1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
|
/*
* Copyright (c) 2017-2018, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
#if defined(TARGET_LINUX_POWER)
#error "Source cannot be compiled for POWER architectures"
#include "xmm2altivec.h"
#else
#include <immintrin.h>
#endif
#include "fdlog_defs.h"
extern "C" __m256d __fvd_log_fma3_256(__m256d);
// casts int to double
inline
__m256d __internal_fast_int2dbl(__m256i a)
{
__m256i const INT2DBL_HI = _mm256_set1_epi64x(INT2DBL_HI_D);
__m256i const INT2DBL_LO = _mm256_set1_epi64x(INT2DBL_LO_D);
__m256d const INT2DBL = (__m256d)_mm256_set1_epi64x(INT2DBL_D);
__m256i t = _mm256_xor_si256(INT2DBL_LO, a);
t = _mm256_blend_epi32(INT2DBL_HI, t, 0x55);
return _mm256_sub_pd((__m256d)t, INT2DBL);
}
// special cases for log
__m256d __attribute__ ((noinline)) __pgm_log_d_vec256_special_cases(__m256d const a, __m256d z)
{
__m256d const ZERO = _mm256_set1_pd(ZERO_D);
__m256i const ALL_ONES_EXPONENT = _mm256_set1_epi64x(ALL_ONES_EXPONENT_D);
__m256d const NAN_VAL = (__m256d)_mm256_set1_epi64x(NAN_VAL_D);
__m256d const NEG_INF = (__m256d)_mm256_set1_epi64x(NEG_INF_D);
__m256i detect_inf_nan = (__m256i)_mm256_sub_pd(a, a);
__m256d inf_nan_mask = (__m256d)_mm256_cmpeq_epi64(_mm256_and_si256(detect_inf_nan, ALL_ONES_EXPONENT), ALL_ONES_EXPONENT);
// inf + inf = inf = log(inf). nan + nan = nan = log(nan).
__m256i inf_nan = (__m256i)_mm256_add_pd(a, a);
z = _mm256_blendv_pd(z, (__m256d)inf_nan, inf_nan_mask);
__m256d non_positive_mask = _mm256_cmp_pd(a, ZERO, _CMP_LT_OQ);
// log(negative number) = NaN
z = _mm256_blendv_pd(z, NAN_VAL, non_positive_mask);
// log(0) = -inf
__m256d zero_mask = _mm256_cmp_pd(a, ZERO, _CMP_EQ_OQ);
z = _mm256_blendv_pd(z, NEG_INF, zero_mask);
return z;
}
__m256d __fvd_log_fma3_256(__m256d const a)
{
__m256d const HI_CONST_1 = (__m256d)_mm256_set1_epi64x(HI_CONST_1_D);
__m256d const HI_CONST_2 = (__m256d)_mm256_set1_epi64x(HI_CONST_2_D);
__m256i const HALFIFIER = _mm256_set1_epi64x(HALFIFIER_D);
__m256i const HI_THRESH = _mm256_set1_epi64x(HI_THRESH_D);
__m256d const ONE_F = _mm256_set1_pd(ONE_F_D);
__m256d const ZERO = _mm256_set1_pd(ZERO_D);
__m256d const LN2_HI = _mm256_set1_pd(LN2_HI_D);
__m256d const LN2_LO = _mm256_set1_pd(LN2_LO_D);
__m256i const HI_MASK = _mm256_set1_epi64x(HI_MASK_D);
__m256i const ONE = _mm256_set1_epi64x(ONE_D);
__m256i const TEN_23 = _mm256_set1_epi64x(TEN_23_D);
__m256i const ALL_ONES_EXPONENT = _mm256_set1_epi64x(ALL_ONES_EXPONENT_D);
__m256d const LOG_C1_VEC = _mm256_set1_pd( LOG_C1_VEC_D );
__m256d const LOG_C2_VEC = _mm256_set1_pd( LOG_C2_VEC_D );
__m256d const LOG_C3_VEC = _mm256_set1_pd( LOG_C3_VEC_D );
__m256d const LOG_C4_VEC = _mm256_set1_pd( LOG_C4_VEC_D );
__m256d const LOG_C5_VEC = _mm256_set1_pd( LOG_C5_VEC_D );
__m256d const LOG_C6_VEC = _mm256_set1_pd( LOG_C6_VEC_D );
__m256d const LOG_C7_VEC = _mm256_set1_pd( LOG_C7_VEC_D );
__m256d const LOG_C8_VEC = _mm256_set1_pd( LOG_C8_VEC_D );
__m256d const LOG_C9_VEC = _mm256_set1_pd( LOG_C9_VEC_D );
__m256d const LOG_C10_VEC = _mm256_set1_pd( LOG_C10_VEC_D );
__m256d const LOG_C11_VEC = _mm256_set1_pd( LOG_C11_VEC_D );
__m256d const LOG_C12_VEC = _mm256_set1_pd( LOG_C12_VEC_D );
__m256d const LOG_C13_VEC = _mm256_set1_pd( LOG_C13_VEC_D );
__m256d const LOG_C14_VEC = _mm256_set1_pd( LOG_C14_VEC_D );
__m256d const LOG_C15_VEC = _mm256_set1_pd( LOG_C15_VEC_D );
__m256d const LOG_C16_VEC = _mm256_set1_pd( LOG_C16_VEC_D );
__m256d const LOG_C17_VEC = _mm256_set1_pd( LOG_C17_VEC_D );
__m256d const LOG_C18_VEC = _mm256_set1_pd( LOG_C18_VEC_D );
__m256d const LOG_C19_VEC = _mm256_set1_pd( LOG_C19_VEC_D );
__m256d const LOG_C20_VEC = _mm256_set1_pd( LOG_C20_VEC_D );
__m256d const LOG_C21_VEC = _mm256_set1_pd( LOG_C21_VEC_D );
__m256d const LOG_C22_VEC = _mm256_set1_pd( LOG_C22_VEC_D );
__m256d const LOG_C23_VEC = _mm256_set1_pd( LOG_C23_VEC_D );
__m256d const LOG_C24_VEC = _mm256_set1_pd( LOG_C24_VEC_D );
__m256d a_mut, m, f;
__m256i expo, expo_plus1;
__m256d thresh_mask;
// isolate mantissa
a_mut = _mm256_and_pd(a, HI_CONST_1);
a_mut = _mm256_or_pd(a_mut, HI_CONST_2);
// magic trick to improve accuracy (divide mantissa by 2 and increase exponent by 1)
thresh_mask = _mm256_cmp_pd(a_mut, (__m256d)HI_THRESH, _CMP_GT_OS);
m = (__m256d)_mm256_sub_epi32((__m256i)a_mut, HALFIFIER);
m = _mm256_blendv_pd(a_mut, m, thresh_mask);
// compute exponent
expo = _mm256_srli_epi64((__m256i)a, D52_D);
expo = _mm256_sub_epi64(expo, TEN_23);
expo_plus1 = _mm256_add_epi64(expo, ONE);
expo = (__m256i)_mm256_blendv_pd((__m256d)expo, (__m256d)expo_plus1, thresh_mask);
// computing polynomial for log(1+m)
m = _mm256_sub_pd(m, ONE_F);
// estrin scheme for highest 16 terms, then estrin again for the next 8. Finally finish off with horner.
__m256d z9 = _mm256_fmadd_pd(LOG_C10_VEC, m, LOG_C9_VEC);
__m256d z11 = _mm256_fmadd_pd(LOG_C12_VEC, m, LOG_C11_VEC);
__m256d z13 = _mm256_fmadd_pd(LOG_C14_VEC, m, LOG_C13_VEC);
__m256d z15 = _mm256_fmadd_pd(LOG_C16_VEC, m, LOG_C15_VEC);
__m256d z17 = _mm256_fmadd_pd(LOG_C18_VEC, m, LOG_C17_VEC);
__m256d z19 = _mm256_fmadd_pd(LOG_C20_VEC, m, LOG_C19_VEC);
__m256d z21 = _mm256_fmadd_pd(LOG_C22_VEC, m, LOG_C21_VEC);
__m256d z23 = _mm256_fmadd_pd(LOG_C24_VEC, m, LOG_C23_VEC);
__m256d m2 = _mm256_mul_pd(m, m);
z9 = _mm256_fmadd_pd(z11, m2, z9);
z13 = _mm256_fmadd_pd(z15, m2, z13);
z17 = _mm256_fmadd_pd(z19, m2, z17);
z21 = _mm256_fmadd_pd(z23, m2, z21);
__m256d m4 = _mm256_mul_pd(m2, m2);
z9 = _mm256_fmadd_pd(z13, m4, z9);
z17 = _mm256_fmadd_pd(z21, m4, z17);
__m256d m8 = _mm256_mul_pd(m4, m4);
z9 = _mm256_fmadd_pd(z17, m8, z9);
// estrin for the next 8 terms
__m256d z8 = _mm256_fmadd_pd(z9, m, LOG_C8_VEC);
__m256d z6 = _mm256_fmadd_pd(LOG_C7_VEC, m, LOG_C6_VEC);
__m256d z4 = _mm256_fmadd_pd(LOG_C5_VEC, m, LOG_C4_VEC);
__m256d z2 = _mm256_fmadd_pd(LOG_C3_VEC, m, LOG_C2_VEC);
z6 = _mm256_fmadd_pd(z8, m2, z6);
z2 = _mm256_fmadd_pd(z4, m2, z2);
__m256d z = _mm256_fmadd_pd(z6, m4, z2);
// finish computation with horner
z = _mm256_fmadd_pd(z, m, LOG_C1_VEC);
z = _mm256_mul_pd(z, m);
f = __internal_fast_int2dbl(expo);
z = _mm256_fmadd_pd(f, LN2_HI, z);
// compute special cases (inf, NaN, negative, 0)
__m256i detect_inf_nan = (__m256i)_mm256_sub_pd(a, a);
__m256i detect_non_positive = (__m256i)_mm256_cmp_pd(a, ZERO, _CMP_LE_OQ);
__m256i inf_nan_mask = _mm256_cmpeq_epi64(_mm256_and_si256(detect_inf_nan, ALL_ONES_EXPONENT), ALL_ONES_EXPONENT);
int specMask = _mm256_movemask_pd((__m256d)_mm256_or_si256(detect_non_positive, inf_nan_mask));
if(__builtin_expect(specMask, 0)) {
return __pgm_log_d_vec256_special_cases(a, z);
}
return z;
}
|