File: lpc.c

package info (click to toggle)
flake 0.11-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 368 kB
  • sloc: ansic: 3,590; sh: 797; makefile: 180
file content (258 lines) | stat: -rw-r--r-- 6,684 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
/**
 * Flake: FLAC audio encoder
 * Copyright (c) 2006  Justin Ruggles
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

#include "common.h"

#include "flake.h"
#include "lpc.h"

/**
 * Apply Welch window function to audio block
 */
static inline void
apply_welch_window(const int32_t *data, int len, double *w_data)
{
    int i;
    double c;

    c = (2.0 / (len - 1.0)) - 1.0;
    for(i=0; i<(len >> 1); i++) {
        double w = 1.0 - ((c-i) * (c-i));
        w_data[i] = data[i] * w;
        w_data[len-1-i] = data[len-1-i] * w;
    }
}

/**
 * Calculates autocorrelation data from audio samples
 * A Welch window function is applied before calculation.
 */
static void
compute_autocorr(const int32_t *data, int len, int lag, double *autoc)
{
    int i, j;
    double *data1;
    double temp, temp2;

    data1 = malloc((len+16) * sizeof(double));
    apply_welch_window(data, len, data1);
    data1[len] = 0;

    for (i=0; i<=lag; ++i) {
        temp = 1.0;
        temp2 = 1.0;
        for (j=0; j<=lag-i; ++j)
            temp += data1[j+i] * data1[j];

        for (j=lag+1; j<=len-1; j+=2) {
            temp += data1[j] * data1[j-i];
            temp2 += data1[j+1] * data1[j+1-i];
        }
        autoc[i] = temp + temp2;
    }

    free(data1);
}

/**
 * Levinson-Durbin recursion.
 * Produces LPC coefficients from autocorrelation data.
 */
static void
compute_lpc_coefs(const double *autoc, int max_order, double *ref,
                  double lpc[][MAX_LPC_ORDER])
{
    int i, j, i2;
    double r, err, tmp;
    double lpc_tmp[MAX_LPC_ORDER];

    for(i=0; i<max_order; i++) lpc_tmp[i] = 0;
    err = 1.0;
    if(autoc) {
        err = autoc[0];
    }

    for(i=0; i<max_order; i++) {
        if(ref) {
            r = ref[i];
        } else {
            r = -autoc[i+1];
            for(j=0; j<i; j++) {
                r -= lpc_tmp[j] * autoc[i-j];
            }
            r /= err;
            err *= 1.0 - (r * r);
        }

        i2 = (i >> 1);
        lpc_tmp[i] = r;
        for(j=0; j<i2; j++) {
            tmp = lpc_tmp[j];
            lpc_tmp[j] += r * lpc_tmp[i-1-j];
            lpc_tmp[i-1-j] += r * tmp;
        }
        if(i & 1) {
            lpc_tmp[j] += lpc_tmp[j] * r;
        }

        for(j=0; j<=i; j++) {
            lpc[i][j] = -lpc_tmp[j];
        }
    }
}

/**
 * Compute LPC coefs for FLAKE_ORDER_METHOD_EST
 * Faster LPC coeff computation by first calculating the reflection coefficients
 * using Schur recursion. That allows for estimating the optimal order before
 * running Levinson recursion.
 */
static int
compute_lpc_coefs_est(const double *autoc, int max_order,
                      double lpc[][MAX_LPC_ORDER])
{
    int i, j;
    double error;
    double gen[2][MAX_LPC_ORDER];
    double ref[MAX_LPC_ORDER];
    int order_est;

    // Schur recursion
    for(i=0; i<max_order; i++) gen[0][i] = gen[1][i] = autoc[i+1];
    error = autoc[0];
    ref[0] = -gen[1][0] / error;
    error += gen[1][0] * ref[0];
    for(i=1; i<max_order; i++) {
        for(j=0; j<max_order-i; j++) {
            gen[1][j] = gen[1][j+1] + ref[i-1] * gen[0][j];
            gen[0][j] = gen[1][j+1] * ref[i-1] + gen[0][j];
        }
        ref[i] = -gen[1][0] / error;
        error += gen[1][0] * ref[i];
    }

    // Estimate optimal order using reflection coefficients
    order_est = 1;
    for(i=max_order-1; i>=0; i--) {
        if(fabs(ref[i]) > 0.10) {
            order_est = i+1;
            break;
        }
    }

    // Levinson recursion
    compute_lpc_coefs(NULL, order_est, ref, lpc);

    return order_est;
}

/**
 * Quantize LPC coefficients
 */
static void
quantize_lpc_coefs(double *lpc_in, int order, int precision, int32_t *lpc_out,
                   int *shift)
{
    int i;
    double d, cmax, error;
    int32_t qmax;
    int sh, q;

    // define maximum levels
    qmax = (1 << (precision - 1)) - 1;

    // find maximum coefficient value
    cmax = 0.0;
    for(i=0; i<order; i++) {
        d = fabs(lpc_in[i]);
        if(d > cmax)
            cmax = d;
    }
    // if maximum value quantizes to zero, return all zeros
    if(cmax * (1 << 15) < 1.0) {
        *shift = 0;
        memset(lpc_out, 0, sizeof(int32_t) * order);
        return;
    }

    // calculate level shift which scales max coeff to available bits
    sh = 15;
    while((cmax * (1 << sh) > qmax) && (sh > 0)) {
        sh--;
    }

    // since negative shift values are unsupported in decoder, scale down
    // coefficients instead
    if(sh == 0 && cmax > qmax) {
        double scale = ((double)qmax) / cmax;
        for(i=0; i<order; i++) {
            lpc_in[i] *= scale;
        }
    }

    // output quantized coefficients and level shift
    error=0;
    for(i=0; i<order; i++) {
        error += lpc_in[i] * (1 << sh);
        q = error + 0.5;
        if(q <= -qmax) q = -qmax+1;
        if(q > qmax) q = qmax;
        error -= q;
        lpc_out[i] = q;
    }
    *shift = sh;
}

/**
 * Calculate LPC coefficients for multiple orders
 */
int
lpc_calc_coefs(const int32_t *samples, int blocksize, int max_order,
               int precision, int omethod, int32_t coefs[][MAX_LPC_ORDER],
               int *shift)
{
    double autoc[MAX_LPC_ORDER+1];
    double lpc[MAX_LPC_ORDER][MAX_LPC_ORDER];
    int i;
    int opt_order;

    compute_autocorr(samples, blocksize, max_order, autoc);

    opt_order = max_order;
    if(omethod == FLAKE_ORDER_METHOD_EST) {
        opt_order = compute_lpc_coefs_est(autoc, max_order, lpc);
    } else {
        compute_lpc_coefs(autoc, max_order, NULL, lpc);
    }

    switch(omethod) {
        case FLAKE_ORDER_METHOD_MAX:
        case FLAKE_ORDER_METHOD_EST:
            i = opt_order-1;
            quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i]);
            break;
        default:
            for(i=0; i<max_order; i++) {
                quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i]);
            }
            break;
    }

    return opt_order;
}