File: bitreader.c

package info (click to toggle)
flac 1.3.3-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, sid
  • size: 15,092 kB
  • sloc: ansic: 51,247; cpp: 8,278; sh: 6,142; makefile: 958; perl: 162; javascript: 126
file content (1092 lines) | stat: -rw-r--r-- 32,909 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
/* libFLAC - Free Lossless Audio Codec library
 * Copyright (C) 2000-2009  Josh Coalson
 * Copyright (C) 2011-2018  Xiph.Org Foundation
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * - Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 *
 * - Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution.
 *
 * - Neither the name of the Xiph.org Foundation nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#ifdef HAVE_CONFIG_H
#  include <config.h>
#endif

#include <stdlib.h>
#include <string.h>
#include "private/bitmath.h"
#include "private/bitreader.h"
#include "private/crc.h"
#include "private/macros.h"
#include "FLAC/assert.h"
#include "share/compat.h"
#include "share/endswap.h"

/* Things should be fastest when this matches the machine word size */
/* WATCHOUT: if you change this you must also change the following #defines down to COUNT_ZERO_MSBS2 below to match */
/* WATCHOUT: there are a few places where the code will not work unless brword is >= 32 bits wide */
/*           also, some sections currently only have fast versions for 4 or 8 bytes per word */

#if (ENABLE_64_BIT_WORDS == 0)

typedef FLAC__uint32 brword;
#define FLAC__BYTES_PER_WORD 4		/* sizeof brword */
#define FLAC__BITS_PER_WORD 32
#define FLAC__WORD_ALL_ONES ((FLAC__uint32)0xffffffff)
/* SWAP_BE_WORD_TO_HOST swaps bytes in a brword (which is always big-endian) if necessary to match host byte order */
#if WORDS_BIGENDIAN
#define SWAP_BE_WORD_TO_HOST(x) (x)
#else
#define SWAP_BE_WORD_TO_HOST(x) ENDSWAP_32(x)
#endif
/* counts the # of zero MSBs in a word */
#define COUNT_ZERO_MSBS(word) FLAC__clz_uint32(word)
#define COUNT_ZERO_MSBS2(word) FLAC__clz2_uint32(word)

#else

typedef FLAC__uint64 brword;
#define FLAC__BYTES_PER_WORD 8		/* sizeof brword */
#define FLAC__BITS_PER_WORD 64
#define FLAC__WORD_ALL_ONES ((FLAC__uint64)FLAC__U64L(0xffffffffffffffff))
/* SWAP_BE_WORD_TO_HOST swaps bytes in a brword (which is always big-endian) if necessary to match host byte order */
#if WORDS_BIGENDIAN
#define SWAP_BE_WORD_TO_HOST(x) (x)
#else
#define SWAP_BE_WORD_TO_HOST(x) ENDSWAP_64(x)
#endif
/* counts the # of zero MSBs in a word */
#define COUNT_ZERO_MSBS(word) FLAC__clz_uint64(word)
#define COUNT_ZERO_MSBS2(word) FLAC__clz2_uint64(word)

#endif

/*
 * This should be at least twice as large as the largest number of words
 * required to represent any 'number' (in any encoding) you are going to
 * read.  With FLAC this is on the order of maybe a few hundred bits.
 * If the buffer is smaller than that, the decoder won't be able to read
 * in a whole number that is in a variable length encoding (e.g. Rice).
 * But to be practical it should be at least 1K bytes.
 *
 * Increase this number to decrease the number of read callbacks, at the
 * expense of using more memory.  Or decrease for the reverse effect,
 * keeping in mind the limit from the first paragraph.  The optimal size
 * also depends on the CPU cache size and other factors; some twiddling
 * may be necessary to squeeze out the best performance.
 */
static const uint32_t FLAC__BITREADER_DEFAULT_CAPACITY = 65536u / FLAC__BITS_PER_WORD; /* in words */

struct FLAC__BitReader {
	/* any partially-consumed word at the head will stay right-justified as bits are consumed from the left */
	/* any incomplete word at the tail will be left-justified, and bytes from the read callback are added on the right */
	brword *buffer;
	uint32_t capacity; /* in words */
	uint32_t words; /* # of completed words in buffer */
	uint32_t bytes; /* # of bytes in incomplete word at buffer[words] */
	uint32_t consumed_words; /* #words ... */
	uint32_t consumed_bits; /* ... + (#bits of head word) already consumed from the front of buffer */
	uint32_t read_crc16; /* the running frame CRC */
	uint32_t crc16_offset; /* the number of words in the current buffer that should not be CRC'd */
	uint32_t crc16_align; /* the number of bits in the current consumed word that should not be CRC'd */
	FLAC__BitReaderReadCallback read_callback;
	void *client_data;
};

static inline void crc16_update_word_(FLAC__BitReader *br, brword word)
{
	register uint32_t crc = br->read_crc16;

	for( ; br->crc16_align < FLAC__BITS_PER_WORD; br->crc16_align += 8)
		crc = FLAC__CRC16_UPDATE((uint32_t)((word >> (FLAC__BITS_PER_WORD-8-br->crc16_align)) & 0xff), crc);

	br->read_crc16 = crc;
	br->crc16_align = 0;
}

static inline void crc16_update_block_(FLAC__BitReader *br)
{
	if(br->consumed_words > br->crc16_offset && br->crc16_align)
		crc16_update_word_(br, br->buffer[br->crc16_offset++]);

#if FLAC__BYTES_PER_WORD == 4
	br->read_crc16 = FLAC__crc16_update_words32(br->buffer + br->crc16_offset, br->consumed_words - br->crc16_offset, br->read_crc16);
#elif FLAC__BYTES_PER_WORD == 8
	br->read_crc16 = FLAC__crc16_update_words64(br->buffer + br->crc16_offset, br->consumed_words - br->crc16_offset, br->read_crc16);
#else
	unsigned i;

	for(i = br->crc16_offset; i < br->consumed_words; i++)
		crc16_update_word_(br, br->buffer[i]);
#endif

	br->crc16_offset = 0;
}

static FLAC__bool bitreader_read_from_client_(FLAC__BitReader *br)
{
	uint32_t start, end;
	size_t bytes;
	FLAC__byte *target;

	/* first shift the unconsumed buffer data toward the front as much as possible */
	if(br->consumed_words > 0) {
		crc16_update_block_(br); /* CRC consumed words */

		start = br->consumed_words;
		end = br->words + (br->bytes? 1:0);
		memmove(br->buffer, br->buffer+start, FLAC__BYTES_PER_WORD * (end - start));

		br->words -= start;
		br->consumed_words = 0;
	}

	/*
	 * set the target for reading, taking into account word alignment and endianness
	 */
	bytes = (br->capacity - br->words) * FLAC__BYTES_PER_WORD - br->bytes;
	if(bytes == 0)
		return false; /* no space left, buffer is too small; see note for FLAC__BITREADER_DEFAULT_CAPACITY  */
	target = ((FLAC__byte*)(br->buffer+br->words)) + br->bytes;

	/* before reading, if the existing reader looks like this (say brword is 32 bits wide)
	 *   bitstream :  11 22 33 44 55            br->words=1 br->bytes=1 (partial tail word is left-justified)
	 *   buffer[BE]:  11 22 33 44 55 ?? ?? ??   (shown laid out as bytes sequentially in memory)
	 *   buffer[LE]:  44 33 22 11 ?? ?? ?? 55   (?? being don't-care)
	 *                               ^^-------target, bytes=3
	 * on LE machines, have to byteswap the odd tail word so nothing is
	 * overwritten:
	 */
#if WORDS_BIGENDIAN
#else
	if(br->bytes)
		br->buffer[br->words] = SWAP_BE_WORD_TO_HOST(br->buffer[br->words]);
#endif

	/* now it looks like:
	 *   bitstream :  11 22 33 44 55            br->words=1 br->bytes=1
	 *   buffer[BE]:  11 22 33 44 55 ?? ?? ??
	 *   buffer[LE]:  44 33 22 11 55 ?? ?? ??
	 *                               ^^-------target, bytes=3
	 */

	/* read in the data; note that the callback may return a smaller number of bytes */
	if(!br->read_callback(target, &bytes, br->client_data))
		return false;

	/* after reading bytes 66 77 88 99 AA BB CC DD EE FF from the client:
	 *   bitstream :  11 22 33 44 55 66 77 88 99 AA BB CC DD EE FF
	 *   buffer[BE]:  11 22 33 44 55 66 77 88 99 AA BB CC DD EE FF ??
	 *   buffer[LE]:  44 33 22 11 55 66 77 88 99 AA BB CC DD EE FF ??
	 * now have to byteswap on LE machines:
	 */
#if WORDS_BIGENDIAN
#else
	end = (br->words*FLAC__BYTES_PER_WORD + br->bytes + (uint32_t)bytes + (FLAC__BYTES_PER_WORD-1)) / FLAC__BYTES_PER_WORD;
	for(start = br->words; start < end; start++)
		br->buffer[start] = SWAP_BE_WORD_TO_HOST(br->buffer[start]);
#endif

	/* now it looks like:
	 *   bitstream :  11 22 33 44 55 66 77 88 99 AA BB CC DD EE FF
	 *   buffer[BE]:  11 22 33 44 55 66 77 88 99 AA BB CC DD EE FF ??
	 *   buffer[LE]:  44 33 22 11 88 77 66 55 CC BB AA 99 ?? FF EE DD
	 * finally we'll update the reader values:
	 */
	end = br->words*FLAC__BYTES_PER_WORD + br->bytes + (uint32_t)bytes;
	br->words = end / FLAC__BYTES_PER_WORD;
	br->bytes = end % FLAC__BYTES_PER_WORD;

	return true;
}

/***********************************************************************
 *
 * Class constructor/destructor
 *
 ***********************************************************************/

FLAC__BitReader *FLAC__bitreader_new(void)
{
	FLAC__BitReader *br = calloc(1, sizeof(FLAC__BitReader));

	/* calloc() implies:
		memset(br, 0, sizeof(FLAC__BitReader));
		br->buffer = 0;
		br->capacity = 0;
		br->words = br->bytes = 0;
		br->consumed_words = br->consumed_bits = 0;
		br->read_callback = 0;
		br->client_data = 0;
	*/
	return br;
}

void FLAC__bitreader_delete(FLAC__BitReader *br)
{
	FLAC__ASSERT(0 != br);

	FLAC__bitreader_free(br);
	free(br);
}

/***********************************************************************
 *
 * Public class methods
 *
 ***********************************************************************/

FLAC__bool FLAC__bitreader_init(FLAC__BitReader *br, FLAC__BitReaderReadCallback rcb, void *cd)
{
	FLAC__ASSERT(0 != br);

	br->words = br->bytes = 0;
	br->consumed_words = br->consumed_bits = 0;
	br->capacity = FLAC__BITREADER_DEFAULT_CAPACITY;
	br->buffer = malloc(sizeof(brword) * br->capacity);
	if(br->buffer == 0)
		return false;
	br->read_callback = rcb;
	br->client_data = cd;

	return true;
}

void FLAC__bitreader_free(FLAC__BitReader *br)
{
	FLAC__ASSERT(0 != br);

	if(0 != br->buffer)
		free(br->buffer);
	br->buffer = 0;
	br->capacity = 0;
	br->words = br->bytes = 0;
	br->consumed_words = br->consumed_bits = 0;
	br->read_callback = 0;
	br->client_data = 0;
}

FLAC__bool FLAC__bitreader_clear(FLAC__BitReader *br)
{
	br->words = br->bytes = 0;
	br->consumed_words = br->consumed_bits = 0;
	return true;
}

void FLAC__bitreader_dump(const FLAC__BitReader *br, FILE *out)
{
	uint32_t i, j;
	if(br == 0) {
		fprintf(out, "bitreader is NULL\n");
	}
	else {
		fprintf(out, "bitreader: capacity=%u words=%u bytes=%u consumed: words=%u, bits=%u\n", br->capacity, br->words, br->bytes, br->consumed_words, br->consumed_bits);

		for(i = 0; i < br->words; i++) {
			fprintf(out, "%08X: ", i);
			for(j = 0; j < FLAC__BITS_PER_WORD; j++)
				if(i < br->consumed_words || (i == br->consumed_words && j < br->consumed_bits))
					fprintf(out, ".");
				else
					fprintf(out, "%01d", br->buffer[i] & ((brword)1 << (FLAC__BITS_PER_WORD-j-1)) ? 1:0);
			fprintf(out, "\n");
		}
		if(br->bytes > 0) {
			fprintf(out, "%08X: ", i);
			for(j = 0; j < br->bytes*8; j++)
				if(i < br->consumed_words || (i == br->consumed_words && j < br->consumed_bits))
					fprintf(out, ".");
				else
					fprintf(out, "%01d", br->buffer[i] & ((brword)1 << (br->bytes*8-j-1)) ? 1:0);
			fprintf(out, "\n");
		}
	}
}

void FLAC__bitreader_reset_read_crc16(FLAC__BitReader *br, FLAC__uint16 seed)
{
	FLAC__ASSERT(0 != br);
	FLAC__ASSERT(0 != br->buffer);
	FLAC__ASSERT((br->consumed_bits & 7) == 0);

	br->read_crc16 = (uint32_t)seed;
	br->crc16_offset = br->consumed_words;
	br->crc16_align = br->consumed_bits;
}

FLAC__uint16 FLAC__bitreader_get_read_crc16(FLAC__BitReader *br)
{
	FLAC__ASSERT(0 != br);
	FLAC__ASSERT(0 != br->buffer);

	/* CRC consumed words up to here */
	crc16_update_block_(br);

	FLAC__ASSERT((br->consumed_bits & 7) == 0);
	FLAC__ASSERT(br->crc16_align <= br->consumed_bits);

	/* CRC any tail bytes in a partially-consumed word */
	if(br->consumed_bits) {
		const brword tail = br->buffer[br->consumed_words];
		for( ; br->crc16_align < br->consumed_bits; br->crc16_align += 8)
			br->read_crc16 = FLAC__CRC16_UPDATE((uint32_t)((tail >> (FLAC__BITS_PER_WORD-8-br->crc16_align)) & 0xff), br->read_crc16);
	}
	return br->read_crc16;
}

inline FLAC__bool FLAC__bitreader_is_consumed_byte_aligned(const FLAC__BitReader *br)
{
	return ((br->consumed_bits & 7) == 0);
}

inline uint32_t FLAC__bitreader_bits_left_for_byte_alignment(const FLAC__BitReader *br)
{
	return 8 - (br->consumed_bits & 7);
}

inline uint32_t FLAC__bitreader_get_input_bits_unconsumed(const FLAC__BitReader *br)
{
	return (br->words-br->consumed_words)*FLAC__BITS_PER_WORD + br->bytes*8 - br->consumed_bits;
}

FLAC__bool FLAC__bitreader_read_raw_uint32(FLAC__BitReader *br, FLAC__uint32 *val, uint32_t bits)
{
	FLAC__ASSERT(0 != br);
	FLAC__ASSERT(0 != br->buffer);

	FLAC__ASSERT(bits <= 32);
	FLAC__ASSERT((br->capacity*FLAC__BITS_PER_WORD) * 2 >= bits);
	FLAC__ASSERT(br->consumed_words <= br->words);

	/* WATCHOUT: code does not work with <32bit words; we can make things much faster with this assertion */
	FLAC__ASSERT(FLAC__BITS_PER_WORD >= 32);

	if(bits == 0) { /* OPT: investigate if this can ever happen, maybe change to assertion */
		*val = 0;
		return true;
	}

	while((br->words-br->consumed_words)*FLAC__BITS_PER_WORD + br->bytes*8 - br->consumed_bits < bits) {
		if(!bitreader_read_from_client_(br))
			return false;
	}
	if(br->consumed_words < br->words) { /* if we've not consumed up to a partial tail word... */
		/* OPT: taking out the consumed_bits==0 "else" case below might make things faster if less code allows the compiler to inline this function */
		if(br->consumed_bits) {
			/* this also works when consumed_bits==0, it's just a little slower than necessary for that case */
			const uint32_t n = FLAC__BITS_PER_WORD - br->consumed_bits;
			const brword word = br->buffer[br->consumed_words];
			if(bits < n) {
				*val = (FLAC__uint32)((word & (FLAC__WORD_ALL_ONES >> br->consumed_bits)) >> (n-bits)); /* The result has <= 32 non-zero bits */
				br->consumed_bits += bits;
				return true;
			}
			/* (FLAC__BITS_PER_WORD - br->consumed_bits <= bits) ==> (FLAC__WORD_ALL_ONES >> br->consumed_bits) has no more than 'bits' non-zero bits */
			*val = (FLAC__uint32)(word & (FLAC__WORD_ALL_ONES >> br->consumed_bits));
			bits -= n;
			br->consumed_words++;
			br->consumed_bits = 0;
			if(bits) { /* if there are still bits left to read, there have to be less than 32 so they will all be in the next word */
				*val <<= bits;
				*val |= (FLAC__uint32)(br->buffer[br->consumed_words] >> (FLAC__BITS_PER_WORD-bits));
				br->consumed_bits = bits;
			}
			return true;
		}
		else { /* br->consumed_bits == 0 */
			const brword word = br->buffer[br->consumed_words];
			if(bits < FLAC__BITS_PER_WORD) {
				*val = (FLAC__uint32)(word >> (FLAC__BITS_PER_WORD-bits));
				br->consumed_bits = bits;
				return true;
			}
			/* at this point bits == FLAC__BITS_PER_WORD == 32; because of previous assertions, it can't be larger */
			*val = (FLAC__uint32)word;
			br->consumed_words++;
			return true;
		}
	}
	else {
		/* in this case we're starting our read at a partial tail word;
		 * the reader has guaranteed that we have at least 'bits' bits
		 * available to read, which makes this case simpler.
		 */
		/* OPT: taking out the consumed_bits==0 "else" case below might make things faster if less code allows the compiler to inline this function */
		if(br->consumed_bits) {
			/* this also works when consumed_bits==0, it's just a little slower than necessary for that case */
			FLAC__ASSERT(br->consumed_bits + bits <= br->bytes*8);
			*val = (FLAC__uint32)((br->buffer[br->consumed_words] & (FLAC__WORD_ALL_ONES >> br->consumed_bits)) >> (FLAC__BITS_PER_WORD-br->consumed_bits-bits));
			br->consumed_bits += bits;
			return true;
		}
		else {
			*val = (FLAC__uint32)(br->buffer[br->consumed_words] >> (FLAC__BITS_PER_WORD-bits));
			br->consumed_bits += bits;
			return true;
		}
	}
}

FLAC__bool FLAC__bitreader_read_raw_int32(FLAC__BitReader *br, FLAC__int32 *val, uint32_t bits)
{
	FLAC__uint32 uval, mask;
	/* OPT: inline raw uint32 code here, or make into a macro if possible in the .h file */
	if(!FLAC__bitreader_read_raw_uint32(br, &uval, bits))
		return false;
	/* sign-extend *val assuming it is currently bits wide. */
	/* From: https://graphics.stanford.edu/~seander/bithacks.html#FixedSignExtend */
	mask = 1u << (bits - 1);
	*val = (uval ^ mask) - mask;
	return true;
}

FLAC__bool FLAC__bitreader_read_raw_uint64(FLAC__BitReader *br, FLAC__uint64 *val, uint32_t bits)
{
	FLAC__uint32 hi, lo;

	if(bits > 32) {
		if(!FLAC__bitreader_read_raw_uint32(br, &hi, bits-32))
			return false;
		if(!FLAC__bitreader_read_raw_uint32(br, &lo, 32))
			return false;
		*val = hi;
		*val <<= 32;
		*val |= lo;
	}
	else {
		if(!FLAC__bitreader_read_raw_uint32(br, &lo, bits))
			return false;
		*val = lo;
	}
	return true;
}

inline FLAC__bool FLAC__bitreader_read_uint32_little_endian(FLAC__BitReader *br, FLAC__uint32 *val)
{
	FLAC__uint32 x8, x32 = 0;

	/* this doesn't need to be that fast as currently it is only used for vorbis comments */

	if(!FLAC__bitreader_read_raw_uint32(br, &x32, 8))
		return false;

	if(!FLAC__bitreader_read_raw_uint32(br, &x8, 8))
		return false;
	x32 |= (x8 << 8);

	if(!FLAC__bitreader_read_raw_uint32(br, &x8, 8))
		return false;
	x32 |= (x8 << 16);

	if(!FLAC__bitreader_read_raw_uint32(br, &x8, 8))
		return false;
	x32 |= (x8 << 24);

	*val = x32;
	return true;
}

FLAC__bool FLAC__bitreader_skip_bits_no_crc(FLAC__BitReader *br, uint32_t bits)
{
	/*
	 * OPT: a faster implementation is possible but probably not that useful
	 * since this is only called a couple of times in the metadata readers.
	 */
	FLAC__ASSERT(0 != br);
	FLAC__ASSERT(0 != br->buffer);

	if(bits > 0) {
		const uint32_t n = br->consumed_bits & 7;
		uint32_t m;
		FLAC__uint32 x;

		if(n != 0) {
			m = flac_min(8-n, bits);
			if(!FLAC__bitreader_read_raw_uint32(br, &x, m))
				return false;
			bits -= m;
		}
		m = bits / 8;
		if(m > 0) {
			if(!FLAC__bitreader_skip_byte_block_aligned_no_crc(br, m))
				return false;
			bits %= 8;
		}
		if(bits > 0) {
			if(!FLAC__bitreader_read_raw_uint32(br, &x, bits))
				return false;
		}
	}

	return true;
}

FLAC__bool FLAC__bitreader_skip_byte_block_aligned_no_crc(FLAC__BitReader *br, uint32_t nvals)
{
	FLAC__uint32 x;

	FLAC__ASSERT(0 != br);
	FLAC__ASSERT(0 != br->buffer);
	FLAC__ASSERT(FLAC__bitreader_is_consumed_byte_aligned(br));

	/* step 1: skip over partial head word to get word aligned */
	while(nvals && br->consumed_bits) { /* i.e. run until we read 'nvals' bytes or we hit the end of the head word */
		if(!FLAC__bitreader_read_raw_uint32(br, &x, 8))
			return false;
		nvals--;
	}
	if(0 == nvals)
		return true;
	/* step 2: skip whole words in chunks */
	while(nvals >= FLAC__BYTES_PER_WORD) {
		if(br->consumed_words < br->words) {
			br->consumed_words++;
			nvals -= FLAC__BYTES_PER_WORD;
		}
		else if(!bitreader_read_from_client_(br))
			return false;
	}
	/* step 3: skip any remainder from partial tail bytes */
	while(nvals) {
		if(!FLAC__bitreader_read_raw_uint32(br, &x, 8))
			return false;
		nvals--;
	}

	return true;
}

FLAC__bool FLAC__bitreader_read_byte_block_aligned_no_crc(FLAC__BitReader *br, FLAC__byte *val, uint32_t nvals)
{
	FLAC__uint32 x;

	FLAC__ASSERT(0 != br);
	FLAC__ASSERT(0 != br->buffer);
	FLAC__ASSERT(FLAC__bitreader_is_consumed_byte_aligned(br));

	/* step 1: read from partial head word to get word aligned */
	while(nvals && br->consumed_bits) { /* i.e. run until we read 'nvals' bytes or we hit the end of the head word */
		if(!FLAC__bitreader_read_raw_uint32(br, &x, 8))
			return false;
		*val++ = (FLAC__byte)x;
		nvals--;
	}
	if(0 == nvals)
		return true;
	/* step 2: read whole words in chunks */
	while(nvals >= FLAC__BYTES_PER_WORD) {
		if(br->consumed_words < br->words) {
			const brword word = br->buffer[br->consumed_words++];
#if FLAC__BYTES_PER_WORD == 4
			val[0] = (FLAC__byte)(word >> 24);
			val[1] = (FLAC__byte)(word >> 16);
			val[2] = (FLAC__byte)(word >> 8);
			val[3] = (FLAC__byte)word;
#elif FLAC__BYTES_PER_WORD == 8
			val[0] = (FLAC__byte)(word >> 56);
			val[1] = (FLAC__byte)(word >> 48);
			val[2] = (FLAC__byte)(word >> 40);
			val[3] = (FLAC__byte)(word >> 32);
			val[4] = (FLAC__byte)(word >> 24);
			val[5] = (FLAC__byte)(word >> 16);
			val[6] = (FLAC__byte)(word >> 8);
			val[7] = (FLAC__byte)word;
#else
			for(x = 0; x < FLAC__BYTES_PER_WORD; x++)
				val[x] = (FLAC__byte)(word >> (8*(FLAC__BYTES_PER_WORD-x-1)));
#endif
			val += FLAC__BYTES_PER_WORD;
			nvals -= FLAC__BYTES_PER_WORD;
		}
		else if(!bitreader_read_from_client_(br))
			return false;
	}
	/* step 3: read any remainder from partial tail bytes */
	while(nvals) {
		if(!FLAC__bitreader_read_raw_uint32(br, &x, 8))
			return false;
		*val++ = (FLAC__byte)x;
		nvals--;
	}

	return true;
}

FLAC__bool FLAC__bitreader_read_unary_unsigned(FLAC__BitReader *br, uint32_t *val)
#if 0 /* slow but readable version */
{
	uint32_t bit;

	FLAC__ASSERT(0 != br);
	FLAC__ASSERT(0 != br->buffer);

	*val = 0;
	while(1) {
		if(!FLAC__bitreader_read_bit(br, &bit))
			return false;
		if(bit)
			break;
		else
			*val++;
	}
	return true;
}
#else
{
	uint32_t i;

	FLAC__ASSERT(0 != br);
	FLAC__ASSERT(0 != br->buffer);

	*val = 0;
	while(1) {
		while(br->consumed_words < br->words) { /* if we've not consumed up to a partial tail word... */
			brword b = br->buffer[br->consumed_words] << br->consumed_bits;
			if(b) {
				i = COUNT_ZERO_MSBS(b);
				*val += i;
				i++;
				br->consumed_bits += i;
				if(br->consumed_bits >= FLAC__BITS_PER_WORD) { /* faster way of testing if(br->consumed_bits == FLAC__BITS_PER_WORD) */
					br->consumed_words++;
					br->consumed_bits = 0;
				}
				return true;
			}
			else {
				*val += FLAC__BITS_PER_WORD - br->consumed_bits;
				br->consumed_words++;
				br->consumed_bits = 0;
				/* didn't find stop bit yet, have to keep going... */
			}
		}
		/* at this point we've eaten up all the whole words; have to try
		 * reading through any tail bytes before calling the read callback.
		 * this is a repeat of the above logic adjusted for the fact we
		 * don't have a whole word.  note though if the client is feeding
		 * us data a byte at a time (unlikely), br->consumed_bits may not
		 * be zero.
		 */
		if(br->bytes*8 > br->consumed_bits) {
			const uint32_t end = br->bytes * 8;
			brword b = (br->buffer[br->consumed_words] & (FLAC__WORD_ALL_ONES << (FLAC__BITS_PER_WORD-end))) << br->consumed_bits;
			if(b) {
				i = COUNT_ZERO_MSBS(b);
				*val += i;
				i++;
				br->consumed_bits += i;
				FLAC__ASSERT(br->consumed_bits < FLAC__BITS_PER_WORD);
				return true;
			}
			else {
				*val += end - br->consumed_bits;
				br->consumed_bits = end;
				FLAC__ASSERT(br->consumed_bits < FLAC__BITS_PER_WORD);
				/* didn't find stop bit yet, have to keep going... */
			}
		}
		if(!bitreader_read_from_client_(br))
			return false;
	}
}
#endif

FLAC__bool FLAC__bitreader_read_rice_signed(FLAC__BitReader *br, int *val, uint32_t parameter)
{
	FLAC__uint32 lsbs = 0, msbs = 0;
	uint32_t uval;

	FLAC__ASSERT(0 != br);
	FLAC__ASSERT(0 != br->buffer);
	FLAC__ASSERT(parameter <= 31);

	/* read the unary MSBs and end bit */
	if(!FLAC__bitreader_read_unary_unsigned(br, &msbs))
		return false;

	/* read the binary LSBs */
	if(!FLAC__bitreader_read_raw_uint32(br, &lsbs, parameter))
		return false;

	/* compose the value */
	uval = (msbs << parameter) | lsbs;
	if(uval & 1)
		*val = -((int)(uval >> 1)) - 1;
	else
		*val = (int)(uval >> 1);

	return true;
}

/* this is by far the most heavily used reader call.  it ain't pretty but it's fast */
FLAC__bool FLAC__bitreader_read_rice_signed_block(FLAC__BitReader *br, int vals[], uint32_t nvals, uint32_t parameter)
{
	/* try and get br->consumed_words and br->consumed_bits into register;
	 * must remember to flush them back to *br before calling other
	 * bitreader functions that use them, and before returning */
	uint32_t cwords, words, lsbs, msbs, x, y;
	uint32_t ucbits; /* keep track of the number of unconsumed bits in word */
	brword b;
	int *val, *end;

	FLAC__ASSERT(0 != br);
	FLAC__ASSERT(0 != br->buffer);
	/* WATCHOUT: code does not work with <32bit words; we can make things much faster with this assertion */
	FLAC__ASSERT(FLAC__BITS_PER_WORD >= 32);
	FLAC__ASSERT(parameter < 32);
	/* the above two asserts also guarantee that the binary part never straddles more than 2 words, so we don't have to loop to read it */

	val = vals;
	end = vals + nvals;

	if(parameter == 0) {
		while(val < end) {
			/* read the unary MSBs and end bit */
			if(!FLAC__bitreader_read_unary_unsigned(br, &msbs))
				return false;

			*val++ = (int)(msbs >> 1) ^ -(int)(msbs & 1);
		}

		return true;
	}

	FLAC__ASSERT(parameter > 0);

	cwords = br->consumed_words;
	words = br->words;

	/* if we've not consumed up to a partial tail word... */
	if(cwords >= words) {
		x = 0;
		goto process_tail;
	}

	ucbits = FLAC__BITS_PER_WORD - br->consumed_bits;
	b = br->buffer[cwords] << br->consumed_bits;  /* keep unconsumed bits aligned to left */

	while(val < end) {
		/* read the unary MSBs and end bit */
		x = y = COUNT_ZERO_MSBS2(b);
		if(x == FLAC__BITS_PER_WORD) {
			x = ucbits;
			do {
				/* didn't find stop bit yet, have to keep going... */
				cwords++;
				if (cwords >= words)
					goto incomplete_msbs;
				b = br->buffer[cwords];
				y = COUNT_ZERO_MSBS2(b);
				x += y;
			} while(y == FLAC__BITS_PER_WORD);
		}
		b <<= y;
		b <<= 1; /* account for stop bit */
		ucbits = (ucbits - x - 1) % FLAC__BITS_PER_WORD;
		msbs = x;

		/* read the binary LSBs */
		x = (FLAC__uint32)(b >> (FLAC__BITS_PER_WORD - parameter)); /* parameter < 32, so we can cast to 32-bit uint32_t */
		if(parameter <= ucbits) {
			ucbits -= parameter;
			b <<= parameter;
		} else {
			/* there are still bits left to read, they will all be in the next word */
			cwords++;
			if (cwords >= words)
				goto incomplete_lsbs;
			b = br->buffer[cwords];
			ucbits += FLAC__BITS_PER_WORD - parameter;
			x |= (FLAC__uint32)(b >> ucbits);
			b <<= FLAC__BITS_PER_WORD - ucbits;
		}
		lsbs = x;

		/* compose the value */
		x = (msbs << parameter) | lsbs;
		*val++ = (int)(x >> 1) ^ -(int)(x & 1);

		continue;

		/* at this point we've eaten up all the whole words */
process_tail:
		do {
			if(0) {
incomplete_msbs:
				br->consumed_bits = 0;
				br->consumed_words = cwords;
			}

			/* read the unary MSBs and end bit */
			if(!FLAC__bitreader_read_unary_unsigned(br, &msbs))
				return false;
			msbs += x;
			x = ucbits = 0;

			if(0) {
incomplete_lsbs:
				br->consumed_bits = 0;
				br->consumed_words = cwords;
			}

			/* read the binary LSBs */
			if(!FLAC__bitreader_read_raw_uint32(br, &lsbs, parameter - ucbits))
				return false;
			lsbs = x | lsbs;

			/* compose the value */
			x = (msbs << parameter) | lsbs;
			*val++ = (int)(x >> 1) ^ -(int)(x & 1);
			x = 0;

			cwords = br->consumed_words;
			words = br->words;
			ucbits = FLAC__BITS_PER_WORD - br->consumed_bits;
			b = cwords < br->capacity ? br->buffer[cwords] << br->consumed_bits : 0;
		} while(cwords >= words && val < end);
	}

	if(ucbits == 0 && cwords < words) {
		/* don't leave the head word with no unconsumed bits */
		cwords++;
		ucbits = FLAC__BITS_PER_WORD;
	}

	br->consumed_bits = FLAC__BITS_PER_WORD - ucbits;
	br->consumed_words = cwords;

	return true;
}

#if 0 /* UNUSED */
FLAC__bool FLAC__bitreader_read_golomb_signed(FLAC__BitReader *br, int *val, uint32_t parameter)
{
	FLAC__uint32 lsbs = 0, msbs = 0;
	uint32_t bit, uval, k;

	FLAC__ASSERT(0 != br);
	FLAC__ASSERT(0 != br->buffer);

	k = FLAC__bitmath_ilog2(parameter);

	/* read the unary MSBs and end bit */
	if(!FLAC__bitreader_read_unary_unsigned(br, &msbs))
		return false;

	/* read the binary LSBs */
	if(!FLAC__bitreader_read_raw_uint32(br, &lsbs, k))
		return false;

	if(parameter == 1u<<k) {
		/* compose the value */
		uval = (msbs << k) | lsbs;
	}
	else {
		uint32_t d = (1 << (k+1)) - parameter;
		if(lsbs >= d) {
			if(!FLAC__bitreader_read_bit(br, &bit))
				return false;
			lsbs <<= 1;
			lsbs |= bit;
			lsbs -= d;
		}
		/* compose the value */
		uval = msbs * parameter + lsbs;
	}

	/* unfold uint32_t to signed */
	if(uval & 1)
		*val = -((int)(uval >> 1)) - 1;
	else
		*val = (int)(uval >> 1);

	return true;
}

FLAC__bool FLAC__bitreader_read_golomb_unsigned(FLAC__BitReader *br, uint32_t *val, uint32_t parameter)
{
	FLAC__uint32 lsbs, msbs = 0;
	uint32_t bit, k;

	FLAC__ASSERT(0 != br);
	FLAC__ASSERT(0 != br->buffer);

	k = FLAC__bitmath_ilog2(parameter);

	/* read the unary MSBs and end bit */
	if(!FLAC__bitreader_read_unary_unsigned(br, &msbs))
		return false;

	/* read the binary LSBs */
	if(!FLAC__bitreader_read_raw_uint32(br, &lsbs, k))
		return false;

	if(parameter == 1u<<k) {
		/* compose the value */
		*val = (msbs << k) | lsbs;
	}
	else {
		uint32_t d = (1 << (k+1)) - parameter;
		if(lsbs >= d) {
			if(!FLAC__bitreader_read_bit(br, &bit))
				return false;
			lsbs <<= 1;
			lsbs |= bit;
			lsbs -= d;
		}
		/* compose the value */
		*val = msbs * parameter + lsbs;
	}

	return true;
}
#endif /* UNUSED */

/* on return, if *val == 0xffffffff then the utf-8 sequence was invalid, but the return value will be true */
FLAC__bool FLAC__bitreader_read_utf8_uint32(FLAC__BitReader *br, FLAC__uint32 *val, FLAC__byte *raw, uint32_t *rawlen)
{
	FLAC__uint32 v = 0;
	FLAC__uint32 x;
	uint32_t i;

	if(!FLAC__bitreader_read_raw_uint32(br, &x, 8))
		return false;
	if(raw)
		raw[(*rawlen)++] = (FLAC__byte)x;
	if(!(x & 0x80)) { /* 0xxxxxxx */
		v = x;
		i = 0;
	}
	else if(x & 0xC0 && !(x & 0x20)) { /* 110xxxxx */
		v = x & 0x1F;
		i = 1;
	}
	else if(x & 0xE0 && !(x & 0x10)) { /* 1110xxxx */
		v = x & 0x0F;
		i = 2;
	}
	else if(x & 0xF0 && !(x & 0x08)) { /* 11110xxx */
		v = x & 0x07;
		i = 3;
	}
	else if(x & 0xF8 && !(x & 0x04)) { /* 111110xx */
		v = x & 0x03;
		i = 4;
	}
	else if(x & 0xFC && !(x & 0x02)) { /* 1111110x */
		v = x & 0x01;
		i = 5;
	}
	else {
		*val = 0xffffffff;
		return true;
	}
	for( ; i; i--) {
		if(!FLAC__bitreader_read_raw_uint32(br, &x, 8))
			return false;
		if(raw)
			raw[(*rawlen)++] = (FLAC__byte)x;
		if(!(x & 0x80) || (x & 0x40)) { /* 10xxxxxx */
			*val = 0xffffffff;
			return true;
		}
		v <<= 6;
		v |= (x & 0x3F);
	}
	*val = v;
	return true;
}

/* on return, if *val == 0xffffffffffffffff then the utf-8 sequence was invalid, but the return value will be true */
FLAC__bool FLAC__bitreader_read_utf8_uint64(FLAC__BitReader *br, FLAC__uint64 *val, FLAC__byte *raw, uint32_t *rawlen)
{
	FLAC__uint64 v = 0;
	FLAC__uint32 x;
	uint32_t i;

	if(!FLAC__bitreader_read_raw_uint32(br, &x, 8))
		return false;
	if(raw)
		raw[(*rawlen)++] = (FLAC__byte)x;
	if(!(x & 0x80)) { /* 0xxxxxxx */
		v = x;
		i = 0;
	}
	else if(x & 0xC0 && !(x & 0x20)) { /* 110xxxxx */
		v = x & 0x1F;
		i = 1;
	}
	else if(x & 0xE0 && !(x & 0x10)) { /* 1110xxxx */
		v = x & 0x0F;
		i = 2;
	}
	else if(x & 0xF0 && !(x & 0x08)) { /* 11110xxx */
		v = x & 0x07;
		i = 3;
	}
	else if(x & 0xF8 && !(x & 0x04)) { /* 111110xx */
		v = x & 0x03;
		i = 4;
	}
	else if(x & 0xFC && !(x & 0x02)) { /* 1111110x */
		v = x & 0x01;
		i = 5;
	}
	else if(x & 0xFE && !(x & 0x01)) { /* 11111110 */
		v = 0;
		i = 6;
	}
	else {
		*val = FLAC__U64L(0xffffffffffffffff);
		return true;
	}
	for( ; i; i--) {
		if(!FLAC__bitreader_read_raw_uint32(br, &x, 8))
			return false;
		if(raw)
			raw[(*rawlen)++] = (FLAC__byte)x;
		if(!(x & 0x80) || (x & 0x40)) { /* 10xxxxxx */
			*val = FLAC__U64L(0xffffffffffffffff);
			return true;
		}
		v <<= 6;
		v |= (x & 0x3F);
	}
	*val = v;
	return true;
}

/* These functions are declared inline in this file but are also callable as
 * externs from elsewhere.
 * According to the C99 spec, section 6.7.4, simply providing a function
 * prototype in a header file without 'inline' and making the function inline
 * in this file should be sufficient.
 * Unfortunately, the Microsoft VS compiler doesn't pick them up externally. To
 * fix that we add extern declarations here.
 */
extern FLAC__bool FLAC__bitreader_is_consumed_byte_aligned(const FLAC__BitReader *br);
extern uint32_t FLAC__bitreader_bits_left_for_byte_alignment(const FLAC__BitReader *br);
extern uint32_t FLAC__bitreader_get_input_bits_unconsumed(const FLAC__BitReader *br);
extern FLAC__bool FLAC__bitreader_read_uint32_little_endian(FLAC__BitReader *br, FLAC__uint32 *val);