetc(f); c != '\n' && c != EOF; c = fgetc(f))
            ;
    }
    int sgn;
    r = fscanf(f, "%d", &sgn);
    if (r != 1)
        return cel;
    if (sgn < 1 || sgn > 230)
        return cel;
    cel.sgs = find_first_sg_with_number(sgn);
    for (int c = fgetc(f); c != '\n' && c != EOF; c = fgetc(f)) {
        if (c == ':') {
            r = fscanf(f, "%8s", s);
            if (r == 1)
                cel.sgs = find_space_group_setting(sgn, s);
            break;
        } else if (isdigit(c)) {
            ungetc(c, f);
            int pc_setting;
            r = fscanf(f, "%d", &pc_setting);
            if (r == 1)
                cel.sgs = get_sg_from_powdercell_rgnr(sgn, pc_setting);
            break;
        } else if (!isspace(c))
            break;
    }
    return cel;
}

void write_cel_file(CelFile const& cel, FILE *f)
{
    //for (int i = 1; i != 104; ++i)
    //    assert(find_Z_in_pse(i)->Z == i);
    fprintf(f, "cell  %g %g %g  %g %g %g\n", cel.a, cel.b, cel.c,
                                             cel.alpha, cel.beta, cel.gamma);
    for (vector<AtomInCell>::const_iterator i = cel.atoms.begin();
                                                   i != cel.atoms.end(); ++i) {
        const t_pse* pse = find_Z_in_pse(i->Z);
        fprintf(f, "%-2s   %2d  %g %g %g\n",
                pse->symbol, i->Z, i->x, i->y, i->z);
    }
    int sgn = cel.sgs->sgnumber;
    fprintf(f, "rgnr %d", sgn);
    if (sgn != 1 && (cel.sgs-1)->sgnumber == sgn) {
        fprintf(f, " :");
        if (cel.sgs->ext != 0)
            fprintf(f, "%c", cel.sgs->ext);
        fprintf(f, "%s", cel.sgs->qualif);
    }
    fprintf(f, "\n");
}

void write_default_cel_files(const char* path_prefix)
{
    for (const char*(*s)[2] = default_cel_files; (*s)[0] != NULL; ++s) {
        string filename = string(path_prefix) + (*s)[0] + ".cel";
        FILE *f = fopen(filename.c_str(), "w");
        if (!f)
            continue;
        fprintf(f, "%s\n", (*s)[1]);
        fclose(f);
    }
}