File: rect.c

package info (click to toggle)
flam3 2.7.19%2Bsvn20090813-1
  • links: PTS
  • area: main
  • in suites: squeeze
  • size: 4,168 kB
  • ctags: 777
  • sloc: xml: 23,135; ansic: 9,012; sh: 8,567; python: 223; makefile: 85
file content (1307 lines) | stat: -rw-r--r-- 44,914 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
/*
   FLAM3 - cosmic recursive fractal flames
   Copyright (C) 1992-2008 Spotworks LLC

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/

/* this file is included into flam3.c once for each buffer bit-width */

/*
 * for batch
 *   generate de filters
 *   for temporal_sample_batch
 *     interpolate
 *     compute colormap
 *     for subbatch
 *       compute samples
 *       buckets += cmap[samples]
 *   accum += time_filter[temporal_sample_batch] * log[buckets] * de_filter
 * image = filter(accum)
 */


/* allow this many iterations for settling into attractor */
#define FUSE 15

/* clamp spatial filter to zero at this std dev (2.5 ~= 0.0125) */
#define FILTER_CUTOFF 1.8

#define PREFILTER_WHITE 255
#define WHITE_LEVEL 255
#define SUB_BATCH_SIZE 10000

#if defined(HAVE_LIBPTHREAD) && defined(USE_LOCKS)
  /* mutex for bucket accumulator */
  pthread_mutex_t bucket_mutex;
#endif

static void iter_thread(void *fth) {
   double sub_batch;
   int j;
   flam3_thread_helper *fthp = (flam3_thread_helper *)fth;
   flam3_iter_constants *ficp = fthp->fic;
   /* Timer information needs to be persistent - only updated by 1 thread*/
   static time_t progress_timer;
   static time_t progress_timer_history[64];
   static double progress_history[64];
   static int progress_history_mark = 0;
   double eta = 0.0;
   bucket cmap_scaled[CMAP_SIZE];
   
   if (fthp->timer_initialize) {
   	progress_timer = 0;
   	memset(progress_timer_history,0,64*sizeof(time_t));
   	memset(progress_history,0,64*sizeof(double));
   	progress_history_mark = 0;
   }
   
   for (sub_batch = 0; sub_batch < ficp->batch_size; sub_batch+=SUB_BATCH_SIZE) {
      int sub_batch_size, badcount;
      time_t newt = time(NULL);
      /* sub_batch is double so this is sketchy */
      sub_batch_size = (sub_batch + SUB_BATCH_SIZE > ficp->batch_size) ?
	(ficp->batch_size - sub_batch) : SUB_BATCH_SIZE;

      if (fthp->first_thread && newt != progress_timer) {
         double percent = 100.0 *
             ((((sub_batch / (double) ficp->batch_size) + ficp->temporal_sample_num)
             / ficp->ntemporal_samples) + ficp->batch_num)/ficp->nbatches;
         int old_mark = 0;
         int ticker;

	 if (ficp->spec->verbose)
	     fprintf(stderr, "\rchaos: %5.1f%%", percent);
         progress_timer = newt;
         if (progress_timer_history[progress_history_mark] &&
                progress_history[progress_history_mark] < percent)
            old_mark = progress_history_mark;

         if (percent > 0) {
            eta = (100 - percent) * (progress_timer - progress_timer_history[old_mark])
                  / (percent - progress_history[old_mark]);

	    if (ficp->spec->verbose) {
		ticker = (progress_timer&1)?':':'.';
		if (eta < 1000)
		    ticker = ':';
		if (eta > 100)
		    fprintf(stderr, "  ETA%c %.1f minutes", ticker, eta / 60);
		else
		    fprintf(stderr, "  ETA%c %ld seconds ", ticker, (long) ceil(eta));
		fprintf(stderr, "              \r");
		fflush(stderr);
	    }
         }

         progress_timer_history[progress_history_mark] = progress_timer;
         progress_history[progress_history_mark] = percent;
         progress_history_mark = (progress_history_mark + 1) % 64;
      }

      if (ficp->spec->progress) {
	if (fthp->first_thread) {
	  if ((*ficp->spec->progress)(ficp->spec->progress_parameter,
				      sub_batch/(double)ficp->batch_size, 0, eta)) {
	    ficp->aborted = 1;
            #ifdef HAVE_LIBPTHREAD
	      pthread_exit((void *)0);
            #else
              return;
            #endif
	  }
	} else {
          #ifdef HAVE_LIBPTHREAD
	    if (ficp->aborted) pthread_exit((void *)0);
          #else
            if (ficp->aborted) return;
          #endif
	}
      }

      /* Seed iterations */
      fthp->iter_storage[0] = flam3_random_isaac_11(&(fthp->rc));
      fthp->iter_storage[1] = flam3_random_isaac_11(&(fthp->rc));
      fthp->iter_storage[2] = flam3_random_isaac_01(&(fthp->rc));
      fthp->iter_storage[3] = flam3_random_isaac_01(&(fthp->rc));

      /* Execute iterations */
      badcount = flam3_iterate(&(fthp->cp), sub_batch_size, FUSE, fthp->iter_storage, ficp->xform_distrib, &(fthp->rc));

      #if defined(HAVE_LIBPTHREAD) && defined(USE_LOCKS)
        /* Lock mutex for access to accumulator */
        pthread_mutex_lock(&bucket_mutex);
      #endif

      /* Add the badcount to the counter */
      ficp->badvals += badcount;

      /* Premultiply the cmap by the color_scalar, if necessary */
      if (!ficp->fname_specified) {
         bucket_double *dmap = (bucket_double *)(ficp->dmap);
         int c,ch;
         for (c=0;c<CMAP_SIZE;c++) {
            for (ch=0;ch<4;ch++) {
               cmap_scaled[c][ch] = ficp->color_scalar * dmap[c][ch];
            }
         }
      }
                  


      /* Put them in the bucket accumulator */
      for (j = 0; j < sub_batch_size*4; j+=4) {
         double p0, p1, p00, p11;
         double dbl_index0,dbl_frac;
         double interpcolor[4];
         int k, color_index0, color_index1, ci;
         double *p = &(fthp->iter_storage[j]);
         bucket *b;

         if (fthp->cp.rotate != 0.0) {
            p00 = p[0] - fthp->cp.rot_center[0];
            p11 = p[1] - fthp->cp.rot_center[1];
            p0 = p00 * ficp->rot[0][0] + p11 * ficp->rot[0][1] + fthp->cp.rot_center[0];
            p1 = p00 * ficp->rot[1][0] + p11 * ficp->rot[1][1] + fthp->cp.rot_center[1];
         } else {
            p0 = p[0];
            p1 = p[1];
         }

         if (p0 >= ficp->bounds[0] && p1 >= ficp->bounds[1] && p0 <= ficp->bounds[2] && p1 <= ficp->bounds[3]) {

            if (ficp->fname_specified) {
               int ci;
               unsigned char *cmap = (unsigned char *)(ficp->cmap);
               bucket *buckets = (bucket *)(ficp->buckets);

               color_index0 = (int) (p[2] * CMAP_SIZE);
               color_index1 = (int) (p[3] * CMAP_SIZE);

               if (color_index0 < 0)
                  color_index0 = 0;
               else if (color_index0 > (CMAP_SIZE-1))
                  color_index0 = CMAP_SIZE-1;

               if (color_index1 < 0)
                  color_index1 = 0;
               else if (color_index1 > (CMAP_SIZE-1))
                  color_index1 = CMAP_SIZE-1;

               b = buckets + (int)(ficp->ws0 * p0 - ficp->wb0s0) +
                   ficp->width * (int)(ficp->hs1 * p1 - ficp->hb1s1);

               ci = 4 * (CMAP_SIZE * color_index1 + color_index0);

               for (k = 0; k < 4; k++)
                  bump_no_overflow(b[0][k], cmap[ci+k]);

            } else {

//               bucket *cmap = (bucket *)(ficp->cmap);
               bucket *buckets = (bucket *)(ficp->buckets);
               dbl_index0 = p[2] * CMAP_SIZE;
               color_index0 = (int)dbl_index0;

               if (flam3_palette_mode_linear == fthp->cp.palette_mode) {
                  if (color_index0 < 0) {
                     color_index0 = 0;
                     dbl_frac = 0;
                  } else if (color_index0 >= CMAP_SIZE_M1) {
                     color_index0 = CMAP_SIZE_M1-1;
                     dbl_frac = 1.0;
                  } else {
                     /* interpolate between color_index0 and color_index0+1 */
                     dbl_frac = dbl_index0 - (double)color_index0;
                  }
                        
                  for (ci=0;ci<4;ci++) {
                     interpcolor[ci] = cmap_scaled[color_index0][ci] * (1.0-dbl_frac) + 
                                       cmap_scaled[color_index0+1][ci] * dbl_frac;               
                  }
                  
               } else { /* Palette mode step */
            
                  if (color_index0 < 0) {
                     color_index0 = 0;
                  } else if (color_index0 >= CMAP_SIZE_M1) {
                     color_index0 = CMAP_SIZE_M1;
                  }
                           
                  for (ci=0;ci<4;ci++)
                     interpcolor[ci] = cmap_scaled[color_index0][ci];               
               }
               
               b = buckets + (int)(ficp->ws0 * p0 - ficp->wb0s0) +
                   ficp->width * (int)(ficp->hs1 * p1 - ficp->hb1s1);

               bump_no_overflow(b[0][0], interpcolor[0]);
               bump_no_overflow(b[0][1], interpcolor[1]);
               bump_no_overflow(b[0][2], interpcolor[2]);
               bump_no_overflow(b[0][3], interpcolor[3]);

            }
         }
      }
      
      #if defined(HAVE_LIBPTHREAD) && defined(USE_LOCKS)
        /* Release mutex */
        pthread_mutex_unlock(&bucket_mutex);
      #endif

   }
   #ifdef HAVE_LIBPTHREAD
     pthread_exit((void *)0);
   #endif
}

static void render_rectangle(flam3_frame *spec, void *out,
			     int out_width, int field, int nchan,
			     int transp, stat_struct *stats) {
   long nbuckets;
   int i, j, k, batch_num, temporal_sample_num;
   double nsamples, batch_size;
   bucket  *buckets;
   abucket *accumulate;
   double *points;
   double *filter, *temporal_filter, *temporal_deltas, *batch_filter;
   double ppux=0, ppuy=0;
   int image_width, image_height;    /* size of the image to produce */
   int filter_width;
   int bytes_per_channel = spec->bytes_per_channel;
   int oversample = spec->genomes[0].spatial_oversample;
   int nbatches = spec->genomes[0].nbatches;
   /* ntemporal_samples ( & nbatches?) should be computed inside the batch
      loop the same place the DE parms are.  problem is that batches now
      depends on times.  fix by making all batches happen at the same time */
   int ntemporal_samples = spec->genomes[0].ntemporal_samples;
   bucket cmap[CMAP_SIZE];
   bucket_double dmap[CMAP_SIZE];
   unsigned char *cmap2=NULL;
   int gutter_width;
   double vibrancy = 0.0;
   double gamma = 0.0;
   double background[3];
   int vib_gam_n = 0;
   double keep_thresh=100.0;
   time_t progress_timer = 0, progress_began=0;
   int verbose = spec->verbose;
   char *fname = getenv("image");
   int gnm_idx,max_gnm_de_fw,de_offset;
   flam3_genome cp;
   unsigned short xform_distrib[CHOOSE_XFORM_GRAIN];
   char *ai;
   flam3_iter_constants fic;
   flam3_thread_helper *fth;
#ifdef HAVE_LIBPTHREAD
   pthread_attr_t pt_attr;
   pthread_t *myThreads=NULL;
#endif
   int thread_status;
   int thi;
   time_t tstart,tend;
   
   double sumfilt;

   tstart = time(NULL);

   fic.badvals = 0;
   fic.aborted = 0;

   stats->num_iters = 0;

   memset(&cp,0, sizeof(flam3_genome));

   if (nbatches < 1) {
       fprintf(stderr, "nbatches must be positive," " not %d.\n", nbatches);
       exit(1);
   }

   if (oversample < 1) {
       fprintf(stderr, "oversample must be positive," " not %d.\n", oversample);
       exit(1);
   }

   /* Initialize the thread helper structures */
   fth = (flam3_thread_helper *)calloc(spec->nthreads,sizeof(flam3_thread_helper));
   for (i=0;i<spec->nthreads;i++) {
      fth[i].cp.final_xform_index=-1;
   }
   image_width = spec->genomes[0].width;
   if (field) {
      image_height = spec->genomes[0].height / 2;
      if (field == flam3_field_odd)
    out += nchan * bytes_per_channel * out_width;
      out_width *= 2;
   } else
      image_height = spec->genomes[0].height;


   /* Spatial Filter kernel creation */


   if (1) {
   int sf_sel = spec->genomes[0].spatial_filter_select;
   double sf_supp = flam3_spatial_support[sf_sel];
   double fw =  (2.0 * sf_supp * oversample *
         spec->genomes[0].spatial_filter_radius /
         spec->pixel_aspect_ratio);
   double adjust;

   filter_width = ((int) fw) + 1;
   /* make sure it has same parity as oversample */
   if ((filter_width ^ oversample) & 1)
      filter_width++;

   if (fw > 0.0)
      adjust = sf_supp * filter_width / fw;
   else
      adjust = 1.0;

#if 0
   fprintf(stderr, "fw = %g filter_width = %d adjust=%g\n",
         fw, filter_width, adjust);
#endif

   filter = (double *) malloc(sizeof(double) * filter_width * filter_width);
   /* fill in the coefs */
   for (i = 0; i < filter_width; i++)
      for (j = 0; j < filter_width; j++) {
         double ii = ((2.0 * i + 1.0) / filter_width - 1.0)*adjust;
         double jj = ((2.0 * j + 1.0) / filter_width - 1.0)*adjust;

         if (field) jj *= 2.0;

         jj /= spec->pixel_aspect_ratio;

         filter[i + j * filter_width] = 
            flam3_spatial_filter(sf_sel,ii) * flam3_spatial_filter(sf_sel,jj);
      }


   if (normalize_vector(filter, filter_width * filter_width)) {
      fprintf(stderr, "spatial filter value is too small: %g.\n",
         spec->genomes[0].spatial_filter_radius);
      exit(1);
   }
#if 0
      printf("vvvvvvvvvvvvvvvvvvvvvvvvvvvv\n");
      for (j = 0; j < filter_width; j++) {
    for (i = 0; i < filter_width; i++) {
      printf(" %5d", (int)(10000 * filter[i + j * filter_width]));
    }
    printf("\n");
      }
      printf("^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n");
      fflush(stdout);
#endif
   }

   temporal_filter = (double *) malloc(sizeof(double) * nbatches * ntemporal_samples);
   temporal_deltas = (double *) malloc(sizeof(double) * nbatches * ntemporal_samples);
   batch_filter = (double *) malloc(sizeof(double) * nbatches);
   
   for (i=0;i<nbatches;i++)
      batch_filter[i] = 1.0/(double)nbatches;

   if (nbatches*ntemporal_samples > 1) {

      double nn = nbatches*ntemporal_samples;
      double maxfilt = 0.0;
      sumfilt=0.0;

      /* Define temporal deltas from center time */
      for (i = 0; i < nbatches*ntemporal_samples; i++)
            temporal_deltas[i] = (2.0 * ((double) i / ((nbatches*ntemporal_samples) - 1)) - 1.0)
                                  * (spec->genomes[0].temporal_filter_width/2.0);

      /* fill in the coefs */
      if (flam3_temporal_exp == spec->genomes[0].temporal_filter_type) {
         for (i = 0; i < nbatches*ntemporal_samples; i++) {
            double slpx;

            if (spec->genomes[0].temporal_filter_exp>=0)
               slpx = ((double)i+1.0)/(nbatches*ntemporal_samples);
            else
               slpx = (double)(nbatches*ntemporal_samples - i) / (nbatches*ntemporal_samples);

            /* Scale the color based on these values */
            temporal_filter[i] = pow(slpx,fabs(spec->genomes[0].temporal_filter_exp));
	    if (maxfilt < temporal_filter[i]) maxfilt = temporal_filter[i];
	    
         }

      } else if (flam3_temporal_gaussian == spec->genomes[0].temporal_filter_type) {

         double nn2 = nn/2.0;
         for (i = 0; i < nbatches*ntemporal_samples; i++) {
            temporal_filter[i] = flam3_spatial_filter(flam3_gaussian_kernel,
                            flam3_spatial_support[flam3_gaussian_kernel]*fabs(i - nn2)/nn2);
	    if (maxfilt < temporal_filter[i]) maxfilt = temporal_filter[i];
         }

      } else { // (flam3_temporal_box == spec->genomes[0].temporal_filter_type)
         for (i=0; i<nn; i++)
            temporal_filter[i] = 1.0;
	    
	 maxfilt = 1.0;
      }

      /* Adjust the filter so that the max is 1.0, and */
      /* calculate the K2 scaling factor  */
      for (i=0; i<nn; i++) {
         temporal_filter[i] /= maxfilt;
	 sumfilt = sumfilt + temporal_filter[i];
      }
      sumfilt = sumfilt / nn;

   } else {
      sumfilt = 1.0;
      temporal_filter[0] = 1.0;
      temporal_deltas[0] = 0.0;
   }

   /* the number of additional rows of buckets we put at the edge so
      that the filter doesn't go off the edge */

   gutter_width = (filter_width - oversample) / 2;

    /* Check the size of the density estimation filter. */
    /* If the 'radius' of the density estimation filter is greater than the */
    /* gutter width, we have to pad with more.  Otherwise, we can use the same value. */
   max_gnm_de_fw=0;
   for (gnm_idx = 0; gnm_idx < spec->ngenomes; gnm_idx++) {

      int this_width = (int)ceil(spec->genomes[gnm_idx].estimator) * oversample;
      if (this_width > max_gnm_de_fw)
         max_gnm_de_fw = this_width;
   }

   /* Add OS-1 for the averaging at the edges, if it's > 0 already */
   if (max_gnm_de_fw>0)
      max_gnm_de_fw += (oversample-1);

   /* max_gnm_de_fw is now the number of pixels of additional gutter      */
   /* necessary to appropriately perform the density estimation filtering */
   /* Check to see if it's greater than the gutter_width                  */

   if (max_gnm_de_fw > gutter_width) {
      de_offset = max_gnm_de_fw - gutter_width;
      gutter_width = max_gnm_de_fw;
   } else
      de_offset = 0;

   fic.height = oversample * image_height + 2 * gutter_width;
   fic.width  = oversample * image_width  + 2 * gutter_width;

   nbuckets = (long)fic.width * (long)fic.height;
   if (1) {

     char *last_block = NULL;
     size_t memory_rqd = (sizeof(bucket) * nbuckets +
             sizeof(abucket) * nbuckets +
             4 * sizeof(double) * (size_t)SUB_BATCH_SIZE * spec->nthreads);
     last_block = (char *) malloc(memory_rqd);
     if (NULL == last_block) {
	 fprintf(stderr, "render_rectangle: cannot malloc %g bytes.\n", (double)memory_rqd);
       fprintf(stderr, "render_rectangle: h=%d w=%d nb=%ld.\n", fic.width, fic.height, nbuckets);
       exit(1);
     }
     /* else fprintf(stderr, "render_rectangle: mallocked %dMb.\n", Mb); */

     buckets = (bucket *) last_block;
     accumulate = (abucket *) (last_block + sizeof(bucket) * nbuckets);
     points = (double *)  (last_block + (sizeof(bucket) + sizeof(abucket)) * nbuckets);
   }

   if (verbose) {
     fprintf(stderr, "chaos: ");
     progress_began = time(NULL);
   }

   if (fname) {
      int len = (int)strlen(fname);
      FILE *fin = fopen(fname, "rb");
      int w, h;
      if (len > 4) {
         char *ending = fname + len - 4;
         if (!strcmp(ending, ".png")) {
            cmap2 = read_png(fin, &w, &h);
         } else if  (!strcmp(ending, ".jpg")) {
            cmap2 = read_jpeg(fin, &w, &h);
         }
      }
      if (NULL == cmap2) {
         perror(fname);
         exit(1);
      }
      if (256 != w || 256 != h) {
         fprintf(stderr, "image must be 256 by 256, not %d by %d.\n", w, h);
         exit(1);
      }
   }

   background[0] = background[1] = background[2] = 0.0;
   memset((char *) accumulate, 0, sizeof(abucket) * nbuckets);

   for (batch_num = 0; batch_num < nbatches; batch_num++) {
      double de_time;
      double sample_density=0.0;
      int de_row_size, de_kernel_index=0, de_half_size;
      int de_cutoff_val=0,de_count_limit;
      double *de_filter_coefs=NULL,*de_filter_widths=NULL;
      double num_de_filters_d;
      int num_de_filters=0,filtloop,de_max_ind;
      double comp_max_radius,comp_min_radius;
      double k1, area, k2;

      de_time = spec->time + temporal_deltas[batch_num*ntemporal_samples];

      memset((char *) buckets, 0, sizeof(bucket) * nbuckets);

      /* interpolate and get a control point                      */
      /* ONLY FOR DENSITY FILTER WIDTH PURPOSES                   */
      /* additional interpolation will be done in the temporal_sample loop */
      flam3_interpolate(spec->genomes, spec->ngenomes, de_time, &cp);

      /* if instructed to by the genome, create the density estimation */
      /* filter kernels.  Check boundary conditions as well.           */
      if (cp.estimator < 0.0 || cp.estimator_minimum < 0.0) {
         fprintf(stderr,"density estimator filter widths must be >= 0\n");
         exit(1);
      }

      if (spec->bits <= 32) {
     if (cp.estimator > 0.0) {
         fprintf(stderr, "warning: density estimation disabled with %d bit buffers.\n", spec->bits);
         cp.estimator = 0.0;
     }
      }

      if (cp.estimator > 0.0) {


    if (cp.estimator_curve <= 0.0) {
       fprintf(stderr,"estimator curve must be > 0\n");
       exit(1);
    }

         if (cp.estimator < cp.estimator_minimum) {
            fprintf(stderr,"estimator must be larger than estimator_minimum.\n");
            fprintf(stderr,"(%f > %f) ? \n",cp.estimator,cp.estimator_minimum);
            exit(1);
         }

         /* We should scale the filter width by the oversample          */
         /* The '+1' comes from the assumed distance to the first pixel */
         comp_max_radius = cp.estimator*oversample + 1;
         comp_min_radius = cp.estimator_minimum*oversample + 1;

         /* Calculate how many filter kernels we need based on the decay function */
         /*                                                                       */
         /*    num filters = (de_max_width / de_min_width)^(1/estimator_curve)    */
         /*                                                                       */
         num_de_filters_d = pow( comp_max_radius/comp_min_radius, (1.0/cp.estimator_curve) );
         num_de_filters = ceil(num_de_filters_d);
         
         /* Condense the smaller kernels to save space */
         if (num_de_filters>keep_thresh) { 
            de_max_ind = ceil(keep_thresh + pow(num_de_filters-keep_thresh,cp.estimator_curve))+1;
            de_count_limit = pow( (double)(de_max_ind-100), 1.0/cp.estimator_curve) + 100;
         } else {
            de_max_ind = num_de_filters;
            de_count_limit = de_max_ind;
         }


         /* Allocate the memory for these filters */
         /* and the hit/width lookup vector       */
         de_row_size = 2*ceil(comp_max_radius)-1;
         de_half_size = (de_row_size-1)/2;
         de_kernel_index = (de_half_size+1)*(2+de_half_size)/2;

         de_filter_coefs = (double *) malloc (de_max_ind * de_kernel_index * sizeof(double));
         de_filter_widths = (double *) malloc (de_max_ind * sizeof(double));

         /* Generate the filter coefficients */
         de_cutoff_val = 0;
         for (filtloop=0;filtloop<de_max_ind;filtloop++) {

            double de_filt_sum=0.0, de_filt_d;
            double de_filt_h;
            double dej,dek,adjloop;
            int filter_coef_idx;

            if (filtloop<keep_thresh)
               de_filt_h = (comp_max_radius / pow(filtloop+1,cp.estimator_curve));
            else {
	       adjloop = pow(filtloop-keep_thresh,(1/cp.estimator_curve))+keep_thresh;
               de_filt_h = (comp_max_radius / pow(adjloop+1,cp.estimator_curve));
            }

            if (de_filt_h <= comp_min_radius) {
               de_filt_h = comp_min_radius;
               de_cutoff_val = filtloop;
            }

            de_filter_widths[filtloop] = de_filt_h;

            /* Calculate norm of kernel separately (easier) */
            for (dej=-de_half_size; dej<=de_half_size; dej++) {
               for (dek=-de_half_size; dek<=de_half_size; dek++) {
                  de_filt_d = sqrt( (double)(dej*dej+dek*dek) ) / de_filt_h;

                  if (de_filt_d <= 1.0) {
if (1) {
                     /* Gaussian */
                     de_filt_sum += flam3_spatial_filter(flam3_gaussian_kernel,
                        flam3_spatial_support[flam3_gaussian_kernel]*de_filt_d);
                     //de_filt_sum += flam3_gaussian_filter(flam3_gaussian_support*de_filt_d);
} else {
                     /* Epanichnikov */
                     de_filt_sum += (1.0 - (de_filt_d * de_filt_d));
}
                  }
               }
            }

            filter_coef_idx = filtloop*de_kernel_index;

            /* Calculate the unique entries of the kernel */
            for (dej=0; dej<=de_half_size; dej++) {
               for (dek=0; dek<=dej; dek++) {
                  de_filt_d = sqrt( (double)(dej*dej+dek*dek) ) / de_filt_h;

                  if (de_filt_d>1.0)
                     de_filter_coefs[filter_coef_idx] = 0.0;
                  else {
if (1) {
                     /* Gaussian */
                     de_filter_coefs[filter_coef_idx] =
                         flam3_spatial_filter(flam3_gaussian_kernel,
                            flam3_spatial_support[flam3_gaussian_kernel]*de_filt_d)/de_filt_sum; 
                         //flam3_gaussian_filter(flam3_gaussian_support*de_filt_d)/de_filt_sum;
} else {
                     /* Epanichnikov */
                     de_filter_coefs[filter_coef_idx] = (1.0 - (de_filt_d * de_filt_d))/de_filt_sum;
}
                  }
                  
                  filter_coef_idx ++;
               }
            }

            if (de_cutoff_val>0)
               break;
         }

         if (de_cutoff_val==0)
            de_cutoff_val = num_de_filters-1;

      }
      
#if 0
      printf("DE Filters: %d\n",de_max_ind);
      if (0) { int dej,dek1,dek2,fci;
      fci=0;
      for (dej=0; dej<de_max_ind;dej++) {
         printf("de_filter_widths[%d] = %f\n",dej,de_filter_widths[dej]);
         for (dek1=0;dek1<=de_half_size;dek1++) {
            for (dek2=0;dek2<=dek1;dek2++) {
               printf("%f ",de_filter_coefs[fci++]);
            }
            printf("\n");
         }
         printf("--------------------------\n");
      }
      
      }
#endif
      for (temporal_sample_num = 0; temporal_sample_num < ntemporal_samples; temporal_sample_num++) {
         double temporal_sample_time;
         double color_scalar = temporal_filter[batch_num*ntemporal_samples + temporal_sample_num];

         temporal_sample_time = spec->time +
        temporal_deltas[batch_num*ntemporal_samples + temporal_sample_num];

         /* Interpolate and get a control point */
         flam3_interpolate(spec->genomes, spec->ngenomes, temporal_sample_time, &cp);

         prepare_xform_fn_ptrs(&cp, &spec->rc);

         /* compute the colormap entries.                             */
         /* the input colormap is 256 long with entries from 0 to 1.0 */
         if (!fname) {
            for (j = 0; j < CMAP_SIZE; j++) {
               for (k = 0; k < 3; k++) {
#if 1
//                  cmap[j][k] = (int) (cp.palette[(j * 256) / CMAP_SIZE][k] * WHITE_LEVEL);
                  dmap[j][k] = (cp.palette[(j * 256) / CMAP_SIZE][k] * WHITE_LEVEL);
#else
                  /* monochrome if you don't have any cmaps */
//                  dmap[j][k] = WHITE_LEVEL;
#endif
               }
//               cmap[j][3] = WHITE_LEVEL;
               dmap[j][3] = WHITE_LEVEL;
            }
         }

         /* compute camera */
         if (1) {
            double t0, t1, shift=0.0, corner0, corner1;
            double scale;

            if (cp.sample_density <= 0.0) {
              fprintf(stderr,
                 "sample density (quality) must be greater than zero,"
                 " not %g.\n", cp.sample_density);
              exit(1);
            }

            scale = pow(2.0, cp.zoom);
            sample_density = cp.sample_density * scale * scale;

            ppux = cp.pixels_per_unit * scale;
            ppuy = field ? (ppux / 2.0) : ppux;
            ppux /=  spec->pixel_aspect_ratio;
            switch (field) {
               case flam3_field_both: shift =  0.0; break;
               case flam3_field_even: shift = -0.5; break;
               case flam3_field_odd:  shift =  0.5; break;
            }
            shift = shift / ppux;
            t0 = (double) gutter_width / (oversample * ppux);
            t1 = (double) gutter_width / (oversample * ppuy);
            corner0 = cp.center[0] - image_width / ppux / 2.0;
            corner1 = cp.center[1] - image_height / ppuy / 2.0;
            fic.bounds[0] = corner0 - t0;
            fic.bounds[1] = corner1 - t1 + shift;
            fic.bounds[2] = corner0 + image_width  / ppux + t0;
            fic.bounds[3] = corner1 + image_height / ppuy + t1 + shift;
            fic.size[0] = 1.0 / (fic.bounds[2] - fic.bounds[0]);
            fic.size[1] = 1.0 / (fic.bounds[3] - fic.bounds[1]);
            fic.rot[0][0] = cos(cp.rotate * 2 * M_PI / 360.0);
            fic.rot[0][1] = -sin(cp.rotate * 2 * M_PI / 360.0);
            fic.rot[1][0] = -fic.rot[0][1];
            fic.rot[1][1] = fic.rot[0][0];
            fic.ws0 = fic.width * fic.size[0];
            fic.wb0s0 = fic.ws0 * fic.bounds[0];
            fic.hs1 = fic.height * fic.size[1];
            fic.hb1s1 = fic.hs1 * fic.bounds[1];

         }

//         nsamples = sample_density * nbuckets / (oversample * oversample);
         nsamples = sample_density * image_width * image_height;
#if 0
         fprintf(stderr, "sample_density=%g nsamples=%g nbuckets=%ld time=%g\n",
       sample_density, nsamples, nbuckets, temporal_sample_time);
#endif

         batch_size = nsamples / (nbatches * ntemporal_samples);

         stats->num_iters += batch_size;

         /* Set up the xform_distrib array */
         flam3_create_xform_distrib(&cp,xform_distrib);

         /* Fill in the iter constants */
         fic.xform_distrib = xform_distrib;
         fic.spec = spec;
         fic.batch_size = batch_size / (double)spec->nthreads;
         fic.temporal_sample_num = temporal_sample_num;
         fic.ntemporal_samples = ntemporal_samples;
         fic.batch_num = batch_num;
         fic.nbatches = nbatches;

         if (fname) {
            fic.fname_specified = 1;
            fic.cmap = (void *)cmap2;
         } else {
            fic.fname_specified = 0;
//            fic.cmap = (void *)cmap;
            fic.dmap = (void *)dmap;
         }

         fic.color_scalar = color_scalar;
         fic.buckets = (void *)buckets;

         /* Initialize the thread helper structures */
         for (thi = 0; thi < spec->nthreads; thi++)
         {
            int rk;
            /* Create a new isaac state for this thread */
            for (rk = 0; rk < RANDSIZ; rk++)
               fth[thi].rc.randrsl[rk] = irand(&spec->rc);

            irandinit(&(fth[thi].rc),1);

            if (0==thi) {

               fth[thi].first_thread=1;
               if (0==batch_num && 0==temporal_sample_num)
               	fth[thi].timer_initialize = 1;
               else
               	fth[thi].timer_initialize = 0;
               	
            } else {
               fth[thi].first_thread=0;
	         	fth[thi].timer_initialize = 0;
            }

            fth[thi].iter_storage = &(points[thi*SUB_BATCH_SIZE*4]);
            fth[thi].fic = &fic;
            flam3_copy(&(fth[thi].cp),&cp);

         }

#ifdef HAVE_LIBPTHREAD
         /* Let's make some threads */
         myThreads = (pthread_t *)malloc(spec->nthreads * sizeof(pthread_t));

         #if defined(USE_LOCKS)
         pthread_mutex_init(&bucket_mutex, NULL);
         #endif

         pthread_attr_init(&pt_attr);
         pthread_attr_setdetachstate(&pt_attr,PTHREAD_CREATE_JOINABLE);

         for (thi=0; thi <spec->nthreads; thi ++)
            pthread_create(&myThreads[thi], &pt_attr, (void *)iter_thread, (void *)(&(fth[thi])));

         pthread_attr_destroy(&pt_attr);

         /* Wait for them to return */
         for (thi=0; thi < spec->nthreads; thi++)
            pthread_join(myThreads[thi], (void **)&thread_status);

         #if defined(USE_LOCKS)
         pthread_mutex_destroy(&bucket_mutex);
         #endif
         
         free(myThreads);
#else
         for (thi=0; thi < spec->nthreads; thi++)
            iter_thread( (void *)(&(fth[thi])) );
#endif
             
	 if (fic.aborted) {
	   if (verbose) fprintf(stderr, "\naborted!\n");
	   goto done;
	 }

         vibrancy += cp.vibrancy;
         gamma += cp.gamma;
         background[0] += cp.background[0];
         background[1] += cp.background[1];
         background[2] += cp.background[2];
         vib_gam_n++;

      }

      k1 =(cp.contrast * cp.brightness *
      PREFILTER_WHITE * 268.0 * batch_filter[batch_num]) / 256;
      area = image_width * image_height / (ppux * ppuy);
      k2 = (oversample * oversample * nbatches) /
   (cp.contrast * area * WHITE_LEVEL * sample_density * sumfilt);
#if 0
      printf("iw=%d,ih=%d,ppux=%f,ppuy=%f\n",image_width,image_height,ppux,ppuy);
      printf("contrast=%f, brightness=%f, PREFILTER=%d, temporal_filter=%f\n",
        cp.contrast, cp.brightness, PREFILTER_WHITE, temporal_filter[batch_num]);
      printf("oversample=%d, nbatches=%d, area = %f, WHITE_LEVEL=%d, sample_density=%f\n",
        oversample, nbatches, area, WHITE_LEVEL, sample_density);
      printf("k1=%f,k2=%15.12f\n",k1,k2);
#endif

      if (num_de_filters == 0) {

         for (j = 0; j < fic.height; j++) {
            for (i = 0; i < fic.width; i++) {

               abucket *a = accumulate + i + j * fic.width;
               bucket *b = buckets + i + j * fic.width;
               double c[4], ls;

               c[0] = (double) b[0][0];
               c[1] = (double) b[0][1];
               c[2] = (double) b[0][2];
               c[3] = (double) b[0][3];
               if (0.0 == c[3])
                  continue;

               ls = (k1 * log(1.0 + c[3] * k2))/c[3];
               c[0] *= ls;
               c[1] *= ls;
               c[2] *= ls;
               c[3] *= ls;

               abump_no_overflow(a[0][0], c[0]);
               abump_no_overflow(a[0][1], c[1]);
               abump_no_overflow(a[0][2], c[2]);
               abump_no_overflow(a[0][3], c[3]);
            }
         }
      } else {
      
         int ss = (int)floor(oversample / 2.0);
         int scf = !((int)oversample & 1);
         double scfact = pow(oversample/(oversample+1.0), 2.0);
         
         /* Density estimation code */
         /* Remember, we already padded with an extra pixel at the beginning */
         for (j = oversample-1; j < fic.height-(oversample-1); j++) {
            for (i = oversample-1; i < fic.width-(oversample-1); i++) {

               int ii,jj;
               double f_select=0.0;
               int f_select_int,f_coef_idx;
               int arr_filt_width;
               bucket *b;
               double c[4],ls;

               b = buckets + i + j*fic.width;

               /* Don't do anything if there's no hits here */
               if (b[0][3] == 0)
                  continue;

               /* Count density in ssxss area   */
               /* Scale if OS>1 for equal iters */
               for (ii=-ss; ii<=ss; ii++) {
                  for (jj=-ss; jj<=ss; jj++) {
                     b = buckets + (i + ii) + (j + jj)*fic.width;
                     f_select += b[0][3]/255.0;
                  }
               }
               
               if (scf)
                  f_select *= scfact;
                  

               if (f_select > de_count_limit)
                  f_select_int = de_cutoff_val;                  
               else if (f_select<=keep_thresh)
                  f_select_int = (int)ceil(f_select)-1;
               else
                  f_select_int = (int)keep_thresh +
                     (int)floor(pow(f_select-keep_thresh,cp.estimator_curve));

               /* If the filter selected below the min specified clamp it to the min */
               if (f_select_int >= de_cutoff_val)
                  f_select_int = de_cutoff_val;

               /* We only have to calculate the values for ~1/8 of the square */
               f_coef_idx = f_select_int*de_kernel_index;

               arr_filt_width = (int)ceil(de_filter_widths[f_select_int])-1;

               b = buckets + i + j*fic.width;

               for (jj=0; jj<=arr_filt_width; jj++) {
                  for (ii=0; ii<=jj; ii++) {

                     /* Skip if coef is 0 */
                     if (de_filter_coefs[f_coef_idx]==0.0) {
                        f_coef_idx++;
                        continue;
                     }
                     
                     c[0] = (double) b[0][0];
                     c[1] = (double) b[0][1];
                     c[2] = (double) b[0][2];
                     c[3] = (double) b[0][3];

                     ls = de_filter_coefs[f_coef_idx]*(k1 * log(1.0 + c[3] * k2))/c[3];

                     c[0] *= ls;
                     c[1] *= ls;
                     c[2] *= ls;
                     c[3] *= ls;

                     if (jj==0 && ii==0) {
                        add_c_to_accum(accumulate,i,ii,j,jj,fic.width,fic.height,c);
                     }
                     else if (ii==0) {
                        add_c_to_accum(accumulate,i,jj,j,0,fic.width,fic.height,c);
                        add_c_to_accum(accumulate,i,-jj,j,0,fic.width,fic.height,c);
                        add_c_to_accum(accumulate,i,0,j,jj,fic.width,fic.height,c);
                        add_c_to_accum(accumulate,i,0,j,-jj,fic.width,fic.height,c);
                     } else if (jj==ii) {
                        add_c_to_accum(accumulate,i,ii,j,jj,fic.width,fic.height,c);
                        add_c_to_accum(accumulate,i,-ii,j,jj,fic.width,fic.height,c);
                        add_c_to_accum(accumulate,i,ii,j,-jj,fic.width,fic.height,c);
                        add_c_to_accum(accumulate,i,-ii,j,-jj,fic.width,fic.height,c);
                     } else {
                        add_c_to_accum(accumulate,i,ii,j,jj,fic.width,fic.height,c);
                        add_c_to_accum(accumulate,i,-ii,j,jj,fic.width,fic.height,c);
                        add_c_to_accum(accumulate,i,ii,j,-jj,fic.width,fic.height,c);
                        add_c_to_accum(accumulate,i,-ii,j,-jj,fic.width,fic.height,c);
                        add_c_to_accum(accumulate,i,jj,j,ii,fic.width,fic.height,c);
                        add_c_to_accum(accumulate,i,-jj,j,ii,fic.width,fic.height,c);
                        add_c_to_accum(accumulate,i,jj,j,-ii,fic.width,fic.height,c);
                        add_c_to_accum(accumulate,i,-jj,j,-ii,fic.width,fic.height,c);
                     }

                     f_coef_idx++;

                  }
               }

	       if (0) {
		 abucket *a = accumulate + i + j * fic.width;
		 a[0][0] = f_select_int;
	       }
            }
       if (verbose && time(NULL) != progress_timer) {
      progress_timer = time(NULL);
      fprintf(stderr, "\rdensity estimation: %d/%d          ", j, fic.height);
      fflush(stderr);
       }


      if (fic.spec->progress) {
	if ((*fic.spec->progress)(fic.spec->progress_parameter,
				  j/(double)fic.height, 1, 0.0)) {
	   if (verbose) fprintf(stderr, "\naborted!\n");
	  goto done;
	  }
      }

         }
         
      } /* End density estimation loop */


      /* If allocated, free the de filter memory for the next batch */
      if (num_de_filters > 0) {
         free(de_filter_coefs);
         free(de_filter_widths);
      }

   }

   if (verbose) {
     fprintf(stderr, "\rchaos: 100.0%%  took: %ld seconds   \n", time(NULL) - progress_began);
     fprintf(stderr, "filtering...");
   }
   

   /* filter the accumulation buffer down into the image */
   if (1) {
      int x, y;
      double t[4];
      double g = 1.0 / (gamma / vib_gam_n);
      double tmp;

      double linrange = cp.gam_lin_thresh;
      double funcval = pow(linrange,g);
      double frac;

      vibrancy /= vib_gam_n;
      background[0] /= vib_gam_n/256.0;
      background[1] /= vib_gam_n/256.0;
      background[2] /= vib_gam_n/256.0;
      y = de_offset;

      for (j = 0; j < image_height; j++) {
         x = de_offset;
         for (i = 0; i < image_width; i++) {
            int ii, jj;
            void *p;
            unsigned short *p16;
            unsigned char *p8;
            double ls, a;
            double alpha;
            t[0] = t[1] = t[2] = t[3] = 0.0;
            for (ii = 0; ii < filter_width; ii++) {
               for (jj = 0; jj < filter_width; jj++) {
                  double k = filter[ii + jj * filter_width];
                  abucket *ac = accumulate + x + ii + (y + jj) * fic.width;

                  t[0] += k * ac[0][0];
                  t[1] += k * ac[0][1];
                  t[2] += k * ac[0][2];
                  t[3] += k * ac[0][3];

               }
            }

            p = out + nchan * bytes_per_channel * (i + j * out_width);
            p8 = (unsigned char *)p;
            p16 = (unsigned short *)p;

            if (t[3] > 0.0) {

               tmp = t[3]/PREFILTER_WHITE;

               if (tmp<=linrange) {
                  /* Small Gamma Linearization */
                  frac = tmp/linrange;
                  alpha = (1.0-frac) * tmp * (funcval / linrange) + frac * pow(tmp,g);
               } else {
                  /* Standard */
                  alpha = pow(tmp, g);
               }

               ls = vibrancy * 256.0 * alpha / tmp;

               if (alpha < 0.0)
                  alpha = 0.0;
               else if (alpha > 1.0)
                  alpha = 1.0;



            } else {
               ls = 0.0;
               alpha = 0.0;
            }

            /* Clamp negatives to 0 (for slightly negative kernels) */
            if (1) {
               if (t[0]<0)
                  t[0]=0;
               if (t[1]<0)
                  t[1]=0;
               if (t[2]<0)
                  t[2]=0;
            }

            /* apply to rgb channels the relative scale from gamma of alpha channel */
            /* red */
            a = ls * ((double) t[0] / PREFILTER_WHITE);
            a += (1.0-vibrancy) * 256.0 * pow((double) t[0] / PREFILTER_WHITE, g);
            if (nchan<=3 || transp==0)
               a += ((1.0 - alpha) * background[0]);
            else
               a /= alpha;

            if (a > 255)
               a = 255;
            if (a < 0)
               a = 0;
               
            if (2==bytes_per_channel) {
               a *= 256.0; /* Scales to [0-65280] */
               p16[0] = (unsigned short) a;
            } else {
               p8[0] = (unsigned char) a;
            }

            //p[0] = (unsigned char) a;

            /* green */
            a = ls * ((double) t[1] / PREFILTER_WHITE);
            a += (1.0-vibrancy) * 256.0 * pow((double) t[1] / PREFILTER_WHITE, g);
            if (nchan<=3 || transp==0)
               a += ((1.0 - alpha) * background[1]);
            else
               a /= alpha;

            if (a > 255)
               a = 255;
            if (a < 0)
               a = 0;

            if (2==bytes_per_channel) {
               a *= 256.0; /* Scales to [0-65280] */
               p16[1] = (unsigned short) a;
            } else {
               p8[1] = (unsigned char) a;
            }

//            p[1] = (unsigned char) a;

            /* blue */
            a = ls * ((double) t[2] / PREFILTER_WHITE);
            a += (1.0-vibrancy) * 256.0 * pow((double) t[2] / PREFILTER_WHITE, g);
            if (nchan<=3 || transp==0)
               a += ((1.0 - alpha) * background[2]);
            else
               a /= alpha;

            if (a > 255)
               a = 255;
            if (a < 0)
               a = 0;

            if (2==bytes_per_channel) {
               a *= 256.0; /* Scales to [0-65280] */
               p16[2] = (unsigned short) a;
            } else {
               p8[2] = (unsigned char) a;
            }

//            p[2] = (unsigned char) a;

            /* alpha */
            if (nchan>3) {
               if (transp==1) {
                  if (2==bytes_per_channel)
                     p16[3] = (unsigned short) (alpha * 65535.999);
                  else
                     p8[3] = (unsigned char) (alpha * 255.999);
               } else {
                  if (2==bytes_per_channel)
                     p16[3] = 65535;
                  else
                     p8[3] = 255;
               }
            }

            x += oversample;
         }
         y += oversample;
      }
   }

 done:

   stats->badvals = fic.badvals;

   free(temporal_filter);
   free(temporal_deltas);
   free(batch_filter);
   free(filter);
   free(buckets);
//   free(accumulate);
//   free(points);
   /* We have to clear the cps in fth first */
   for (thi = 0; thi < spec->nthreads; thi++) {
      clear_cp(&(fth[thi].cp),0);
   }   
   free(fth);
   clear_cp(&cp,0);
   if (fname) free(cmap2);

   if (getenv("insert_palette")) {
     int ph = 100;
     if (ph >= image_height) ph = image_height;
     /* insert the palette into the image */
     for (j = 0; j < ph; j++) {
       for (i = 0; i < image_width; i++) {
	 unsigned char *p = out + nchan * (i + j * out_width);
	 p[0] = (unsigned char)dmap[i * 256 / image_width][0];
	 p[1] = (unsigned char)dmap[i * 256 / image_width][1];
	 p[2] = (unsigned char)dmap[i * 256 / image_width][2];
       }
     }
   }

   tend = time(NULL);
   stats->render_seconds = (int)(tend-tstart);

}