1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
|
/*
* This file is part of the flashrom project.
*
* Copyright (C) 2000 Silicon Integrated System Corporation
* Copyright (C) 2009,2010 Carl-Daniel Hailfinger
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#ifndef __LIBPAYLOAD__
#include <stdbool.h>
#include <unistd.h>
#include <errno.h>
#include <time.h>
#include <sys/time.h>
#include <stdlib.h>
#include <limits.h>
#include "flash.h"
#include "programmer.h"
static bool use_clock_gettime = false;
#if HAVE_CLOCK_GETTIME == 1
#ifdef _POSIX_MONOTONIC_CLOCK
static clockid_t clock_id = CLOCK_MONOTONIC;
#else
static clockid_t clock_id = CLOCK_REALTIME;
#endif
static void clock_usec_delay(int usecs)
{
struct timespec now;
clock_gettime(clock_id, &now);
const long end_nsec = now.tv_nsec + usecs * 1000L;
const struct timespec end = {
end_nsec / (1000 * 1000 * 1000) + now.tv_sec,
end_nsec % (1000 * 1000 * 1000)
};
do {
clock_gettime(clock_id, &now);
} while (now.tv_sec < end.tv_sec || (now.tv_sec == end.tv_sec && now.tv_nsec < end.tv_nsec));
}
static int clock_check_res(void)
{
struct timespec res;
if (!clock_getres(clock_id, &res)) {
if (res.tv_sec == 0 && res.tv_nsec <= 100) {
msg_pinfo("Using clock_gettime for delay loops (clk_id: %d, resolution: %ldns).\n",
(int)clock_id, res.tv_nsec);
use_clock_gettime = true;
return 1;
}
} else if (clock_id != CLOCK_REALTIME && errno == EINVAL) {
/* Try again with CLOCK_REALTIME. */
clock_id = CLOCK_REALTIME;
return clock_check_res();
}
return 0;
}
#else
static inline void clock_usec_delay(int usecs) {}
static inline int clock_check_res(void) { return 0; }
#endif /* HAVE_CLOCK_GETTIME == 1 */
/* loops per microsecond */
static unsigned long micro = 1;
__attribute__ ((noinline)) void myusec_delay(unsigned int usecs)
{
unsigned long i;
for (i = 0; i < usecs * micro; i++) {
/* Make sure the compiler doesn't optimize the loop away. */
__asm__ volatile ("" : : "rm" (i) );
}
}
static unsigned long measure_os_delay_resolution(void)
{
unsigned long timeusec;
struct timeval start, end;
unsigned long counter = 0;
gettimeofday(&start, NULL);
timeusec = 0;
while (!timeusec && (++counter < 1000000000)) {
gettimeofday(&end, NULL);
timeusec = 1000000 * (end.tv_sec - start.tv_sec) +
(end.tv_usec - start.tv_usec);
/* Protect against time going forward too much. */
if ((end.tv_sec > start.tv_sec) &&
((end.tv_sec - start.tv_sec) >= LONG_MAX / 1000000 - 1))
timeusec = 0;
/* Protect against time going backwards during leap seconds. */
if ((end.tv_sec < start.tv_sec) || (timeusec > LONG_MAX))
timeusec = 0;
}
return timeusec;
}
static unsigned long measure_delay(unsigned int usecs)
{
unsigned long timeusec;
struct timeval start, end;
gettimeofday(&start, NULL);
myusec_delay(usecs);
gettimeofday(&end, NULL);
timeusec = 1000000 * (end.tv_sec - start.tv_sec) +
(end.tv_usec - start.tv_usec);
/* Protect against time going forward too much. */
if ((end.tv_sec > start.tv_sec) &&
((end.tv_sec - start.tv_sec) >= LONG_MAX / 1000000 - 1))
timeusec = LONG_MAX;
/* Protect against time going backwards during leap seconds. */
if ((end.tv_sec < start.tv_sec) || (timeusec > LONG_MAX))
timeusec = 1;
return timeusec;
}
void myusec_calibrate_delay(void)
{
if (clock_check_res())
return;
unsigned long count = 1000;
unsigned long timeusec, resolution;
int i, tries = 0;
msg_pinfo("Calibrating delay loop... ");
resolution = measure_os_delay_resolution();
if (resolution) {
msg_pdbg("OS timer resolution is %lu usecs, ", resolution);
} else {
msg_pinfo("OS timer resolution is unusable. ");
}
recalibrate:
count = 1000;
while (1) {
timeusec = measure_delay(count);
if (timeusec > 1000000 / 4)
break;
if (count >= ULONG_MAX / 2) {
msg_pinfo("timer loop overflow, reduced precision. ");
break;
}
count *= 2;
}
tries ++;
/* Avoid division by zero, but in that case the loop is shot anyway. */
if (!timeusec)
timeusec = 1;
/* Compute rounded up number of loops per microsecond. */
micro = (count * micro) / timeusec + 1;
msg_pdbg("%luM loops per second, ", micro);
/* Did we try to recalibrate less than 5 times? */
if (tries < 5) {
/* Recheck our timing to make sure we weren't just hitting
* a scheduler delay or something similar.
*/
for (i = 0; i < 4; i++) {
if (resolution && (resolution < 10)) {
timeusec = measure_delay(100);
} else if (resolution &&
(resolution < ULONG_MAX / 200)) {
timeusec = measure_delay(resolution * 10) *
100 / (resolution * 10);
} else {
/* This workaround should be active for broken
* OS and maybe libpayload. The criterion
* here is horrible or non-measurable OS timer
* resolution which will result in
* measure_delay(100)=0 whereas a longer delay
* (1000 ms) may be sufficient
* to get a nonzero time measurement.
*/
timeusec = measure_delay(1000000) / 10000;
}
if (timeusec < 90) {
msg_pdbg("delay more than 10%% too short (got "
"%lu%% of expected delay), "
"recalculating... ", timeusec);
goto recalibrate;
}
}
} else {
msg_perr("delay loop is unreliable, trying to continue ");
}
/* We're interested in the actual precision. */
timeusec = measure_delay(10);
msg_pdbg("10 myus = %ld us, ", timeusec);
timeusec = measure_delay(100);
msg_pdbg("100 myus = %ld us, ", timeusec);
timeusec = measure_delay(1000);
msg_pdbg("1000 myus = %ld us, ", timeusec);
timeusec = measure_delay(10000);
msg_pdbg("10000 myus = %ld us, ", timeusec);
timeusec = measure_delay(resolution * 4);
msg_pdbg("%ld myus = %ld us, ", resolution * 4, timeusec);
msg_pinfo("OK.\n");
}
/* Not very precise sleep. */
void internal_sleep(unsigned int usecs)
{
#if IS_WINDOWS
Sleep((usecs + 999) / 1000);
#elif defined(__DJGPP__)
sleep(usecs / 1000000);
usleep(usecs % 1000000);
#else
nanosleep(&(struct timespec){usecs / 1000000, (usecs * 1000) % 1000000000UL}, NULL);
#endif
}
/* Precise delay. */
void internal_delay(unsigned int usecs)
{
/* If the delay is >0.1 s, use internal_sleep because timing does not need to be so precise. */
if (usecs > 100000) {
internal_sleep(usecs);
} else if (use_clock_gettime) {
clock_usec_delay(usecs);
} else {
myusec_delay(usecs);
}
}
#else
#include <libpayload.h>
void myusec_calibrate_delay(void)
{
get_cpu_speed();
}
void internal_delay(unsigned int usecs)
{
udelay(usecs);
}
#endif
|