File: flann_kdtree_single_test.cpp

package info (click to toggle)
flann 1.9.2%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 81,644 kB
  • sloc: cpp: 13,643; python: 1,046; ruby: 419; ansic: 87; makefile: 22; sh: 5
file content (312 lines) | stat: -rw-r--r-- 10,291 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
#include <gtest/gtest.h>
#include <time.h>

#include <flann/flann.h>
#include <flann/io/hdf5.h>

#include "flann_tests.h"

using namespace flann;

class KDTreeSingle :public DatasetTestFixture<float, float> {
protected:
	KDTreeSingle() : DatasetTestFixture("cloud.h5") {}
};

TEST_F(KDTreeSingle, TestSearch)
{
	TestSearch<L2_Simple<float> >(data, flann::KDTreeSingleIndexParams(12, false),
			query, indices, dists, knn, flann::SearchParams(-1), 0.99, gt_indices);
}

TEST_F(KDTreeSingle, TestSearch2)
{
	TestSearch2<L2_Simple<float> >(data, flann::KDTreeSingleIndexParams(12, false),
			query, indices, dists, knn, flann::SearchParams(-1), 0.99, gt_indices);
}


TEST_F(KDTreeSingle, TestSearchPadded)
{
    flann::Matrix<float> data_padded;
    flann::load_from_file(data_padded, "cloud.h5", "dataset_padded");
    flann::Matrix<float> data2(data_padded.ptr(), data_padded.rows, 3, data_padded.cols*sizeof(float));

	TestSearch<L2_Simple<float> >(data2, flann::KDTreeSingleIndexParams(12, false),
			query, indices, dists, knn, flann::SearchParams(-1), 0.99, gt_indices);

    delete[] data_padded.ptr();
}

TEST_F(KDTreeSingle, TestAddIncremental)
{
	TestAddIncremental<L2_Simple<float> >(data, flann::KDTreeSingleIndexParams(12, false),
			query, indices, dists, knn, flann::SearchParams(-1), 0.99, gt_indices);
}

TEST_F(KDTreeSingle, TestAddIncremental2)
{
	TestAddIncremental2<L2_Simple<float> >(data, flann::KDTreeSingleIndexParams(12, false),
			query, indices, dists, knn, flann::SearchParams(-1), 0.99, gt_indices);
}


TEST_F(KDTreeSingle, TestRemove)
{
	TestRemove<L2_Simple<float> >(data, flann::KDTreeSingleIndexParams(12, false),
			query, indices, dists, knn, flann::SearchParams(-1));
}


TEST_F(KDTreeSingle, TestSave)
{
	TestSave<L2_Simple<float> >(data, flann::KDTreeSingleIndexParams(12, false),
			query, indices, dists, knn, flann::SearchParams(-1), 0.99, gt_indices);
}

TEST_F(KDTreeSingle, TestSearchReorder)
{
	TestSearch<L2_Simple<float> >(data, flann::KDTreeSingleIndexParams(12, true),
			query, indices, dists, knn, flann::SearchParams(-1), 0.99, gt_indices);
}

TEST_F(KDTreeSingle, TestSaveReorder)
{
	TestSave<L2_Simple<float> >(data, flann::KDTreeSingleIndexParams(12, true),
			query, indices, dists, knn, flann::SearchParams(-1), 0.99, gt_indices);
}

TEST_F(KDTreeSingle, TestCopy)
{
	TestCopy<L2_Simple<float> >(data, flann::KDTreeSingleIndexParams(12, false),
			query, indices, dists, knn, flann::SearchParams(-1), 0.99, gt_indices);

	// repeat tests with reorder=true
	TestCopy<L2_Simple<float> >(data, flann::KDTreeSingleIndexParams(12, true),
			query, indices, dists, knn, flann::SearchParams(-1), 0.99, gt_indices);
}

TEST_F(KDTreeSingle, TestCopy2)
{
	TestCopy2<flann::KDTreeSingleIndex<L2_Simple<float> > >(data, flann::KDTreeSingleIndexParams(12, false),
			query, indices, dists, knn, flann::SearchParams(-1), 0.99, gt_indices);

	// repeat tests with reorder=true
	TestCopy2<flann::KDTreeSingleIndex<L2_Simple<float> > >(data, flann::KDTreeSingleIndexParams(12, true),
			query, indices, dists, knn, flann::SearchParams(-1), 0.99, gt_indices);
}

TEST_F(KDTreeSingle, TestNoNeighbours)
{
    flann::Index<L2_Simple<float> > index(data, flann::KDTreeSingleIndexParams(12, false));
    start_timer("Building kd-tree index...");
    index.buildIndex();
    printf("done (%g seconds)\n", stop_timer());

    start_timer("Searching KNN...");
    index.knnSearch(query, indices, dists, knn, flann::SearchParams(-1) );
    printf("done (%g seconds)\n", stop_timer());


    float min_dist = dists[0][0];
    for (size_t i=0;i<query.rows;++i) {
    	min_dist = std::min(min_dist, dists[i][0]);
    }

    start_timer("Searching radius smaller than minimum distance...");
    int count = index.radiusSearch(query, indices, dists, min_dist/2, flann::SearchParams(-1) );
    printf("done (%g seconds)\n", stop_timer());

    EXPECT_EQ(0,count);
    for (size_t i=0;i<dists.rows;++i) {
    	EXPECT_EQ(dists[i][0],std::numeric_limits<float>::infinity());
    }

    std::vector<std::vector<size_t> > indices2;
    std::vector<std::vector<float> > dists2;
    start_timer("Searching radius smaller than minimum distance...");
    int count2 = index.radiusSearch(query, indices2, dists2, min_dist/2, flann::SearchParams(-1) );
    printf("done (%g seconds)\n", stop_timer());

    EXPECT_EQ(0,count2);
    for (size_t i=0;i<indices2.size();++i) {
    	EXPECT_EQ(indices2[i].size(),0);
    }
}


// Test cases for 3D point clouds, borrowed from PCL test_kdtree
struct MyPoint
{
  MyPoint (float x, float y, float z) {this->x=x; this->y=y; this->z=z;}

  float x,y,z;
};


class KDTreeSinglePointCloud : public FLANNTestFixture
{
public:
	void SetUp()
	{
		float resolution = 0.1f;
		for (float z = -0.5f; z <= 0.5f; z += resolution)
			for (float y = -0.5f; y <= 0.5f; y += resolution)
				for (float x = -0.5f; x <= 0.5f; x += resolution)
					cloud_.push_back (MyPoint (x, y, z));

		cloud_mat_ = flann::Matrix<float>(&cloud_[0].x, cloud_.size(), 3);


		srand(static_cast<unsigned int> (time (NULL)));
		// Randomly create a new point cloud
		for (size_t i = 0; i < 640*480; ++i)
			cloud_big_.push_back (MyPoint (static_cast<float> (1024 * rand () / (RAND_MAX + 1.0)),
					static_cast<float> (1024 * rand () / (RAND_MAX + 1.0)),
					static_cast<float> (1024 * rand () / (RAND_MAX + 1.0))));


		cloud_big_mat_ = flann::Matrix<float>(&cloud_big_[0].x, cloud_big_.size(), 3);
	}

	std::vector<MyPoint> cloud_;
	flann::Matrix<float> cloud_mat_;

	std::vector<MyPoint> cloud_big_;
	flann::Matrix<float> cloud_big_mat_;
};

TEST_F(KDTreeSinglePointCloud, TestRadiusSearch)
{
	std::vector<std::vector<int> > k_indices;
	std::vector<std::vector<float> > k_distances;

	{
	    flann::Index<L2_Simple<float> > index(cloud_mat_, flann::KDTreeSingleIndexParams(12, false));
	    index.buildIndex();

	    L2_Simple<float> euclideanDistance;
		MyPoint test_point(0.0f, 0.0f, 0.0f);
		flann::Matrix<float> test_mat(&test_point.x, 1, 3);
		double max_dist = 0.15*0.15;
		std::set<int> brute_force_result;
		for (unsigned int i=0; i<cloud_mat_.rows; ++i)
			if (euclideanDistance(cloud_mat_[i], test_mat[0], 3) < max_dist)
				brute_force_result.insert(i);
		index.radiusSearch (test_mat, k_indices, k_distances, max_dist, flann::SearchParams(-1));

		for (size_t i = 0; i < k_indices[0].size (); ++i)
		{
			std::set<int>::iterator brute_force_result_it = brute_force_result.find (k_indices[0][i]);
			bool ok = brute_force_result_it != brute_force_result.end ();
			//if (!ok)  cerr << k_indices[i] << " is not correct...\n";
			//else      cerr << k_indices[i] << " is correct...\n";
			EXPECT_EQ (ok, true);
			if (ok)
				brute_force_result.erase (brute_force_result_it);
		}
		//for (set<int>::const_iterator it=brute_force_result.begin(); it!=brute_force_result.end(); ++it)
		//cerr << "FLANN missed "<<*it<<"\n";

		bool error = brute_force_result.size () > 0;
		//if (error)  cerr << "Missed too many neighbors!\n";
		EXPECT_EQ (error, false);
	}

	{
	    flann::Index<L2_Simple<float> > index(flann::KDTreeSingleIndexParams(15));
	    index.buildIndex(cloud_big_mat_);

	    start_timer("radiusSearch...");
	    flann::SearchParams params(-1);
	    index.radiusSearch(cloud_big_mat_, k_indices, k_distances, 0.1*0.1, params);
	    printf("done (%g seconds)\n", stop_timer());
	}

	{
	    flann::Index<L2_Simple<float> > index(flann::KDTreeSingleIndexParams(15));
	    index.buildIndex(cloud_big_mat_);

	    start_timer("radiusSearch (max neighbors in radius)...");
	    flann::SearchParams params(-1);
	    params.max_neighbors = 10;
	    index.radiusSearch(cloud_big_mat_, k_indices, k_distances, 0.1*0.1, params);
	    printf("done (%g seconds)\n", stop_timer());
	}

	{
	    flann::Index<L2_Simple<float> > index(flann::KDTreeSingleIndexParams(15));
	    index.buildIndex(cloud_big_mat_);

	    start_timer("radiusSearch (unsorted results)...");
	    flann::SearchParams params(-1);
	    params.sorted = false;
	    index.radiusSearch(cloud_big_mat_, k_indices, k_distances, 0.1*0.1, params);
	    printf("done (%g seconds)\n", stop_timer());
	}
}


TEST_F(KDTreeSinglePointCloud, TestKNearestSearch)
{
	unsigned int no_of_neighbors = 20;

	{
		flann::Index<L2_Simple<float> > index(cloud_mat_, flann::KDTreeSingleIndexParams(12, false));
		index.buildIndex();

		L2_Simple<float> euclideanDistance;
		MyPoint test_point (0.01f, 0.01f, 0.01f);
		flann::Matrix<float> test_mat(&test_point.x, 1, 3);

		std:: multimap<float, int> sorted_brute_force_result;
		for (size_t i = 0; i < cloud_.size (); ++i)
		{
			float distance = euclideanDistance (cloud_mat_[i], test_mat[0],3);
			sorted_brute_force_result.insert (std::make_pair (distance, static_cast<int> (i)));
		}
		float max_dist = 0.0f;
		unsigned int counter = 0;
		for (std::multimap<float, int>::iterator it = sorted_brute_force_result.begin (); it != sorted_brute_force_result.end () && counter < no_of_neighbors; ++it)
		{
			max_dist = std::max (max_dist, it->first);
			++counter;
		}

		std::vector< std::vector<int> > k_indices(1);
		k_indices[0].resize (no_of_neighbors);
		std::vector<std::vector<float> > k_distances(1);
		k_distances[0].resize (no_of_neighbors);
		index.knnSearch(test_mat, k_indices, k_distances, no_of_neighbors, flann::SearchParams(-1));
		//if (k_indices.size() != no_of_neighbors)  cerr << "Found "<<k_indices.size()<<" instead of "<<no_of_neighbors<<" neighbors.\n";
		EXPECT_EQ (k_indices[0].size (), no_of_neighbors);

		// Check if all found neighbors have distance smaller than max_dist
		for (size_t i = 0; i < k_indices[0].size (); ++i)
		{
			float* point = cloud_mat_[k_indices[0][i]];
			bool ok = euclideanDistance (test_mat[0], point, 3) <= max_dist;
			EXPECT_EQ (ok, true);
		}
	}

	{
		flann::Index<L2_Simple<float> > index(flann::KDTreeSingleIndexParams(15));
		index.buildIndex(cloud_big_mat_);

		start_timer("K nearest neighbour search...");
		flann::SearchParams params(-1);
		params.sorted = false;
		std::vector<std::vector<int> > k_indices;
		std::vector<std::vector<float> > k_distances;
		index.knnSearch (cloud_big_mat_, k_indices, k_distances, no_of_neighbors, params);
		printf("done (%g seconds)\n", stop_timer());
	}

}

int main(int argc, char** argv)
{
    testing::InitGoogleTest(&argc, argv);
    return RUN_ALL_TESTS();
}