1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
|
/*
* This file is part of the flashrom project.
*
* Copyright (C) 2000 Silicon Integrated System Corporation
* Copyright (C) 2000 Ronald G. Minnich <rminnich@gmail.com>
* Copyright (C) 2005-2009 coresystems GmbH
* Copyright (C) 2006-2009 Carl-Daniel Hailfinger
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#ifndef __FLASH_H__
#define __FLASH_H__ 1
#include <inttypes.h>
#include <stdio.h>
#include <stdint.h>
#include <stddef.h>
#include <stdarg.h>
#include <stdbool.h>
#if IS_WINDOWS
#include <windows.h>
#undef min
#undef max
#endif
#include "libflashprog.h"
#include "layout.h"
#include "writeprotect.h"
#define KiB (1024)
#define MiB (1024 * KiB)
#define BIT(x) (1<<(x))
/* Assumes `n` and `a` are at most 64-bit wide (to avoid typeof() operator). */
#define ALIGN_DOWN(n, a) ((n) & ~((uint64_t)(a) - 1))
#define ERROR_PTR ((void*)-1)
/* Error codes */
#define ERROR_OOM -100
#define TIMEOUT_ERROR -101
/* TODO: check using code for correct usage of types */
typedef uintptr_t chipaddr;
#define PRIxPTR_WIDTH ((int)(sizeof(uintptr_t)*2))
int register_shutdown(int (*function) (void *data), void *data);
int shutdown_free(void *data);
void programmer_delay(unsigned int usecs);
#define ARRAY_SIZE(a) (sizeof(a) / sizeof((a)[0]))
enum chipbustype {
BUS_NONE = 0,
BUS_PARALLEL = 1 << 0,
BUS_LPC = 1 << 1,
BUS_FWH = 1 << 2,
BUS_SPI = 1 << 3,
BUS_PROG = 1 << 4,
BUS_NONSPI = BUS_PARALLEL | BUS_LPC | BUS_FWH,
};
/*
* The following enum defines possible write granularities of flash chips. These tend to reflect the properties
* of the actual hardware not necessarily the write function(s) defined by the respective struct flashchip.
* The latter might (and should) be more precisely specified, e.g. they might bail out early if their execution
* would result in undefined chip contents.
*/
enum write_granularity {
/* We assume 256 byte granularity by default. */
write_gran_256bytes = 0,/* If less than 256 bytes are written, the unwritten bytes are undefined. */
write_gran_1bit, /* Each bit can be cleared individually. */
write_gran_1byte, /* A byte can be written once. Further writes to an already written byte cause
* its contents to be either undefined or to stay unchanged. */
write_gran_128bytes, /* If less than 128 bytes are written, the unwritten bytes are undefined. */
write_gran_264bytes, /* If less than 264 bytes are written, the unwritten bytes are undefined. */
write_gran_512bytes, /* If less than 512 bytes are written, the unwritten bytes are undefined. */
write_gran_528bytes, /* If less than 528 bytes are written, the unwritten bytes are undefined. */
write_gran_1024bytes, /* If less than 1024 bytes are written, the unwritten bytes are undefined. */
write_gran_1056bytes, /* If less than 1056 bytes are written, the unwritten bytes are undefined. */
write_gran_1byte_implicit_erase, /* EEPROMs and other chips with implicit erase and 1-byte writes. */
};
size_t gran_to_bytes(enum write_granularity);
/*
* How many different contiguous runs of erase blocks with one size each do
* we have for a given erase function?
*/
#define NUM_ERASEREGIONS 5
/*
* How many different erase functions do we have per chip?
* Macronix MX25L25635F has 8 different functions.
*/
#define NUM_ERASEFUNCTIONS 8
#define MAX_CHIP_RESTORE_FUNCTIONS 4
/* Feature bits used for non-SPI only */
#define FEATURE_LONG_RESET (0 << 4)
#define FEATURE_SHORT_RESET (1 << 4)
#define FEATURE_EITHER_RESET FEATURE_LONG_RESET
#define FEATURE_RESET_MASK (FEATURE_LONG_RESET | FEATURE_SHORT_RESET)
#define FEATURE_ADDR_FULL (0 << 2)
#define FEATURE_ADDR_MASK (3 << 2)
#define FEATURE_ADDR_2AA (1 << 2)
#define FEATURE_ADDR_AAA (2 << 2)
#define FEATURE_ADDR_SHIFTED (1 << 5)
/* Feature bits used for SPI only */
#define FEATURE_WRSR_EWSR (1 << 6)
#define FEATURE_WRSR_WREN (1 << 7)
#define FEATURE_WRSR_EITHER (FEATURE_WRSR_EWSR | FEATURE_WRSR_WREN)
#define FEATURE_OTP (1 << 8)
#define FEATURE_FAST_READ (1 << 9) /**< Supports fast-read instruction 0x0b, 8 dummy cycles */
#define FEATURE_4BA_ENTER (1 << 10) /**< Can enter/exit 4BA mode with instructions 0xb7/0xe9 w/o WREN */
#define FEATURE_4BA_ENTER_WREN (1 << 11) /**< Can enter/exit 4BA mode with instructions 0xb7/0xe9 after WREN */
#define FEATURE_4BA_ENTER_EAR7 (1 << 12) /**< Can enter/exit 4BA mode by setting bit7 of the ext addr reg */
#define FEATURE_4BA_EAR_C5C8 (1 << 13) /**< Regular 3-byte operations can be used by writing the most
significant address byte into an extended address register
(using 0xc5/0xc8 instructions). */
#define FEATURE_4BA_EAR_1716 (1 << 14) /**< Like FEATURE_4BA_EAR_C5C8 but with 0x17/0x16 instructions. */
#define FEATURE_4BA_READ (1 << 15) /**< Native 4BA read instruction (0x13) is supported. */
#define FEATURE_4BA_FAST_READ (1 << 16) /**< Native 4BA fast read instruction (0x0c) is supported. */
#define FEATURE_4BA_WRITE (1 << 17) /**< Native 4BA byte program (0x12) is supported. */
/* 4BA Shorthands */
#define FEATURE_4BA_EAR_ANY (FEATURE_4BA_EAR_C5C8 | FEATURE_4BA_EAR_1716)
#define FEATURE_4BA_NATIVE (FEATURE_4BA_READ | FEATURE_4BA_FAST_READ | FEATURE_4BA_WRITE)
#define FEATURE_4BA (FEATURE_4BA_ENTER | FEATURE_4BA_EAR_C5C8 | FEATURE_4BA_NATIVE)
#define FEATURE_4BA_WREN (FEATURE_4BA_ENTER_WREN | FEATURE_4BA_EAR_C5C8 | FEATURE_4BA_NATIVE)
#define FEATURE_4BA_EAR7 (FEATURE_4BA_ENTER_EAR7 | FEATURE_4BA_EAR_C5C8 | FEATURE_4BA_NATIVE)
/*
* Most flash chips are erased to ones and programmed to zeros. However, some
* other flash chips, such as the ENE KB9012 internal flash, work the opposite way.
*/
#define FEATURE_ERASED_ZERO (1 << 18)
#define FEATURE_NO_ERASE (1 << 19)
#define FEATURE_WRSR_EXT2 (1 << 20)
#define FEATURE_WRSR2 (1 << 21)
#define FEATURE_WRSR_EXT3 ((1 << 22) | FEATURE_WRSR_EXT2)
#define FEATURE_WRSR3 (1 << 23)
#define FEATURE_FAST_READ_DOUT (1 << 24) /**< Supports fast-read dual-output 0x3b, 8 dummy cycles */
#define FEATURE_FAST_READ_DIO (1 << 25) /**< Supports fast-read dual-in/out 0xbb, 4 dummy cycles */
#define FEATURE_FAST_READ_QOUT (1 << 26) /**< Supports fast-read quad-output 0x6b, 8 dummy cycles */
#define FEATURE_FAST_READ_QIO (1 << 27) /**< Supports fast-read quad-in/out 0xeb, 6 dummy cycles */
#define FEATURE_FAST_READ_QPI4B (1 << 28) /**< Supports native 4BA fast-read quad-i/o 0xec in QPI mode */
#define FEATURE_QPI_35_F5 (1 << 29) /**< Can enter/exit QPI mode with instructions 0x35/0xf5 */
#define FEATURE_QPI_38_FF (1 << 30) /**< Can enter/exit QPI mode with instructions 0x38/0xff */
#define FEATURE_SET_READ_PARAMS (1u << 31) /**< SRP instruction 0xc0 for dummy cycles and burst length */
/* Multi-I/O Shorthands */
#define FEATURE_DIO (FEATURE_FAST_READ | \
FEATURE_FAST_READ_DOUT | FEATURE_FAST_READ_DIO)
#define FEATURE_QIO (FEATURE_DIO | \
FEATURE_FAST_READ_QOUT | FEATURE_FAST_READ_QIO)
#define FEATURE_QPI_35 (FEATURE_QIO | FEATURE_QPI_35_F5)
#define FEATURE_QPI_38 (FEATURE_QIO | FEATURE_QPI_38_FF)
#define FEATURE_QPI_SRP (FEATURE_QPI_38 | FEATURE_SET_READ_PARAMS)
/* Catch all dual/quad features to be able to mask them */
#define FEATURE_ANY_DUAL (FEATURE_FAST_READ_DOUT | FEATURE_FAST_READ_DIO)
#define FEATURE_ANY_QUAD (FEATURE_QPI_35_F5 | FEATURE_QPI_38_FF | \
FEATURE_FAST_READ_QOUT | FEATURE_FAST_READ_QIO | FEATURE_FAST_READ_QPI4B)
#define ERASED_VALUE(flash) (((flash)->chip->feature_bits & FEATURE_ERASED_ZERO) ? 0x00 : 0xff)
enum test_state {
OK = 0,
NT = 1, /* Not tested */
BAD, /* Known to not work */
DEP, /* Support depends on configuration (e.g. Intel flash descriptor) */
NA, /* Not applicable (e.g. write support on ROM chips) */
};
#define TEST_UNTESTED (struct tested){ .probe = NT, .read = NT, .erase = NT, .write = NT, .wp = NT }
#define TEST_OK_PROBE (struct tested){ .probe = OK, .read = NT, .erase = NT, .write = NT, .wp = NT }
#define TEST_OK_PR (struct tested){ .probe = OK, .read = OK, .erase = NT, .write = NT, .wp = NT }
#define TEST_OK_PRE (struct tested){ .probe = OK, .read = OK, .erase = OK, .write = NT, .wp = NT }
#define TEST_OK_PREW (struct tested){ .probe = OK, .read = OK, .erase = OK, .write = OK, .wp = NT }
#define TEST_OK_PREWB (struct tested){ .probe = OK, .read = OK, .erase = OK, .write = OK, .wp = OK }
#define TEST_BAD_PROBE (struct tested){ .probe = BAD, .read = NT, .erase = NT, .write = NT, .wp = NT }
#define TEST_BAD_PR (struct tested){ .probe = BAD, .read = BAD, .erase = NT, .write = NT, .wp = NT }
#define TEST_BAD_PRE (struct tested){ .probe = BAD, .read = BAD, .erase = BAD, .write = NT, .wp = NT }
#define TEST_BAD_PREW (struct tested){ .probe = BAD, .read = BAD, .erase = BAD, .write = BAD, .wp = NT }
#define TEST_BAD_PREWB (struct tested){ .probe = BAD, .read = BAD, .erase = BAD, .write = BAD, .wp = BAD }
struct flashprog_flashctx;
#define flashctx flashprog_flashctx /* TODO: Agree on a name and convert all occurrences. */
typedef int (erasefunc_t)(struct flashctx *flash, unsigned int addr, unsigned int blocklen);
typedef int (readfunc_t)(struct flashctx *flash, uint8_t *dst, unsigned int start, unsigned int len);
enum flash_reg {
INVALID_REG = 0,
STATUS1,
STATUS2,
STATUS3,
SECURITY,
CONFIG,
MAX_REGISTERS
};
struct reg_bit_info {
/* Register containing the bit */
enum flash_reg reg;
/* Bit index within register */
uint8_t bit_index;
/*
* Writability of the bit. RW does not guarantee the bit will be
* writable, for example if status register protection is enabled.
*/
enum {
RO, /* Read only */
RW, /* Readable and writable */
OTP /* One-time programmable */
} writability;
};
struct wp_bits;
enum preparation_steps {
PREPARE_PROBE,
PREPARE_FULL,
};
struct flashchip {
const char *vendor;
const char *name;
enum chipbustype bustype;
/*
* With 32bit manufacture_id and model_id we can cover IDs up to
* (including) the 4th bank of JEDEC JEP106W Standard Manufacturer's
* Identification code.
*/
uint32_t manufacture_id;
uint32_t model_id;
/* Total chip size in kilobytes */
unsigned int total_size;
/* Chip page size in bytes */
unsigned int page_size;
int feature_bits;
/* Indicate how well flashprog supports different operations of this flash chip. */
struct tested {
enum test_state probe;
enum test_state read;
enum test_state erase;
enum test_state write;
enum test_state wp;
} tested;
/*
* Group chips that have common command sets. This should ensure that
* no chip gets confused by a probing command for a very different class
* of chips.
*/
enum {
/* SPI25 is very common. Keep it at zero so we don't have
to specify it for each and every chip in the database.*/
SPI25 = 0,
SPI25_EEPROM,
SPI95,
SPI_EDI,
} spi_cmd_set;
int (*probe) (struct flashctx *flash);
/* Delay after "enter/exit ID mode" commands in microseconds.
* NB: negative values have special meanings, see TIMING_* below.
*/
signed int probe_timing;
/*
* Erase blocks and associated erase function. Any chip erase function
* is stored as chip-sized virtual block together with said function.
* The first one that fits will be chosen. There is currently no way to
* influence that behaviour. For testing just comment out the other
* elements or set the function pointer to NULL.
*/
struct block_eraser {
struct eraseblock {
unsigned int size; /* Eraseblock size in bytes */
unsigned int count; /* Number of contiguous blocks with that size */
} eraseblocks[NUM_ERASEREGIONS];
/* a block_erase function should try to erase one block of size
* 'blocklen' at address 'blockaddr' and return 0 on success. */
int (*block_erase) (struct flashctx *flash, unsigned int blockaddr, unsigned int blocklen);
} block_erasers[NUM_ERASEFUNCTIONS];
int (*printlock) (struct flashctx *flash);
int (*unlock) (struct flashctx *flash);
int (*write) (struct flashctx *flash, const uint8_t *buf, unsigned int start, unsigned int len);
int (*read) (struct flashctx *flash, uint8_t *buf, unsigned int start, unsigned int len);
struct voltage {
uint16_t min;
uint16_t max;
} voltage;
enum write_granularity gran;
struct reg_bit_map {
/* Status register protection bit (SRP) */
struct reg_bit_info srp;
/* Status register lock bit (SRP) */
struct reg_bit_info srl;
/*
* Note: some datasheets refer to configuration bits that
* function like TB/SEC/CMP bits as BP bits (e.g. BP3 for a bit
* that functions like TB).
*
* As a convention, any config bit that functions like a
* TB/SEC/CMP bit should be assigned to the respective
* tb/sec/cmp field in this structure, even if the datasheet
* uses a different name.
*/
/* Block protection bits (BP) */
/* Extra element for terminator */
struct reg_bit_info bp[MAX_BP_BITS + 1];
/* Top/bottom protection bit (TB) */
struct reg_bit_info tb;
/* Sector/block protection bit (SEC) */
struct reg_bit_info sec;
/* Complement bit (CMP) */
struct reg_bit_info cmp;
/* Write Protect Selection (per sector protection when set) */
struct reg_bit_info wps;
/* Quad Enable bit (QE) */
struct reg_bit_info qe;
/*
* Dummy cycles config (DC)
*
* These can control the amount of dummy cycles for various
* SPI and QPI commands. We assume that the bits default to
* `0' after reset, and that the defaults for SPI commands
* match the values that non-configurable chips use (cf.
* comment on `union dummy_cycles' below).
*/
struct reg_bit_info dc[2];
} reg_bits;
/*
* SPI modes are assumed to use standard dummy cycles as follows:
* o fast read: 8
* o fast read dual-output: 8
* o fast read dual-in/out: 4
* o fast read quad-output: 8
* o fast read quad-in/out: 6
*
* In QPI mode, ...
*/
union {
/* ... use either fixed values per instruction: */
struct {
uint16_t qpi_fast_read:4; /* 0x0b instruction */
uint16_t qpi_fast_read_qio:4; /* 0xeb instruction */
};
/*
* or configurable ones where 2 bits in a status/parameter
* register encode the number of cycles (00 entry is assumed
* as default after reset; used with FEATURE_SET_READ_PARAMS
* or DC register bits):
*/
struct {
uint16_t clks00:4;
uint16_t clks01:4;
uint16_t clks10:4;
uint16_t clks11:4;
} qpi_read_params;
/*
* Whenever FEATURE_SET_READ_PARAMS is set or DC bits
* are specified, `.qpi_read_params` will be used with
* the fast read quad-i/o (0xeb) instruction.
* When not, fast read (0x0b) and fast read quad-i/o (0xeb)
* instructions will be enabled when `.qpi_fast_read` and
* `.qpi_fast_read_qio` are not `0`, respectively.
*/
} dummy_cycles;
/* Write WP configuration to the chip */
enum flashprog_wp_result (*wp_write_cfg)(struct flashctx *, const struct flashprog_wp_cfg *);
/* Read WP configuration from the chip */
enum flashprog_wp_result (*wp_read_cfg)(struct flashprog_wp_cfg *, struct flashctx *);
/* Get a list of protection ranges supported by the chip */
enum flashprog_wp_result (*wp_get_ranges)(struct flashprog_wp_ranges **, struct flashctx *);
/* Function that takes a set of WP config bits (e.g. BP, SEC, TB, etc) */
/* and determines what protection range they select. */
void (*decode_range)(size_t *start, size_t *len, const struct wp_bits *, size_t chip_len);
int (*prepare_access)(struct flashctx *, enum preparation_steps);
void (*finish_access)(struct flashctx *);
};
typedef int (*chip_restore_fn_cb_t)(struct flashctx *flash, uint8_t status);
struct flashprog_progress {
flashprog_progress_callback *callback;
enum flashprog_progress_stage stage;
size_t current;
size_t total;
void *user_data;
};
struct spi_read_op;
struct flashprog_flashctx {
struct flashchip *chip;
/* FIXME: The memory mappings should be saved in a more structured way. */
/* The physical_* fields store the respective addresses in the physical address space of the CPU. */
uintptr_t physical_memory;
/* The virtual_* fields store where the respective physical address is mapped into flashprog's address
* space. A value equivalent to (chipaddr)ERROR_PTR indicates an invalid mapping (or none at all). */
chipaddr virtual_memory;
/* Some flash devices have an additional register space; semantics are like above. */
uintptr_t physical_registers;
chipaddr virtual_registers;
union {
struct par_master *par;
struct spi_master *spi;
struct opaque_master *opaque;
} mst;
const struct flashprog_layout *layout;
struct flashprog_layout *default_layout;
struct {
bool force;
bool force_boardmismatch;
bool verify_after_write;
bool verify_whole_chip;
bool non_volatile_wrsr;
} flags;
/* We cache the state of the extended address register (highest byte
of a 4BA for 3BA instructions) and the state of the 4BA mode here.
If possible, we enter 4BA mode early. If that fails, we make use
of the extended address register. */
int address_high_byte;
bool in_4ba_mode;
bool in_qpi_mode;
bool volatile_qe_enabled;
/* For SPI flash chips, we dynamically select the fast-read operation. */
struct spi_read_op *spi_fast_read;
int chip_restore_fn_count;
struct chip_restore_func_data {
chip_restore_fn_cb_t func;
uint8_t status;
} chip_restore_fn[MAX_CHIP_RESTORE_FUNCTIONS];
struct flashprog_progress progress;
};
/* Timing used in probe routines. ZERO is -2 to differentiate between an unset
* field and zero delay.
*
* SPI devices will always have zero delay and ignore this field.
*/
#define TIMING_FIXME -1
/* this is intentionally same value as fixme */
#define TIMING_IGNORED -1
#define TIMING_ZERO -2
extern const struct flashchip flashchips[];
extern const unsigned int flashchips_size;
/* parallel.c */
void chip_writeb(const struct flashctx *flash, uint8_t val, chipaddr addr);
void chip_writew(const struct flashctx *flash, uint16_t val, chipaddr addr);
void chip_writel(const struct flashctx *flash, uint32_t val, chipaddr addr);
void chip_writen(const struct flashctx *flash, const uint8_t *buf, chipaddr addr, size_t len);
uint8_t chip_readb(const struct flashctx *flash, const chipaddr addr);
uint16_t chip_readw(const struct flashctx *flash, const chipaddr addr);
uint32_t chip_readl(const struct flashctx *flash, const chipaddr addr);
void chip_readn(const struct flashctx *flash, uint8_t *buf, const chipaddr addr, size_t len);
/* print.c */
void print_buildinfo(void);
void print_version(void);
void print_banner(void);
int print_supported(void);
void print_supported_wiki(void);
/* helpers.c */
int flashprog_read_chunked(struct flashctx *, uint8_t *dst, unsigned int start, unsigned int len, unsigned int chunksize, readfunc_t *);
uint32_t address_to_bits(uint32_t addr);
unsigned int bitcount(unsigned long a);
#undef MIN
#define MIN(a, b) ((a) < (b) ? (a) : (b))
#undef MAX
#define MAX(a, b) ((a) > (b) ? (a) : (b))
int max(int a, int b);
int min(int a, int b);
char *strcat_realloc(char *dest, const char *src);
void tolower_string(char *str);
uint8_t reverse_byte(uint8_t x);
void reverse_bytes(uint8_t *dst, const uint8_t *src, size_t length);
#ifdef __MINGW32__
char* strtok_r(char *str, const char *delim, char **nextp);
char *strndup(const char *str, size_t size);
#endif
#if defined(__DJGPP__) || (!defined(__LIBPAYLOAD__) && !defined(HAVE_STRNLEN))
size_t strnlen(const char *str, size_t n);
#endif
/* flashprog.c */
extern const char flashprog_version[];
extern const char *chip_to_probe;
char *flashbuses_to_text(enum chipbustype bustype);
int map_flash(struct flashctx *flash);
void unmap_flash(struct flashctx *flash);
int read_memmapped(struct flashctx *flash, uint8_t *buf, unsigned int start, unsigned int len);
int erase_flash(struct flashctx *flash);
struct registered_master;
int probe_flash(struct registered_master *mst, int startchip, struct flashctx *fill_flash, int force);
int flashprog_read_range(struct flashctx *, uint8_t *buf, unsigned int start, unsigned int len);
int verify_range(struct flashctx *flash, const uint8_t *cmpbuf, unsigned int start, unsigned int len);
void emergency_help_message(void);
void list_programmers_linebreak(int startcol, int cols, int paren);
int selfcheck(void);
int read_buf_from_file(unsigned char *buf, unsigned long size, const char *filename);
int write_buf_to_file(const unsigned char *buf, unsigned long size, const char *filename);
int prepare_flash_access(struct flashctx *, bool read_it, bool write_it, bool erase_it, bool verify_it);
void finalize_flash_access(struct flashctx *);
int register_chip_restore(chip_restore_fn_cb_t func, struct flashctx *flash, uint8_t status);
/* Something happened that shouldn't happen, but we can go on. */
#define ERROR_NONFATAL 0x100
/* Something happened that shouldn't happen, we'll abort. */
#define ERROR_FATAL -0xee
#define ERROR_FLASHPROG_BUG -200
/* We reached one of the hardcoded limits of flashprog. This can be fixed by
* increasing the limit of a compile-time allocation or by switching to dynamic
* allocation.
* Note: If this warning is triggered, check first for runaway registrations.
*/
#define ERROR_FLASHPROG_LIMIT -201
/* cli_common.c */
void print_chip_support_status(const struct flashchip *chip);
/* cli_output.c */
int flashprog_print_cb(enum flashprog_log_level level, const char *fmt, va_list ap);
void flashprog_progress_cb(enum flashprog_progress_stage, size_t current, size_t total, void *user_data);
/* Let gcc and clang check for correct printf-style format strings. */
int print(enum flashprog_log_level level, const char *fmt, ...)
#ifdef __MINGW32__
# ifndef __MINGW_PRINTF_FORMAT
# define __MINGW_PRINTF_FORMAT gnu_printf
# endif
__attribute__((format(__MINGW_PRINTF_FORMAT, 2, 3)));
#else
__attribute__((format(printf, 2, 3)));
#endif
#define msg_gerr(...) print(FLASHPROG_MSG_ERROR, __VA_ARGS__) /* general errors */
#define msg_perr(...) print(FLASHPROG_MSG_ERROR, __VA_ARGS__) /* programmer errors */
#define msg_cerr(...) print(FLASHPROG_MSG_ERROR, __VA_ARGS__) /* chip errors */
#define msg_gwarn(...) print(FLASHPROG_MSG_WARN, __VA_ARGS__) /* general warnings */
#define msg_pwarn(...) print(FLASHPROG_MSG_WARN, __VA_ARGS__) /* programmer warnings */
#define msg_cwarn(...) print(FLASHPROG_MSG_WARN, __VA_ARGS__) /* chip warnings */
#define msg_ginfo(...) print(FLASHPROG_MSG_INFO, __VA_ARGS__) /* general info */
#define msg_pinfo(...) print(FLASHPROG_MSG_INFO, __VA_ARGS__) /* programmer info */
#define msg_cinfo(...) print(FLASHPROG_MSG_INFO, __VA_ARGS__) /* chip info */
#define msg_gdbg(...) print(FLASHPROG_MSG_DEBUG, __VA_ARGS__) /* general debug */
#define msg_pdbg(...) print(FLASHPROG_MSG_DEBUG, __VA_ARGS__) /* programmer debug */
#define msg_cdbg(...) print(FLASHPROG_MSG_DEBUG, __VA_ARGS__) /* chip debug */
#define msg_gdbg2(...) print(FLASHPROG_MSG_DEBUG2, __VA_ARGS__) /* general debug2 */
#define msg_pdbg2(...) print(FLASHPROG_MSG_DEBUG2, __VA_ARGS__) /* programmer debug2 */
#define msg_cdbg2(...) print(FLASHPROG_MSG_DEBUG2, __VA_ARGS__) /* chip debug2 */
#define msg_gspew(...) print(FLASHPROG_MSG_SPEW, __VA_ARGS__) /* general debug spew */
#define msg_pspew(...) print(FLASHPROG_MSG_SPEW, __VA_ARGS__) /* programmer debug spew */
#define msg_cspew(...) print(FLASHPROG_MSG_SPEW, __VA_ARGS__) /* chip debug spew */
void flashprog_progress_add(struct flashprog_flashctx *, size_t progress);
enum chipbustype get_buses_supported(void);
#endif /* !__FLASH_H__ */
|