1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
|
/*
FLAM3 - cosmic recursive fractal flames
Copyright (C) 1992-2009 Spotworks LLC
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "filters.h"
/*
* filter function definitions
* from Graphics Gems III code
* and ImageMagick resize.c
*/
double flam3_spatial_support[flam3_num_spatialfilters] = {
1.5, /* gaussian */
1.0, /* hermite */
0.5, /* box */
1.0, /* triangle */
1.5, /* bell */
2.0, /* b spline */
2.0, /* mitchell */
1.0, /* blackman */
2.0, /* catrom */
1.0, /* hanning */
1.0, /* hamming */
3.0, /* lanczos3 */
2.0, /* lanczos2 */
1.5 /* quadratic */
};
double flam3_hermite_filter(double t) {
/* f(t) = 2|t|^3 - 3|t|^2 + 1, -1 <= t <= 1 */
if(t < 0.0) t = -t;
if(t < 1.0) return((2.0 * t - 3.0) * t * t + 1.0);
return(0.0);
}
double flam3_box_filter(double t) {
if((t > -0.5) && (t <= 0.5)) return(1.0);
return(0.0);
}
double flam3_triangle_filter(double t) {
if(t < 0.0) t = -t;
if(t < 1.0) return(1.0 - t);
return(0.0);
}
double flam3_bell_filter(double t) {
/* box (*) box (*) box */
if(t < 0) t = -t;
if(t < .5) return(.75 - (t * t));
if(t < 1.5) {
t = (t - 1.5);
return(.5 * (t * t));
}
return(0.0);
}
double flam3_b_spline_filter(double t) {
/* box (*) box (*) box (*) box */
double tt;
if(t < 0) t = -t;
if(t < 1) {
tt = t * t;
return((.5 * tt * t) - tt + (2.0 / 3.0));
} else if(t < 2) {
t = 2 - t;
return((1.0 / 6.0) * (t * t * t));
}
return(0.0);
}
double flam3_sinc(double x) {
x *= M_PI;
if(x != 0) return(sin(x) / x);
return(1.0);
}
double flam3_blackman_filter(double x) {
return(0.42+0.5*cos(M_PI*x)+0.08*cos(2*M_PI*x));
}
double flam3_catrom_filter(double x) {
if (x < -2.0)
return(0.0);
if (x < -1.0)
return(0.5*(4.0+x*(8.0+x*(5.0+x))));
if (x < 0.0)
return(0.5*(2.0+x*x*(-5.0-3.0*x)));
if (x < 1.0)
return(0.5*(2.0+x*x*(-5.0+3.0*x)));
if (x < 2.0)
return(0.5*(4.0+x*(-8.0+x*(5.0-x))));
return(0.0);
}
double flam3_mitchell_filter(double t) {
double tt;
tt = t * t;
if(t < 0) t = -t;
if(t < 1.0) {
t = (((12.0 - 9.0 * flam3_mitchell_b - 6.0 * flam3_mitchell_c) * (t * tt))
+ ((-18.0 + 12.0 * flam3_mitchell_b + 6.0 * flam3_mitchell_c) * tt)
+ (6.0 - 2 * flam3_mitchell_b));
return(t / 6.0);
} else if(t < 2.0) {
t = (((-1.0 * flam3_mitchell_b - 6.0 * flam3_mitchell_c) * (t * tt))
+ ((6.0 * flam3_mitchell_b + 30.0 * flam3_mitchell_c) * tt)
+ ((-12.0 * flam3_mitchell_b - 48.0 * flam3_mitchell_c) * t)
+ (8.0 * flam3_mitchell_b + 24 * flam3_mitchell_c));
return(t / 6.0);
}
return(0.0);
}
double flam3_hanning_filter(double x) {
return(0.5+0.5*cos(M_PI*x));
}
double flam3_hamming_filter(double x) {
return(0.54+0.46*cos(M_PI*x));
}
double flam3_lanczos3_filter(double t) {
if(t < 0) t = -t;
if(t < 3.0) return(flam3_sinc(t) * flam3_sinc(t/3.0));
return(0.0);
}
double flam3_lanczos2_filter(double t) {
if(t < 0) t = -t;
if(t < 2.0) return(flam3_sinc(t) * flam3_sinc(t/2.0));
return(0.0);
}
double flam3_gaussian_filter(double x) {
return(exp((-2.0*x*x))*sqrt(2.0/M_PI));
}
double flam3_quadratic_filter(double x) {
if (x < -1.5)
return(0.0);
if (x < -0.5)
return(0.5*(x+1.5)*(x+1.5));
if (x < 0.5)
return(0.75-x*x);
if (x < 1.5)
return(0.5*(x-1.5)*(x-1.5));
return(0.0);
}
double flam3_spatial_filter(int knum, double x) {
if (knum==0)
return flam3_gaussian_filter(x);
else if (knum==1)
return flam3_hermite_filter(x);
else if (knum==2)
return flam3_box_filter(x);
else if (knum==3)
return flam3_triangle_filter(x);
else if (knum==4)
return flam3_bell_filter(x);
else if (knum==5)
return flam3_b_spline_filter(x);
else if (knum==6)
return flam3_mitchell_filter(x);
else if (knum==7)
return flam3_sinc(x)*flam3_blackman_filter(x);
else if (knum==8)
return flam3_catrom_filter(x);
else if (knum==9)
return flam3_sinc(x)*flam3_hanning_filter(x);
else if (knum==10)
return flam3_sinc(x)*flam3_hamming_filter(x);
else if (knum==11)
return flam3_lanczos3_filter(x)*flam3_sinc(x/3.0);
else if (knum==12)
return flam3_lanczos2_filter(x)*flam3_sinc(x/2.0);
else // if (knum==13)
return flam3_quadratic_filter(x);
}
int normalize_vector(double *v, int n) {
double t = 0.0;
int i;
for (i = 0; i < n; i++)
t += v[i];
if (0.0 == t) return 1;
t = 1.0 / t;
for (i = 0; i < n; i++)
v[i] *= t;
return 0;
}
int flam3_create_spatial_filter(flam3_frame *spec, int field, double **filter) {
int sf_kernel = spec->genomes[0].spatial_filter_select;
int supersample = spec->genomes[0].spatial_oversample;
double sf_radius = spec->genomes[0].spatial_filter_radius;
double aspect_ratio = spec->pixel_aspect_ratio;
double sf_supp = flam3_spatial_support[sf_kernel];
double fw = 2.0 * sf_supp * supersample * sf_radius / aspect_ratio;
double adjust, ii, jj;
int fwidth = ((int) fw) + 1;
int i,j;
/* Make sure the filter kernel has same parity as oversample */
if ((fwidth ^ supersample) & 1)
fwidth++;
/* Calculate the coordinate scaling factor for the kernel values */
if (fw > 0.0)
adjust = sf_supp * fwidth / fw;
else
adjust = 1.0;
/* Calling function MUST FREE THE RETURNED KERNEL, lest ye leak memory */
(*filter) = (double *)calloc(fwidth * fwidth,sizeof(double));
/* fill in the coefs */
for (i = 0; i < fwidth; i++)
for (j = 0; j < fwidth; j++) {
/* Calculate the function inputs for the kernel function */
ii = ((2.0 * i + 1.0) / (double)fwidth - 1.0)*adjust;
jj = ((2.0 * j + 1.0) / (double)fwidth - 1.0)*adjust;
/* Scale for scanlines */
if (field) jj *= 2.0;
/* Adjust for aspect ratio */
jj /= aspect_ratio;
(*filter)[i + j * fwidth] =
flam3_spatial_filter(sf_kernel,ii) * flam3_spatial_filter(sf_kernel,jj);
}
if (normalize_vector((*filter), fwidth * fwidth)) {
fprintf(stderr, "Spatial filter value is too small: %g. Terminating.\n",sf_radius);
return(-1);
}
return (fwidth);
}
flam3_de_helper flam3_create_de_filters(double max_rad, double min_rad, double curve, int ss) {
flam3_de_helper de;
double comp_max_radius, comp_min_radius;
double num_de_filters_d;
int num_de_filters,de_max_ind;
int de_row_size, de_half_size;
int filtloop;
int keep_thresh=100;
de.kernel_size=-1;
if (curve <= 0.0) {
fprintf(stderr,"estimator curve must be > 0\n");
return(de);
}
if (max_rad < min_rad) {
fprintf(stderr,"estimator must be larger than estimator_minimum.\n");
fprintf(stderr,"(%f > %f) ? \n",max_rad,min_rad);
return(de);
}
/* We should scale the filter width by the oversample */
/* The '+1' comes from the assumed distance to the first pixel */
comp_max_radius = max_rad*ss + 1;
comp_min_radius = min_rad*ss + 1;
/* Calculate how many filter kernels we need based on the decay function */
/* */
/* num filters = (de_max_width / de_min_width)^(1/estimator_curve) */
/* */
num_de_filters_d = pow( comp_max_radius/comp_min_radius, 1.0/curve );
if (num_de_filters_d>1e7) {
fprintf(stderr,"too many filters required in this configuration (%g)\n",num_de_filters_d);
return(de);
}
num_de_filters = (int)ceil(num_de_filters_d);
/* Condense the smaller kernels to save space */
if (num_de_filters>keep_thresh) {
de_max_ind = (int)ceil(DE_THRESH + pow(num_de_filters-DE_THRESH,curve))+1;
de.max_filtered_counts = (int)pow( (double)(de_max_ind-DE_THRESH), 1.0/curve) + DE_THRESH;
} else {
de_max_ind = num_de_filters;
de.max_filtered_counts = de_max_ind;
}
/* Allocate the memory for these filters */
/* and the hit/width lookup vector */
de_row_size = (int)(2*ceil(comp_max_radius)-1);
de_half_size = (de_row_size-1)/2;
de.kernel_size = (de_half_size+1)*(2+de_half_size)/2;
de.filter_coefs = (double *) calloc (de_max_ind * de.kernel_size,sizeof(double));
de.filter_widths = (double *) calloc (de_max_ind,sizeof(double));
/* Generate the filter coefficients */
de.max_filter_index = 0;
for (filtloop=0;filtloop<de_max_ind;filtloop++) {
double de_filt_sum=0.0, de_filt_d;
double de_filt_h;
int dej,dek;
double adjloop;
int filter_coef_idx;
/* Calculate the filter width for this number of hits in a bin */
if (filtloop<keep_thresh)
de_filt_h = (comp_max_radius / pow(filtloop+1,curve));
else {
adjloop = pow(filtloop-keep_thresh,(1.0/curve)) + keep_thresh;
de_filt_h = (comp_max_radius / pow(adjloop+1,curve));
}
/* Once we've reached the min radius, don't populate any more */
if (de_filt_h <= comp_min_radius) {
de_filt_h = comp_min_radius;
de.max_filter_index = filtloop;
}
de.filter_widths[filtloop] = de_filt_h;
/* Calculate norm of kernel separately (easier) */
for (dej=-de_half_size; dej<=de_half_size; dej++) {
for (dek=-de_half_size; dek<=de_half_size; dek++) {
de_filt_d = sqrt( (double)(dej*dej+dek*dek) ) / de_filt_h;
/* Only populate the coefs within this radius */
if (de_filt_d <= 1.0) {
/* Gaussian */
de_filt_sum += flam3_spatial_filter(flam3_gaussian_kernel,
flam3_spatial_support[flam3_gaussian_kernel]*de_filt_d);
/* Epanichnikov */
// de_filt_sum += (1.0 - (de_filt_d * de_filt_d));
}
}
}
filter_coef_idx = filtloop*de.kernel_size;
/* Calculate the unique entries of the kernel */
for (dej=0; dej<=de_half_size; dej++) {
for (dek=0; dek<=dej; dek++) {
de_filt_d = sqrt( (double)(dej*dej+dek*dek) ) / de_filt_h;
/* Only populate the coefs within this radius */
if (de_filt_d>1.0)
de.filter_coefs[filter_coef_idx] = 0.0;
else {
/* Gaussian */
de.filter_coefs[filter_coef_idx] = flam3_spatial_filter(flam3_gaussian_kernel,
flam3_spatial_support[flam3_gaussian_kernel]*de_filt_d)/de_filt_sum;
/* Epanichnikov */
// de_filter_coefs[filter_coef_idx] = (1.0 - (de_filt_d * de_filt_d))/de_filt_sum;
}
filter_coef_idx ++;
}
}
if (de.max_filter_index>0)
break;
}
if (de.max_filter_index==0)
de.max_filter_index = de_max_ind-1;
return(de);
}
double flam3_create_temporal_filter(int numsteps, int filter_type, double filter_exp, double filter_width,
double **temporal_filter, double **temporal_deltas) {
double maxfilt = 0.0;
double sumfilt = 0.0;
double slpx,halfsteps;
double *deltas, *filter;
int i;
/* Allocate memory - this must be freed in the calling routine! */
deltas = (double *)malloc(numsteps*sizeof(double));
filter = (double *)malloc(numsteps*sizeof(double));
/* Deal with only one step */
if (numsteps==1) {
deltas[0] = 0;
filter[0] = 1.0;
*temporal_deltas = deltas;
*temporal_filter = filter;
return(1.0);
}
/* Define the temporal deltas */
for (i = 0; i < numsteps; i++)
deltas[i] = ((double)i /(double)(numsteps - 1) - 0.5)*filter_width;
/* Define the filter coefs */
if (flam3_temporal_exp == filter_type) {
for (i=0; i < numsteps; i++) {
if (filter_exp>=0)
slpx = ((double)i+1.0)/numsteps;
else
slpx = (double)(numsteps - i)/numsteps;
/* Scale the color based on these values */
filter[i] = pow(slpx,fabs(filter_exp));
/* Keep the max */
if (filter[i]>maxfilt)
maxfilt = filter[i];
}
} else if (flam3_temporal_gaussian == filter_type) {
halfsteps = numsteps/2.0;
for (i=0; i < numsteps; i++) {
/* Gaussian */
filter[i] = flam3_spatial_filter(flam3_gaussian_kernel,
flam3_spatial_support[flam3_gaussian_kernel]*fabs(i - halfsteps)/halfsteps);
/* Keep the max */
if (filter[i]>maxfilt)
maxfilt = filter[i];
}
} else { // (flam3_temporal_box)
for (i=0; i < numsteps; i++)
filter[i] = 1.0;
maxfilt = 1.0;
}
/* Adjust the filter so that the max is 1.0, and */
/* calculate the K2 scaling factor */
for (i=0;i<numsteps;i++) {
filter[i] /= maxfilt;
sumfilt += filter[i];
}
sumfilt /= numsteps;
*temporal_deltas = deltas;
*temporal_filter = filter;
return(sumfilt);
}
|