File: flann_multithreaded_test.cpp

package info (click to toggle)
flann 1.9.2%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 81,644 kB
  • sloc: cpp: 13,643; python: 1,046; ruby: 419; ansic: 87; makefile: 22; sh: 5
file content (311 lines) | stat: -rw-r--r-- 9,285 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
#include <gtest/gtest.h>
#include <time.h>

#include <flann/flann.h>
#include <flann/io/hdf5.h>
#include <flann/nn/ground_truth.h>

using namespace flann;

template<typename T>
float compute_precision(const flann::Matrix<T>& match, const flann::Matrix<T>& indices)
{
    int count = 0;

    assert(match.rows == indices.rows);
    size_t nn = std::min(match.cols, indices.cols);

    for (size_t i=0; i<match.rows; ++i) {
        for (size_t j=0;j<nn;++j) {
            for (size_t k=0;k<nn;++k) {
                if (match[i][j]==indices[i][k]) {
                    count ++;
                }
            }
        }
    }

    return float(count)/(nn*match.rows);
}

class FLANNTestFixture : public ::testing::Test {
protected:
    timespec ts_;

    void start_timer(const std::string& message = "")
    {
        if (!message.empty()) {
            printf("%s", message.c_str());
            fflush(stdout);
        }
        clock_gettime(CLOCK_REALTIME, &ts_);
    }

    double stop_timer()
    {
		timespec ts2;
        clock_gettime(CLOCK_REALTIME, &ts2);
        return double((ts2.tv_sec-ts_.tv_sec)+(ts2.tv_nsec-ts_.tv_nsec)/1e9);
    }

};


/* Test Fixture which loads the cloud.h5 cloud as data and query matrix */
class FlannTest : public FLANNTestFixture {
protected:
    flann::Matrix<float> data_;
    flann::Matrix<float> query_;
    flann::Matrix<size_t> match_;
    flann::Matrix<float> dists_;
    flann::Matrix<size_t> indices_;

    int knn_;

    void SetUp()
    {
        knn_ = 5;

        printf("Reading test data...");
        fflush(stdout);
        flann::load_from_file(data_, "cloud.h5","dataset");
        flann::load_from_file(query_,"cloud.h5","query");
        flann::load_from_file(match_,"cloud.h5","match");

        dists_ = flann::Matrix<float>(new float[query_.rows*knn_], query_.rows, knn_);
        indices_ = flann::Matrix<size_t>(new size_t[query_.rows*knn_], query_.rows, knn_);

        printf("done\n");
    }

    void TearDown()
    {
        delete[] data_.ptr();
        delete[] query_.ptr();
        delete[] match_.ptr();
        delete[] dists_.ptr();
        delete[] indices_.ptr();
    }

};

TEST_F(FlannTest, HandlesSingleCoreSearch)
{
    flann::Index<L2_Simple<float> > index(data_, flann::KDTreeSingleIndexParams(50, false));
    start_timer("Building kd-tree index...");
    index.buildIndex();
    printf("done (%g seconds)\n", stop_timer());

    int checks = -1;
    float eps = 0.0f;
    bool sorted = true;
    int cores = 1;

    start_timer("Searching KNN...");
    SearchParams params(checks,eps,sorted);
    params.cores = cores;
    index.knnSearch(query_, indices_, dists_, knn_, params);
    printf("done (%g seconds)\n", stop_timer());

    float precision = compute_precision(match_, indices_);
    EXPECT_GE(precision, 0.99);
    printf("Precision: %g\n", precision);
}

TEST_F(FlannTest, HandlesMultiCoreSearch)
{
    flann::Index<L2_Simple<float> > index(data_, flann::KDTreeSingleIndexParams(50, false));
    start_timer("Building kd-tree index...");
    index.buildIndex();
    printf("done (%g seconds)\n", stop_timer());

    int checks = -1;
    float eps = 0.0f;
    bool sorted = true;
    int cores = 2;

    start_timer("Searching KNN...");
    SearchParams params(checks,eps,sorted);
    params.cores = cores;
    index.knnSearch(query_, indices_, dists_, knn_, params);
    printf("done (%g seconds)\n", stop_timer());

    float precision = compute_precision(match_, indices_);
    EXPECT_GE(precision, 0.99);
    printf("Precision: %g\n", precision);
}


/* Test Fixture which loads the cloud.h5 cloud as data and query matrix and holds two dists
   and indices matrices for comparing single and multi core KNN search */
class FlannCompareKnnTest : public FLANNTestFixture {
protected:
    flann::Matrix<float> data_;
    flann::Matrix<float> query_;
    flann::Matrix<float> dists_single_;
    flann::Matrix<size_t> indices_single_;
    flann::Matrix<float> dists_multi_;
    flann::Matrix<size_t> indices_multi_;

    int knn_;

    void SetUp()
    {
        knn_ = 5;

        printf("Reading test data...");
        fflush(stdout);
        flann::load_from_file(data_, "cloud.h5","dataset");
        flann::load_from_file(query_,"cloud.h5","query");

        dists_single_ = flann::Matrix<float>(new float[query_.rows*knn_], query_.rows, knn_);
        indices_single_ = flann::Matrix<size_t>(new size_t[query_.rows*knn_], query_.rows, knn_);
        dists_multi_ = flann::Matrix<float>(new float[query_.rows*knn_], query_.rows, knn_);
        indices_multi_ = flann::Matrix<size_t>(new size_t[query_.rows*knn_], query_.rows, knn_);

        printf("done\n");
    }

    void TearDown()
    {
        delete[] data_.ptr();
        delete[] query_.ptr();
        delete[] dists_single_.ptr();
        delete[] indices_single_.ptr();
        delete[] dists_multi_.ptr();
        delete[] indices_multi_.ptr();
    }

};



TEST_F(FlannCompareKnnTest, CompareMultiSingleCoreKnnSearch)
{
    flann::Index<L2_Simple<float> > index(data_, flann::KDTreeSingleIndexParams(50, false));
    start_timer("Building kd-tree index...");
    index.buildIndex();
    printf("done (%g seconds)\n", stop_timer());

    SearchParams params;
    params.checks = -1;
    params.eps = 0.0f;
    params.sorted = true;

    start_timer("Searching KNN (single core)...");
    params.cores = 1;
    int single_neighbor_count = index.knnSearch(query_, indices_single_, dists_single_, knn_, params);
    printf("done (%g seconds)\n", stop_timer());

    start_timer("Searching KNN (multi core)...");
    params.cores = 0;
    int multi_neighbor_count = index.knnSearch(query_, indices_multi_, dists_multi_, knn_, params);
    printf("done (%g seconds)\n", stop_timer());

    EXPECT_EQ(single_neighbor_count, multi_neighbor_count);

    printf("Checking results...\n");
    float precision = compute_precision(indices_single_, indices_multi_);
    EXPECT_GE(precision, 0.99);
    printf("Precision: %g\n", precision);
}

/* Test Fixture which loads the cloud.h5 cloud as data and query matrix and holds two dists
   and indices matrices for comparing single and multi core radius search */
class FlannCompareRadiusTest : public FLANNTestFixture {
protected:
    flann::Matrix<float> data_;
    flann::Matrix<float> query_;
    flann::Matrix<float> dists_single_;
    flann::Matrix<int> indices_single_;
    flann::Matrix<float> dists_multi_;
    flann::Matrix<int> indices_multi_;

    float radius_;

    void SetUp()
    {
        radius_ = 0.1f;

        printf("Reading test data...");
        fflush(stdout);
        flann::load_from_file(data_, "cloud.h5","dataset");
        flann::load_from_file(query_,"cloud.h5","query");

        int reserve_size = data_.rows / 1000;

        dists_single_ = flann::Matrix<float>(new float[query_.rows*reserve_size], query_.rows, reserve_size);
        indices_single_ = flann::Matrix<int>(new int[query_.rows*reserve_size], query_.rows, reserve_size);
        dists_multi_ = flann::Matrix<float>(new float[query_.rows*reserve_size], query_.rows, reserve_size);
        indices_multi_ = flann::Matrix<int>(new int[query_.rows*reserve_size], query_.rows, reserve_size);

        printf("done\n");
    }

    void TearDown()
    {
        delete[] data_.ptr();
        delete[] query_.ptr();
        delete[] dists_single_.ptr();
        delete[] indices_single_.ptr();
        delete[] dists_multi_.ptr();
        delete[] indices_multi_.ptr();
    }

    void runTest(const flann::Index<L2_Simple<float> >& index, SearchParams params)
    {
        start_timer("Searching Radius (single core)...");
        params.cores = 1;
        int single_neighbor_count = index.radiusSearch(query_, indices_single_, dists_single_, radius_, params);
        printf("done (%g seconds)\n", stop_timer());

        start_timer("Searching Radius (multi core)...");
        params.cores = 0;
        int multi_neighbor_count = index.radiusSearch(query_, indices_multi_, dists_multi_, radius_, params);
        printf("done (%g seconds)\n", stop_timer());

        EXPECT_EQ(single_neighbor_count, multi_neighbor_count);

        printf("Checking results...\n");
        float precision = compute_precision(indices_single_, indices_multi_);
        EXPECT_GE(precision, 0.99);
        printf("Precision: %g\n", precision);
    }
};

TEST_F(FlannCompareRadiusTest, CompareMultiSingleCoreRadiusSearchSorted)
{
    flann::Index<L2_Simple<float> > index(data_, flann::KDTreeSingleIndexParams(50, false));
    start_timer("Building kd-tree index...");
    index.buildIndex();
    printf("done (%g seconds)\n", stop_timer());

    SearchParams params;
    params.checks = -1;
    params.eps = 0.0f;
    params.sorted = true;

    runTest(index, params);
}

TEST_F(FlannCompareRadiusTest, CompareMultiSingleCoreRadiusSearchUnsorted)
{
    flann::Index<L2_Simple<float> > index(data_, flann::KDTreeSingleIndexParams(50, false));
    start_timer("Building kd-tree index...");
    index.buildIndex();
    printf("done (%g seconds)\n", stop_timer());

    SearchParams params;
    params.checks = -1;
    params.eps = 0.0f;
    params.sorted = false;

    runTest(index, params);
}


int main(int argc, char** argv)
{
    testing::InitGoogleTest(&argc, argv);
    return RUN_ALL_TESTS();
}