1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
|
/*
* read_queue.c: Code to set up reader/writer threads and shared queues to pass
* reads between threads in memory.
*/
/*
* Copyright (C) 2012 Tanja Magoc
* Copyright (C) 2012, 2013, 2014 Eric Biggers
*
* This file is part of FLASH, a fast tool to merge overlapping paired-end
* reads.
*
* FLASH is free software; you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free
* Software Foundation; either version 3 of the License, or (at your option)
* any later version.
*
* FLASH is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License
* along with FLASH; if not, see http://www.gnu.org/licenses/.
*/
#include "iostream.h"
#include "read.h"
#include "read_io.h"
#include "read_queue.h"
#include "util.h"
#include <assert.h>
#include <errno.h>
#include <inttypes.h>
#include <pthread.h>
#include <stdlib.h>
#include <string.h>
static struct read *
new_read(void)
{
return xzalloc(sizeof(struct read));
}
static void
free_read(struct read *r)
{
if (r) {
xfree(r->tag, r->tag_bufsz);
xfree(r->seq, r->seq_bufsz);
xfree(r->qual, r->qual_bufsz);
xfree(r, sizeof(*r));
}
}
static struct read_set *
new_read_set(size_t num_reads, bool full)
{
struct read_set *s = xmalloc(sizeof(*s) + num_reads * sizeof(s->reads[0]));
if (full) {
for (size_t i = 0; i < num_reads; i++)
s->reads[i] = new_read();
} else {
for (size_t i = 0; i < num_reads; i++)
s->reads[i] = NULL;
}
s->filled = 0;
s->num_reads = num_reads;
return s;
}
void
free_read_set(struct read_set *s)
{
if (s) {
for (size_t i = 0; i < s->num_reads; i++)
free_read(s->reads[i]);
xfree(s, sizeof(*s));
}
}
static void
init_mutex(pthread_mutex_t *mutex)
{
if (pthread_mutex_init(mutex, NULL))
fatal_error_with_errno("Failed to initialize mutex");
}
static void
init_cond(pthread_cond_t *cond)
{
if (pthread_cond_init(cond, NULL))
fatal_error_with_errno("Failed to initialize condition variable");
}
/*
* Producer-consumer queue; it holds pointers to `struct read_sets', which can
* be added or removed from the queue in a thread-safe manner using
* read_queue_put() and read_queue_get(), respectively.
*/
struct read_queue {
size_t size;
size_t front;
size_t filled;
bool terminated;
struct read_set **read_sets;
pthread_mutex_t lock;
pthread_cond_t read_set_avail_cond;
pthread_cond_t space_avail_cond;
};
static struct read_queue *
new_read_queue(size_t size, size_t reads_per_set, bool full)
{
struct read_queue *q = xmalloc(sizeof(*q));
q->read_sets = xmalloc(size * sizeof(q->read_sets[0]));
q->size = size;
q->front = 0;
if (full) {
for (size_t i = 0; i < size; i++)
q->read_sets[i] = new_read_set(reads_per_set, true);
q->filled = size;
} else {
for (size_t i = 0; i < size; i++)
q->read_sets[i] = NULL;
q->filled = 0;
}
q->terminated = false;
init_mutex(&q->lock);
init_cond(&q->read_set_avail_cond);
init_cond(&q->space_avail_cond);
return q;
}
static void
free_read_queue(struct read_queue *q)
{
if (q) {
size_t filled = q->filled;
size_t i = q->front;
while (filled--) {
free_read_set(q->read_sets[i]);
i = (i + 1) % q->size;
}
xfree(q->read_sets, q->size * sizeof(q->read_sets[0]));
pthread_mutex_destroy(&q->lock);
pthread_cond_destroy(&q->read_set_avail_cond);
pthread_cond_destroy(&q->space_avail_cond);
xfree(q, sizeof(*q));
}
}
/* Retrieves the next available read set from the queue, blocking until one is
* available. Or, returns NULL if the queue has terminated and no more read
* sets are available. */
static struct read_set *
read_queue_get(struct read_queue *q)
{
struct read_set *s;
pthread_mutex_lock(&q->lock);
while (q->filled == 0 && !q->terminated)
pthread_cond_wait(&q->read_set_avail_cond, &q->lock);
if (q->filled != 0) {
s = q->read_sets[q->front];
q->front = (q->front + 1) % q->size;
q->filled--;
pthread_cond_signal(&q->space_avail_cond);
} else
s = NULL;
pthread_mutex_unlock(&q->lock);
return s;
}
/* Put a read set into the queue, blocking until there is an empty space
* available. */
static void
read_queue_put(struct read_queue *q, struct read_set *s)
{
pthread_mutex_lock(&q->lock);
while (q->filled == q->size)
pthread_cond_wait(&q->space_avail_cond, &q->lock);
q->read_sets[(q->front + q->filled) % q->size] = s;
q->filled++;
pthread_cond_signal(&q->read_set_avail_cond);
pthread_mutex_unlock(&q->lock);
}
/* "Terminate" the specified queue. This will cause read_queue_get() to return
* NULL once the queue is empty. */
static void
read_queue_terminate(struct read_queue *q)
{
pthread_mutex_lock(&q->lock);
q->terminated = true;
pthread_cond_broadcast(&q->read_set_avail_cond);
pthread_mutex_unlock(&q->lock);
}
struct reader_params {
struct input_stream *in;
const struct read_format_params *iparams;
bool verbose;
struct read_queue *avail_read_q;
struct read_queue *unprocessed_read_1_q;
struct read_queue *unprocessed_read_2_q;
struct read_queue *unpaired_read_q;
};
struct writer_params {
struct output_stream *out;
const struct read_format_params *oparams;
struct read_queue *to_write_queue_1;
struct read_queue *to_write_queue_2;
struct read_queue *avail_queue;
};
static void
processed(uint64_t pair_no)
{
info("Processed %"PRIu64" read pairs", pair_no);
}
static void *
reader1_proc(void *_params)
{
struct reader_params *params = _params;
uint64_t pair_no = 0;
uint64_t line_no = 1;
struct read_set *s;
for (;;) {
s = read_queue_get(params->avail_read_q);
for (s->filled = 0;
s->filled < s->num_reads;
s->filled++)
{
if (!load_read(params->in, params->iparams,
s->reads[s->filled], &line_no))
goto eof_reached;
if (params->verbose && ++pair_no % 25000 == 0)
processed(pair_no);
}
/* Note: although we're placing the set in
* 'unprocessed_read_1_q', the set may in fact be read 2, not
* read 1. This procedure works the same way in both cases. */
read_queue_put(params->unprocessed_read_1_q, s);
}
eof_reached:
if (params->verbose && pair_no % 25000 != 0)
processed(pair_no);
if (s->filled)
read_queue_put(params->unprocessed_read_1_q, s);
else
free_read_set(s);
read_queue_terminate(params->unprocessed_read_1_q);
free_input_stream(params->in);
xfree(params, sizeof(*params));
return NULL;
}
static void *
reader2_proc(void *_params)
{
struct reader_params *params = _params;
struct read_set *s_read1, *s_read2, *s_unpaired = NULL;
uint64_t pair_no = 0;
uint64_t line_no = 1;
s_read1 = read_queue_get(params->avail_read_q);
s_read1->filled = 0;
s_read2 = read_queue_get(params->avail_read_q);
s_read2->filled = 0;
if (params->unpaired_read_q) {
s_unpaired = read_queue_get(params->avail_read_q);
s_unpaired->filled = 0;
}
while (load_read_pair(params->in, params->iparams,
s_read1->reads[s_read1->filled],
s_read2->reads[s_read1->filled],
&line_no))
{
if (s_read2->reads[s_read1->filled]->seq_len) {
/* Read pair. */
++s_read1->filled;
++s_read2->filled;
if (s_read1->filled == s_read1->num_reads) {
read_queue_put(params->unprocessed_read_1_q, s_read1);
read_queue_put(params->unprocessed_read_2_q, s_read2);
s_read1 = read_queue_get(params->avail_read_q);
s_read1->filled = 0;
s_read2 = read_queue_get(params->avail_read_q);
s_read2->filled = 0;
}
if (params->verbose && ++pair_no % 25000 == 0)
processed(pair_no);
} else if (params->unpaired_read_q) {
/* Actually an unpaired read. */
struct read *r = s_read1->reads[s_read1->filled];
s_read1->reads[s_read1->filled] =
s_unpaired->reads[s_unpaired->filled];
s_unpaired->reads[s_unpaired->filled] = r;
++s_unpaired->filled;
if (s_unpaired->filled == s_unpaired->num_reads) {
s_unpaired->type = READS_UNPAIRED;
read_queue_put(params->unpaired_read_q, s_unpaired);
s_unpaired = read_queue_get(params->avail_read_q);
s_unpaired->filled = 0;
}
}
}
if (params->verbose && pair_no % 25000 != 0)
processed(pair_no);
if (s_read1->filled)
read_queue_put(params->unprocessed_read_1_q, s_read1);
else
free_read_set(s_read1);
if (s_read2->filled)
read_queue_put(params->unprocessed_read_2_q, s_read2);
else
free_read_set(s_read2);
if (s_unpaired) {
if (s_unpaired->filled) {
s_unpaired->type = READS_UNPAIRED;
read_queue_put(params->unpaired_read_q, s_unpaired);
} else {
free_read_set(s_unpaired);
}
}
read_queue_terminate(params->unprocessed_read_1_q);
read_queue_terminate(params->unprocessed_read_2_q);
free_input_stream(params->in);
xfree(params, sizeof(*params));
return NULL;
}
static void *
writer_proc(void *_params)
{
struct writer_params *params = _params;
struct read_set *s1, *s2;
for (;;) {
s1 = read_queue_get(params->to_write_queue_1);
if (!s1)
break;
if (params->to_write_queue_2 && s1->type == READS_UNCOMBINED) {
/* Get other read in uncombined pair */
s2 = read_queue_get(params->to_write_queue_2);
assert(s2);
assert(s1->filled == s2->filled);
} else {
s2 = NULL;
}
for (size_t i = 0; i < s1->filled; i++) {
if (s2)
write_read_pair(params->out, params->oparams,
s1->reads[i], s2->reads[i]);
else
write_read(params->out, params->oparams,
s1->reads[i]);
}
read_queue_put(params->avail_queue, s1);
if (s2)
read_queue_put(params->avail_queue, s2);
}
free_output_stream(params->out);
xfree(params, sizeof(*params));
return NULL;
}
static pthread_t
start_reader2(struct input_stream *in,
const struct read_format_params *iparams,
bool verbose,
struct read_queue *avail_read_q,
struct read_queue *unprocessed_read_1_q,
struct read_queue *unprocessed_read_2_q,
struct read_queue *unpaired_read_q)
{
struct reader_params *params = xmalloc(sizeof(*params));
params->in = in;
params->iparams = iparams;
params->verbose = verbose;
params->avail_read_q = avail_read_q;
params->unprocessed_read_1_q = unprocessed_read_1_q;
params->unprocessed_read_2_q = unprocessed_read_2_q;
params->unpaired_read_q = unpaired_read_q;
return create_thread(reader2_proc, params);
}
static pthread_t
start_reader1(struct input_stream *in,
const struct read_format_params *iparams,
bool verbose,
struct read_queue *avail_read_q,
struct read_queue *unprocessed_read_q)
{
struct reader_params *params = xmalloc(sizeof(*params));
params->in = in;
params->iparams = iparams;
params->verbose = verbose;
params->avail_read_q = avail_read_q;
params->unprocessed_read_1_q = unprocessed_read_q;
params->unprocessed_read_2_q = NULL;
params->unpaired_read_q = NULL;
return create_thread(reader1_proc, params);
}
static pthread_t
start_writer2(struct output_stream *out,
const struct read_format_params *oparams,
struct read_queue *to_write_queue_1,
struct read_queue *to_write_queue_2,
struct read_queue *avail_queue)
{
struct writer_params *params = xmalloc(sizeof(*params));
params->out = out;
params->oparams = oparams;
params->to_write_queue_1 = to_write_queue_1;
params->to_write_queue_2 = to_write_queue_2;
params->avail_queue = avail_queue;
return create_thread(writer_proc, params);
}
static pthread_t
start_writer1(struct output_stream *out,
const struct read_format_params *oparams,
struct read_queue *to_write_queue,
struct read_queue *avail_queue)
{
return start_writer2(out, oparams, to_write_queue, NULL, avail_queue);
}
struct read_io_handle {
pthread_t reader_1;
pthread_t reader_2;
pthread_t writer_1;
pthread_t writer_2;
pthread_t writer_3;
bool reader_1_started;
bool reader_2_started;
bool writer_1_started;
bool writer_2_started;
bool writer_3_started;
unsigned combiner_threads_remaining;
pthread_mutex_t combiner_threads_remaining_mutex;
struct read_queue *avail_read_q;
struct read_queue *unprocessed_read_1_q;
struct read_queue *unprocessed_read_2_q;
struct read_queue *combined_read_q;
struct read_queue *uncombined_read_1_q;
struct read_queue *uncombined_read_2_q;
pthread_mutex_t get_unprocessed_pair_mutex;
pthread_mutex_t put_uncombined_pair_mutex;
};
/* Retrieves some unprocessed read pairs from the I/O layer. Returns %true iff
* more reads were available; returns false if end of file was reached. */
bool
get_unprocessed_read_pairs(struct read_io_handle *h, struct read_set **s1_p,
struct read_set **s2_p)
{
/* get_unprocessed_pair_mutex ensures the reads are paired up correctly.
*/
struct read_set *s1, *s2;
pthread_mutex_lock(&h->get_unprocessed_pair_mutex);
s1 = read_queue_get(h->unprocessed_read_1_q);
s2 = read_queue_get(h->unprocessed_read_2_q);
pthread_mutex_unlock(&h->get_unprocessed_pair_mutex);
if (s1 && s2) {
if (s1->filled != s2->filled)
goto mismatch;
*s1_p = s1;
*s2_p = s2;
return true;
}
if (s1 || s2)
goto mismatch;
return false;
mismatch:
fatal_error("Input files do not contain the same number of reads");
}
/* Submits a set of combined reads to the I/O layer to be written. */
void
put_combined_reads(struct read_io_handle *h, struct read_set *s)
{
s->type = READS_COMBINED;
read_queue_put(h->combined_read_q, s);
}
/* Submits a set of uncombined read pairs to the I/O layer to be written. */
void
put_uncombined_read_pairs(struct read_io_handle *h,
struct read_set *s1, struct read_set *s2)
{
s1->type = READS_UNCOMBINED;
s2->type = READS_UNCOMBINED;
/* put_unprocessed_pair_mutex ensures the reads are paired up correctly.
*/
pthread_mutex_lock(&h->put_uncombined_pair_mutex);
read_queue_put(h->uncombined_read_1_q, s1);
read_queue_put(h->uncombined_read_2_q, s2);
pthread_mutex_unlock(&h->put_uncombined_pair_mutex);
}
/* Retrieve a read set (full of read structures) that is ready to be reused. */
struct read_set *
get_avail_read_set(struct read_io_handle *h)
{
struct read_set *s;
s = read_queue_get(h->avail_read_q);
s->filled = 0;
return s;
}
/* Return a set of read pairs to the pool for reuse. */
void
put_avail_read_pairs(struct read_io_handle *h,
struct read_set *s1, struct read_set *s2)
{
read_queue_put(h->avail_read_q, s1);
read_queue_put(h->avail_read_q, s2);
}
/* Notify the I/O layer that a combiner thread has terminated.
* When all the combiner threads have been terminated, the writers will shut
* down. */
void
notify_combiner_terminated(struct read_io_handle *h)
{
pthread_mutex_lock(&h->combiner_threads_remaining_mutex);
if (--h->combiner_threads_remaining == 0) {
/* Terminate the writer queues. */
read_queue_terminate(h->combined_read_q);
if (h->uncombined_read_1_q != h->avail_read_q &&
h->uncombined_read_1_q != h->combined_read_q)
read_queue_terminate(h->uncombined_read_1_q);
if (h->uncombined_read_2_q != h->avail_read_q)
read_queue_terminate(h->uncombined_read_2_q);
}
pthread_mutex_unlock(&h->combiner_threads_remaining_mutex);
}
struct read_set *
new_empty_read_set(struct read_io_handle *h)
{
return new_read_set(BASE_READS_PER_READ_SET +
(h->combiner_threads_remaining * PERTHREAD_READS_PER_READ_SET),
false);
}
/* Starts the FLASH I/O layer, which is responsible for input/output of reads.
*
* If @in_2 is not NULL, then @in_1 and @in_2 are the input files for read 1 and
* read 2 of the pairs, respectively. Otherwise @in_1 contains both read 1 and
* read 2 of the pairs interleaved.
*
* Either 1, 2, or 3 output files may be specified --- see below for more
* details. */
struct read_io_handle *
start_readers_and_writers(struct input_stream *in_1,
struct input_stream *in_2,
struct output_stream *out_combined,
struct output_stream *out_uncombined_1,
struct output_stream *out_uncombined_2,
const struct read_format_params *iparams,
const struct read_format_params *oparams,
unsigned num_combiner_threads,
bool verbose)
{
assert(in_1 != NULL);
assert(out_combined != NULL &&
(out_uncombined_1 != NULL || out_uncombined_2 == NULL));
assert(iparams != NULL);
assert(oparams != NULL);
assert(num_combiner_threads > 0);
if (verbose)
info("Starting reader and writer threads");
struct read_io_handle *h = xzalloc(sizeof(*h));
size_t reads_per_set = BASE_READS_PER_READ_SET +
(num_combiner_threads * PERTHREAD_READS_PER_READ_SET);
size_t queue_size = num_combiner_threads * QUEUE_SIZE_PER_THREAD;
h->avail_read_q = new_read_queue(queue_size * 3, reads_per_set, true);
h->unprocessed_read_1_q = new_read_queue(queue_size, reads_per_set, false);
h->unprocessed_read_2_q = new_read_queue(queue_size, reads_per_set, false);
h->combined_read_q = new_read_queue(queue_size, reads_per_set, false);
init_mutex(&h->get_unprocessed_pair_mutex);
init_mutex(&h->put_uncombined_pair_mutex);
h->combiner_threads_remaining = num_combiner_threads;
init_mutex(&h->combiner_threads_remaining_mutex);
/* Start writers. */
if (out_uncombined_2) {
/* All 3 output files specified: one for combined reads, one for
* read 1 of uncombined pairs, and one for read 2 of uncombined
* pairs. */
h->uncombined_read_1_q = new_read_queue(queue_size, reads_per_set, false);
h->uncombined_read_2_q = new_read_queue(queue_size, reads_per_set, false);
h->writer_1 = start_writer1(out_combined, oparams,
h->combined_read_q,
h->avail_read_q);
h->writer_1_started = true;
h->writer_2 = start_writer1(out_uncombined_1, oparams,
h->uncombined_read_1_q,
h->avail_read_q);
h->writer_2_started = true;
h->writer_3 = start_writer1(out_uncombined_2, oparams,
h->uncombined_read_2_q,
h->avail_read_q);
h->writer_3_started = true;
} else if (out_uncombined_1) {
/* 2 output files specified: one for combined reads and one for
* uncombined pairs. */
h->uncombined_read_1_q = new_read_queue(queue_size, reads_per_set, false);
h->uncombined_read_2_q = new_read_queue(queue_size, reads_per_set, false);
h->writer_1 = start_writer1(out_combined, oparams,
h->combined_read_q,
h->avail_read_q);
h->writer_1_started = true;
h->writer_2 = start_writer2(out_uncombined_1, oparams,
h->uncombined_read_1_q,
h->uncombined_read_2_q,
h->avail_read_q);
h->writer_2_started = true;
} else {
/* 1 output file specified: combined reads, plus optionally
* uncombined pairs if supported by the format. */
if (read_format_supports_mixed_reads(oparams)) {
h->uncombined_read_1_q = h->combined_read_q;
h->uncombined_read_2_q = new_read_queue(queue_size, reads_per_set, false);
h->writer_1 = start_writer2(out_combined, oparams,
h->combined_read_q,
h->uncombined_read_2_q,
h->avail_read_q);
h->writer_1_started = true;
} else {
/* Can only output combined reads.
* Reroute uncombined reads back to the queue of
* available (for reuse) reads. */
h->uncombined_read_1_q = h->avail_read_q;
h->uncombined_read_2_q = h->avail_read_q;
h->writer_1 = start_writer1(out_combined, oparams,
h->combined_read_q,
h->avail_read_q);
h->writer_1_started = true;
}
}
/* Start readers. */
if (in_2) {
/* Two input files: read 1 in each pair comes from the first
* file, and read 2 in each pair comes from the second file.
*
* Only set @verbose for one. */
h->reader_1 = start_reader1(in_1,
iparams,
verbose,
h->avail_read_q,
h->unprocessed_read_1_q);
h->reader_1_started = true;
h->reader_2 = start_reader1(in_2,
iparams,
false,
h->avail_read_q,
h->unprocessed_read_2_q);
h->reader_2_started = true;
} else {
/* One input file: both reads in each pair come from the same
* file. */
struct read_queue *unpaired_read_q = NULL;
if (read_format_supports_mixed_reads(iparams)) {
if (!out_uncombined_2 &&
read_format_supports_mixed_reads(oparams))
unpaired_read_q = h->uncombined_read_1_q;
else
warning("Any unpaired reads in the input file "
"will be ignored!\n\t"
"Use tab-delimited output to "
"preserve them.");
}
h->reader_1 = start_reader2(in_1,
iparams,
verbose,
h->avail_read_q,
h->unprocessed_read_1_q,
h->unprocessed_read_2_q,
unpaired_read_q);
h->reader_1_started = true;
}
return h;
}
/* Terminates the FLASH I/O layer, which is responsible for input/output of
* reads.
*/
void
stop_readers_and_writers(struct read_io_handle *h)
{
if (h->reader_1_started)
join_thread(h->reader_1);
if (h->reader_2_started)
join_thread(h->reader_2);
if (h->writer_1_started)
join_thread(h->writer_1);
if (h->writer_2_started)
join_thread(h->writer_2);
if (h->writer_3_started)
join_thread(h->writer_3);
free_read_queue(h->avail_read_q);
free_read_queue(h->unprocessed_read_1_q);
free_read_queue(h->unprocessed_read_2_q);
free_read_queue(h->combined_read_q);
if (h->uncombined_read_1_q != h->avail_read_q &&
h->uncombined_read_1_q != h->combined_read_q)
free_read_queue(h->uncombined_read_1_q);
if (h->uncombined_read_2_q != h->avail_read_q)
free_read_queue(h->uncombined_read_2_q);
pthread_mutex_destroy(&h->put_uncombined_pair_mutex);
pthread_mutex_destroy(&h->get_unprocessed_pair_mutex);
pthread_mutex_destroy(&h->combiner_threads_remaining_mutex);
xfree(h, sizeof(*h));
}
|