1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
|
/**
* Flake: FLAC audio encoder
* Copyright (c) 2006 Justin Ruggles
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "common.h"
#include "flake.h"
#include "lpc.h"
/**
* Apply Welch window function to audio block
*/
static inline void
apply_welch_window(const int32_t *data, int len, double *w_data)
{
int i;
double c;
c = (2.0 / (len - 1.0)) - 1.0;
for(i=0; i<(len >> 1); i++) {
double w = 1.0 - ((c-i) * (c-i));
w_data[i] = data[i] * w;
w_data[len-1-i] = data[len-1-i] * w;
}
}
/**
* Calculates autocorrelation data from audio samples
* A Welch window function is applied before calculation.
*/
static void
compute_autocorr(const int32_t *data, int len, int lag, double *autoc)
{
int i, j;
double *data1;
double temp, temp2;
data1 = malloc((len+16) * sizeof(double));
apply_welch_window(data, len, data1);
data1[len] = 0;
for (i=0; i<=lag; ++i) {
temp = 1.0;
temp2 = 1.0;
for (j=0; j<=lag-i; ++j)
temp += data1[j+i] * data1[j];
for (j=lag+1; j<=len-1; j+=2) {
temp += data1[j] * data1[j-i];
temp2 += data1[j+1] * data1[j+1-i];
}
autoc[i] = temp + temp2;
}
free(data1);
}
/**
* Levinson-Durbin recursion.
* Produces LPC coefficients from autocorrelation data.
*/
static void
compute_lpc_coefs(const double *autoc, int max_order, double *ref,
double lpc[][MAX_LPC_ORDER])
{
int i, j, i2;
double r, err, tmp;
double lpc_tmp[MAX_LPC_ORDER];
for(i=0; i<max_order; i++) lpc_tmp[i] = 0;
err = 1.0;
if(autoc) {
err = autoc[0];
}
for(i=0; i<max_order; i++) {
if(ref) {
r = ref[i];
} else {
r = -autoc[i+1];
for(j=0; j<i; j++) {
r -= lpc_tmp[j] * autoc[i-j];
}
r /= err;
err *= 1.0 - (r * r);
}
i2 = (i >> 1);
lpc_tmp[i] = r;
for(j=0; j<i2; j++) {
tmp = lpc_tmp[j];
lpc_tmp[j] += r * lpc_tmp[i-1-j];
lpc_tmp[i-1-j] += r * tmp;
}
if(i & 1) {
lpc_tmp[j] += lpc_tmp[j] * r;
}
for(j=0; j<=i; j++) {
lpc[i][j] = -lpc_tmp[j];
}
}
}
/**
* Compute LPC coefs for FLAKE_ORDER_METHOD_EST
* Faster LPC coeff computation by first calculating the reflection coefficients
* using Schur recursion. That allows for estimating the optimal order before
* running Levinson recursion.
*/
static int
compute_lpc_coefs_est(const double *autoc, int max_order,
double lpc[][MAX_LPC_ORDER])
{
int i, j;
double error;
double gen[2][MAX_LPC_ORDER];
double ref[MAX_LPC_ORDER];
int order_est;
// Schur recursion
for(i=0; i<max_order; i++) gen[0][i] = gen[1][i] = autoc[i+1];
error = autoc[0];
ref[0] = -gen[1][0] / error;
error += gen[1][0] * ref[0];
for(i=1; i<max_order; i++) {
for(j=0; j<max_order-i; j++) {
gen[1][j] = gen[1][j+1] + ref[i-1] * gen[0][j];
gen[0][j] = gen[1][j+1] * ref[i-1] + gen[0][j];
}
ref[i] = -gen[1][0] / error;
error += gen[1][0] * ref[i];
}
// Estimate optimal order using reflection coefficients
order_est = 1;
for(i=max_order-1; i>=0; i--) {
if(fabs(ref[i]) > 0.10) {
order_est = i+1;
break;
}
}
// Levinson recursion
compute_lpc_coefs(NULL, order_est, ref, lpc);
return order_est;
}
/**
* Quantize LPC coefficients
*/
static void
quantize_lpc_coefs(double *lpc_in, int order, int precision, int32_t *lpc_out,
int *shift)
{
int i;
double d, cmax, error;
int32_t qmax;
int sh, q;
// define maximum levels
qmax = (1 << (precision - 1)) - 1;
// find maximum coefficient value
cmax = 0.0;
for(i=0; i<order; i++) {
d = fabs(lpc_in[i]);
if(d > cmax)
cmax = d;
}
// if maximum value quantizes to zero, return all zeros
if(cmax * (1 << 15) < 1.0) {
*shift = 0;
memset(lpc_out, 0, sizeof(int32_t) * order);
return;
}
// calculate level shift which scales max coeff to available bits
sh = 15;
while((cmax * (1 << sh) > qmax) && (sh > 0)) {
sh--;
}
// since negative shift values are unsupported in decoder, scale down
// coefficients instead
if(sh == 0 && cmax > qmax) {
double scale = ((double)qmax) / cmax;
for(i=0; i<order; i++) {
lpc_in[i] *= scale;
}
}
// output quantized coefficients and level shift
error=0;
for(i=0; i<order; i++) {
error += lpc_in[i] * (1 << sh);
q = error + 0.5;
if(q <= -qmax) q = -qmax+1;
if(q > qmax) q = qmax;
error -= q;
lpc_out[i] = q;
}
*shift = sh;
}
/**
* Calculate LPC coefficients for multiple orders
*/
int
lpc_calc_coefs(const int32_t *samples, int blocksize, int max_order,
int precision, int omethod, int32_t coefs[][MAX_LPC_ORDER],
int *shift)
{
double autoc[MAX_LPC_ORDER+1];
double lpc[MAX_LPC_ORDER][MAX_LPC_ORDER];
int i;
int opt_order;
compute_autocorr(samples, blocksize, max_order, autoc);
opt_order = max_order;
if(omethod == FLAKE_ORDER_METHOD_EST) {
opt_order = compute_lpc_coefs_est(autoc, max_order, lpc);
} else {
compute_lpc_coefs(autoc, max_order, NULL, lpc);
}
switch(omethod) {
case FLAKE_ORDER_METHOD_MAX:
case FLAKE_ORDER_METHOD_EST:
i = opt_order-1;
quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i]);
break;
default:
for(i=0; i<max_order; i++) {
quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i]);
}
break;
}
return opt_order;
}
|