1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133
|
/*
* This file is part of the flashrom project.
*
* Copyright (C) 2000 Silicon Integrated System Corporation
* Copyright (C) 2004 Tyan Corp <yhlu@tyan.com>
* Copyright (C) 2005-2008 coresystems GmbH
* Copyright (C) 2008,2009 Carl-Daniel Hailfinger
* Copyright (C) 2016 secunet Security Networks AG
* (Written by Nico Huber <nico.huber@secunet.com> for secunet)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <stdbool.h>
#include <stdio.h>
#include <stdint.h>
#include <sys/types.h>
#include <string.h>
#include <unistd.h>
#include <stdlib.h>
#include <errno.h>
#include <ctype.h>
#include "flash.h"
#include "flashchips.h"
#include "programmer.h"
#include "hwaccess_physmap.h"
#include "chipdrivers.h"
#include "erasure_layout.h"
#include "platform/udelay.h"
const char flashrom_version[] = FLASHROM_VERSION;
static const struct programmer_entry *programmer = NULL;
/*
* Programmers supporting multiple buses can have differing size limits on
* each bus. Store the limits for each bus in a common struct.
*/
struct decode_sizes max_rom_decode;
/* If nonzero, used as the start address of bottom-aligned flash. */
uintptr_t flashbase;
/* Is writing allowed with this programmer? */
bool programmer_may_write;
#define SHUTDOWN_MAXFN 32
static int shutdown_fn_count = 0;
/** @private */
static struct shutdown_func_data {
int (*func) (void *data);
void *data;
} shutdown_fn[SHUTDOWN_MAXFN];
/* Initialize to 0 to make sure nobody registers a shutdown function before
* programmer init.
*/
static bool may_register_shutdown = false;
static struct bus_type_info {
enum chipbustype type;
const char *name;
} bustypes[] = {
{ BUS_PARALLEL, "Parallel, " },
{ BUS_LPC, "LPC, " },
{ BUS_FWH, "FWH, " },
{ BUS_SPI, "SPI, " },
{ BUS_PROG, "Programmer-specific, " },
};
/* Register a function to be executed on programmer shutdown.
* The advantage over atexit() is that you can supply a void pointer which will
* be used as parameter to the registered function upon programmer shutdown.
* This pointer can point to arbitrary data used by said function, e.g. undo
* information for GPIO settings etc. If unneeded, set data=NULL.
* Please note that the first (void *data) belongs to the function signature of
* the function passed as first parameter.
*/
int register_shutdown(int (*function) (void *data), void *data)
{
if (shutdown_fn_count >= SHUTDOWN_MAXFN) {
msg_perr("Tried to register more than %i shutdown functions.\n",
SHUTDOWN_MAXFN);
return 1;
}
if (!may_register_shutdown) {
msg_perr("Tried to register a shutdown function before "
"programmer init.\n");
return 1;
}
shutdown_fn[shutdown_fn_count].func = function;
shutdown_fn[shutdown_fn_count].data = data;
shutdown_fn_count++;
return 0;
}
int register_chip_restore(chip_restore_fn_cb_t func,
struct flashctx *flash, void *data)
{
if (flash->chip_restore_fn_count >= MAX_CHIP_RESTORE_FUNCTIONS) {
msg_perr("Tried to register more than %i chip restore"
" functions.\n", MAX_CHIP_RESTORE_FUNCTIONS);
return 1;
}
flash->chip_restore_fn[flash->chip_restore_fn_count].func = func;
flash->chip_restore_fn[flash->chip_restore_fn_count].data = data;
flash->chip_restore_fn_count++;
return 0;
}
static int deregister_chip_restore(struct flashctx *flash)
{
int rc = 0;
while (flash->chip_restore_fn_count > 0) {
int i = --flash->chip_restore_fn_count;
rc |= flash->chip_restore_fn[i].func(
flash, flash->chip_restore_fn[i].data);
}
return rc;
}
int programmer_init(const struct programmer_entry *prog, const char *param)
{
int ret;
if (prog == NULL) {
msg_perr("Invalid programmer specified!\n");
return -1;
}
programmer = prog;
/* Initialize all programmer specific data. */
/* Default to unlimited decode sizes. */
max_rom_decode = (const struct decode_sizes) {
.parallel = 0xffffffff,
.lpc = 0xffffffff,
.fwh = 0xffffffff,
.spi = 0xffffffff,
};
/* Default to top aligned flash at 4 GB. */
flashbase = 0;
/* Registering shutdown functions is now allowed. */
may_register_shutdown = true;
/* Default to allowing writes. Broken programmers set this to 0. */
programmer_may_write = true;
struct programmer_cfg cfg;
if (param) {
cfg.params = strdup(param);
if (!cfg.params) {
msg_perr("Out of memory!\n");
return ERROR_FLASHROM_FATAL;
}
} else {
cfg.params = NULL;
}
msg_pdbg("Initializing %s programmer\n", prog->name);
ret = prog->init(&cfg);
if (cfg.params && strlen(cfg.params)) {
if (ret != 0) {
/* It is quite possible that any unhandled programmer parameter would have been valid,
* but an error in actual programmer init happened before the parameter was evaluated.
*/
msg_pwarn("Unhandled programmer parameters (possibly due to another failure): %s\n",
cfg.params);
} else {
/* Actual programmer init was successful, but the user specified an invalid or unusable
* (for the current programmer configuration) parameter.
*/
msg_perr("Unhandled programmer parameters: %s\n", cfg.params);
msg_perr("Aborting.\n");
ret = ERROR_FLASHROM_FATAL;
}
}
free(cfg.params);
return ret;
}
/** Calls registered shutdown functions and resets internal programmer-related variables.
* Calling it is safe even without previous initialization, but further interactions with programmer support
* require a call to programmer_init() (afterwards).
*
* @return The OR-ed result values of all shutdown functions (i.e. 0 on success). */
int programmer_shutdown(void)
{
int ret = 0;
/* Registering shutdown functions is no longer allowed. */
may_register_shutdown = false;
while (shutdown_fn_count > 0) {
int i = --shutdown_fn_count;
ret |= shutdown_fn[i].func(shutdown_fn[i].data);
}
registered_master_count = 0;
return ret;
}
void *master_map_flash_region(const struct registered_master *mst,
const char *descr, uintptr_t phys_addr,
size_t len)
{
/* Check the bus master for a specialized map_flash_region; default to
* fallback if it does not specialize it
*/
void *(*map_flash_region) (const char *descr, uintptr_t phys_addr, size_t len) = NULL;
if (mst->buses_supported & BUS_SPI)
map_flash_region = mst->spi.map_flash_region;
else if (mst->buses_supported & BUS_NONSPI)
map_flash_region = mst->par.map_flash_region;
/* A result of NULL causes mapped addresses to be chip physical
* addresses, assuming only a single region is mapped (the entire flash
* space). Chips with a second region (like a register map) require a
* real memory mapping to distinguish the different ranges. Those chips
* are FWH/LPC, so the bus master provides a real mapping.
*/
void *ret = NULL;
if (map_flash_region)
ret = map_flash_region(descr, phys_addr, len);
msg_gspew("%s: mapping %s from 0x%0*" PRIxPTR " to 0x%0*" PRIxPTR "\n",
__func__, descr, PRIxPTR_WIDTH, phys_addr, PRIxPTR_WIDTH, (uintptr_t) ret);
return ret;
}
void master_unmap_flash_region(const struct registered_master *mst,
void *virt_addr, size_t len)
{
void (*unmap_flash_region) (void *virt_addr, size_t len) = NULL;
if (mst->buses_supported & BUS_SPI)
unmap_flash_region = mst->spi.unmap_flash_region;
else if (mst->buses_supported & BUS_NONSPI)
unmap_flash_region = mst->par.unmap_flash_region;
if (unmap_flash_region)
unmap_flash_region(virt_addr, len);
msg_gspew("%s: unmapped 0x%0*" PRIxPTR "\n", __func__, PRIxPTR_WIDTH, (uintptr_t)virt_addr);
}
static bool master_uses_physmap(const struct registered_master *mst)
{
#if CONFIG_INTERNAL == 1
if (mst->buses_supported & BUS_SPI)
return mst->spi.map_flash_region == physmap;
else if (mst->buses_supported & BUS_NONSPI)
return mst->par.map_flash_region == physmap;
#endif
return false;
}
void programmer_delay(const struct flashctx *flash, unsigned int usecs)
{
if (usecs == 0)
return;
/**
* Drivers should either use default_delay() directly or their
* own custom delay. Only core flashrom logic calls programmer_delay()
* which should always have a valid flash context. A NULL context
* more than likely indicates a layering violation or BUG however
* for now dispatch a default_delay() as a safe default for the NULL
* base case.
*/
if (!flash) {
msg_perr("%s called with NULL flash context. "
"Please report a bug at flashrom@flashrom.org\n",
__func__);
return default_delay(usecs);
}
if (flash->mst->buses_supported & BUS_SPI) {
if (flash->mst->spi.delay)
return flash->mst->spi.delay(flash, usecs);
} else if (flash->mst->buses_supported & BUS_PARALLEL) {
if (flash->mst->par.delay)
return flash->mst->par.delay(flash, usecs);
} else if (flash->mst->buses_supported & BUS_PROG) {
if (flash->mst->opaque.delay)
return flash->mst->opaque.delay(flash, usecs);
}
return default_delay(usecs);
}
int read_memmapped(struct flashctx *flash, uint8_t *buf, unsigned int start,
int unsigned len)
{
chip_readn(flash, buf, flash->virtual_memory + start, len);
return 0;
}
/* This is a somewhat hacked function similar in some ways to strtok().
* It will look for needle with a subsequent '=' in haystack, return a copy of
* needle and remove everything from the first occurrence of needle to the next
* delimiter from haystack.
*/
static char *extract_param(char *const *haystack, const char *needle, const char *delim)
{
char *param_pos, *opt_pos, *rest;
char *opt = NULL;
int optlen;
int needlelen;
needlelen = strlen(needle);
if (!needlelen) {
msg_gerr("%s: empty needle! Please report a bug at "
"flashrom@flashrom.org\n", __func__);
return NULL;
}
/* No programmer parameters given. */
if (*haystack == NULL)
return NULL;
param_pos = strstr(*haystack, needle);
do {
if (!param_pos)
return NULL;
/* Needle followed by '='? */
if (param_pos[needlelen] == '=') {
/* Beginning of the string? */
if (param_pos == *haystack)
break;
/* After a delimiter? */
if (strchr(delim, *(param_pos - 1)))
break;
}
/* Continue searching. */
param_pos++;
param_pos = strstr(param_pos, needle);
} while (1);
if (param_pos) {
/* Get the string after needle and '='. */
opt_pos = param_pos + needlelen + 1;
optlen = strcspn(opt_pos, delim);
/* Return an empty string if the parameter was empty. */
opt = malloc(optlen + 1);
if (!opt) {
msg_gerr("Out of memory!\n");
return NULL;
}
strncpy(opt, opt_pos, optlen);
opt[optlen] = '\0';
rest = opt_pos + optlen;
/* Skip all delimiters after the current parameter. */
rest += strspn(rest, delim);
memmove(param_pos, rest, strlen(rest) + 1);
/* We could shrink haystack, but the effort is not worth it. */
}
return opt;
}
char *extract_programmer_param_str(const struct programmer_cfg *cfg, const char *param_name)
{
return extract_param(&cfg->params, param_name, ",");
}
void get_flash_region(const struct flashctx *flash, int addr, struct flash_region *region)
{
if ((flash->mst->buses_supported & BUS_PROG) && flash->mst->opaque.get_region) {
flash->mst->opaque.get_region(flash, addr, region);
} else if (flash->mst->buses_supported & BUS_SPI && flash->mst->spi.get_region) {
flash->mst->spi.get_region(flash, addr, region);
} else {
region->name = strdup("");
region->start = 0;
region->end = flashrom_flash_getsize(flash) - 1;
region->read_prot = false;
region->write_prot = false;
}
}
int check_for_unwritable_regions(const struct flashctx *flash, unsigned int start, unsigned int len)
{
struct flash_region region;
for (unsigned int addr = start; addr < start + len; addr = region.end + 1) {
get_flash_region(flash, addr, ®ion);
if (region.write_prot) {
msg_gerr("%s: cannot write/erase inside %s region (%#08"PRIx32"..%#08"PRIx32").\n",
__func__, region.name, region.start, region.end);
free(region.name);
return -1;
}
free(region.name);
}
return 0;
}
#ifdef FLASHROM_TEST
/* special unit-test hooks */
erasefunc_t *g_test_erase_injector[NUM_TEST_ERASE_INJECTORS];
#endif
erasefunc_t *lookup_erase_func_ptr(const struct block_eraser *const eraser)
{
switch (eraser->block_erase) {
case SPI_BLOCK_ERASE_EMULATION: return &spi_block_erase_emulation;
case SPI_BLOCK_ERASE_20: return &spi_block_erase_20;
case SPI_BLOCK_ERASE_21: return &spi_block_erase_21;
case SPI_BLOCK_ERASE_40: return NULL; // FIXME unhandled &spi_block_erase_40;
case SPI_BLOCK_ERASE_50: return &spi_block_erase_50;
case SPI_BLOCK_ERASE_52: return &spi_block_erase_52;
case SPI_BLOCK_ERASE_53: return &spi_block_erase_53;
case SPI_BLOCK_ERASE_5C: return &spi_block_erase_5c;
case SPI_BLOCK_ERASE_60: return &spi_block_erase_60;
case SPI_BLOCK_ERASE_62: return &spi_block_erase_62;
case SPI_BLOCK_ERASE_81: return &spi_block_erase_81;
case SPI_BLOCK_ERASE_C4: return &spi_block_erase_c4;
case SPI_BLOCK_ERASE_C7: return &spi_block_erase_c7;
case SPI_BLOCK_ERASE_D7: return &spi_block_erase_d7;
case SPI_BLOCK_ERASE_D8: return &spi_block_erase_d8;
case SPI_BLOCK_ERASE_DB: return &spi_block_erase_db;
case SPI_BLOCK_ERASE_DC: return &spi_block_erase_dc;
case S25FL_BLOCK_ERASE: return &s25fl_block_erase;
case S25FS_BLOCK_ERASE_D8: return &s25fs_block_erase_d8;
case JEDEC_SECTOR_ERASE: return &erase_sector_jedec; // TODO rename to &jedec_sector_erase;
case JEDEC_BLOCK_ERASE: return &erase_block_jedec; // TODO rename to &jedec_block_erase;
case JEDEC_CHIP_BLOCK_ERASE: return &erase_chip_block_jedec; // TODO rename to &jedec_chip_block_erase;
case OPAQUE_ERASE: return &erase_opaque; // TODO rename to &opqaue_erase;
case SPI_ERASE_AT45CS_SECTOR: return &spi_erase_at45cs_sector;
case SPI_ERASE_AT45DB_BLOCK: return &spi_erase_at45db_block;
case SPI_ERASE_AT45DB_CHIP: return &spi_erase_at45db_chip;
case SPI_ERASE_AT45DB_PAGE: return &spi_erase_at45db_page;
case SPI_ERASE_AT45DB_SECTOR: return &spi_erase_at45db_sector;
case ERASE_CHIP_28SF040: return &erase_chip_28sf040;
case ERASE_SECTOR_28SF040: return &erase_sector_28sf040;
case ERASE_BLOCK_82802AB: return &erase_block_82802ab;
case ERASE_SECTOR_49LFXXXC: return &erase_sector_49lfxxxc;
case STM50_SECTOR_ERASE: return &erase_sector_stm50; // TODO rename to &stm50_sector_erase;
case EDI_CHIP_BLOCK_ERASE: return &edi_chip_block_erase;
#ifdef FLASHROM_TEST
case TEST_ERASE_INJECTOR_1:
case TEST_ERASE_INJECTOR_2:
case TEST_ERASE_INJECTOR_3:
case TEST_ERASE_INJECTOR_4:
case TEST_ERASE_INJECTOR_5:
return g_test_erase_injector[eraser->block_erase - TEST_ERASE_INJECTOR_1];
#endif
/* default: total function, 0 indicates no erase function set.
* We explicitly do not want a default catch-all case in the switch
* to ensure unhandled enum's are compiler warnings.
*/
case NO_BLOCK_ERASE_FUNC: return NULL;
};
return NULL;
}
int check_block_eraser(const struct flashctx *flash, int k, int log)
{
struct block_eraser eraser = flash->chip->block_erasers[k];
if (eraser.block_erase == NO_BLOCK_ERASE_FUNC && !eraser.eraseblocks[0].count) {
if (log)
msg_cdbg("not defined. ");
return 1;
}
if (eraser.block_erase == NO_BLOCK_ERASE_FUNC && eraser.eraseblocks[0].count) {
if (log)
msg_cdbg("eraseblock layout is known, but matching "
"block erase function is not implemented. ");
return 1;
}
if (eraser.block_erase != NO_BLOCK_ERASE_FUNC && !eraser.eraseblocks[0].count) {
if (log)
msg_cdbg("block erase function found, but "
"eraseblock layout is not defined. ");
return 1;
}
if (flash->mst->buses_supported & BUS_SPI) {
const uint8_t *opcode = spi_get_opcode_from_erasefn(eraser.block_erase);
if (opcode)
for (int i = 0; opcode[i]; i++) {
if (!spi_probe_opcode(flash, opcode[i])) {
if (log)
msg_cdbg("block erase function and layout found "
"but SPI master doesn't support the function. ");
return 1;
}
}
}
// TODO: Once erase functions are annotated with allowed buses, check that as well.
return 0;
}
/* Returns the number of well-defined erasers for a chip. */
unsigned int count_usable_erasers(const struct flashctx *flash)
{
unsigned int usable_erasefunctions = 0;
int k;
for (k = 0; k < NUM_ERASEFUNCTIONS; k++) {
if (!check_block_eraser(flash, k, 0))
usable_erasefunctions++;
}
return usable_erasefunctions;
}
static int compare_range(const uint8_t *wantbuf, const uint8_t *havebuf, unsigned int start, unsigned int len)
{
int ret = 0, failcount = 0;
unsigned int i;
for (i = 0; i < len; i++) {
if (wantbuf[i] != havebuf[i]) {
/* Only print the first failure. */
if (!failcount++)
msg_cerr("FAILED at 0x%08x! Expected=0x%02x, Found=0x%02x,",
start + i, wantbuf[i], havebuf[i]);
}
}
if (failcount) {
msg_cerr(" failed byte count from 0x%08x-0x%08x: 0x%x\n",
start, start + len - 1, failcount);
ret = -1;
}
return ret;
}
/* start is an offset to the base address of the flash chip */
int check_erased_range(struct flashctx *flash, unsigned int start, unsigned int len)
{
int ret;
const uint8_t erased_value = ERASED_VALUE(flash);
uint8_t *cmpbuf = malloc(len);
if (!cmpbuf) {
msg_gerr("Out of memory!\n");
return -1;
}
memset(cmpbuf, erased_value, len);
ret = verify_range(flash, cmpbuf, start, len);
free(cmpbuf);
return ret;
}
#ifdef FLASHROM_TEST
/* special unit-test hook */
read_func_t *g_test_read_injector;
#endif
static read_func_t *lookup_read_func_ptr(const struct flashchip *chip)
{
switch (chip->read) {
case SPI_CHIP_READ: return &spi_chip_read;
case READ_OPAQUE: return &read_opaque;
case READ_MEMMAPPED: return &read_memmapped;
case EDI_CHIP_READ: return &edi_chip_read;
case SPI_READ_AT45DB: return spi_read_at45db;
case SPI_READ_AT45DB_E8: return spi_read_at45db_e8;
#ifdef FLASHROM_TEST
case TEST_READ_INJECTOR: return g_test_read_injector;
#endif
/* default: total function, 0 indicates no read function set.
* We explicitly do not want a default catch-all case in the switch
* to ensure unhandled enum's are compiler warnings.
*/
case NO_READ_FUNC: return NULL;
};
return NULL;
}
/*
* @brief Wrapper for flash->read() with additional high-level policy.
*
* @param flash flash chip
* @param buf buffer to store data in
* @param start start address
* @param len number of bytes to read
* @return 0 on success,
* -1 if any read fails.
*
* This wrapper simplifies most cases when the flash chip needs to be read
* since policy decisions such as non-fatal error handling is centralized.
*/
int read_flash(struct flashctx *flash, uint8_t *buf, unsigned int start, unsigned int len)
{
unsigned int read_len;
for (unsigned int addr = start; addr < start + len; addr += read_len) {
struct flash_region region;
get_flash_region(flash, addr, ®ion);
read_len = min(start + len, region.end + 1) - addr;
uint8_t *rbuf = buf + addr - start;
if (region.read_prot) {
if (flash->flags.skip_unreadable_regions) {
msg_gdbg("%s: cannot read inside %s region (%#08"PRIx32"..%#08"PRIx32"), "
"filling (%#08x..%#08x) with erased value instead.\n",
__func__, region.name, region.start, region.end,
addr, addr + read_len - 1);
free(region.name);
memset(rbuf, ERASED_VALUE(flash), read_len);
continue;
}
msg_gerr("%s: cannot read inside %s region (%#08"PRIx32"..%#08"PRIx32").\n",
__func__, region.name, region.start, region.end);
free(region.name);
return -1;
}
msg_gdbg("%s: %s region (%#08"PRIx32"..%#08"PRIx32") is readable, reading range (%#08x..%#08x).\n",
__func__, region.name, region.start, region.end, addr, addr + read_len - 1);
free(region.name);
read_func_t *read_func = lookup_read_func_ptr(flash->chip);
int ret = read_func(flash, rbuf, addr, read_len);
if (ret) {
msg_gerr("%s: failed to read (%#08x..%#08x).\n", __func__, addr, addr + read_len - 1);
return -1;
}
}
return 0;
}
/*
* @cmpbuf buffer to compare against, cmpbuf[0] is expected to match the
* flash content at location start
* @start offset to the base address of the flash chip
* @len length of the verified area
* @return 0 for success, -1 for failure
*/
int verify_range(struct flashctx *flash, const uint8_t *cmpbuf, unsigned int start, unsigned int len)
{
if (!len)
return -1;
if (start + len > flash->chip->total_size * 1024) {
msg_gerr("Error: %s called with start 0x%x + len 0x%x >"
" total_size 0x%x\n", __func__, start, len,
flash->chip->total_size * 1024);
return -1;
}
uint8_t *readbuf = malloc(len);
if (!readbuf) {
msg_gerr("Out of memory!\n");
return -1;
}
int ret = 0;
msg_gdbg("%#06x..%#06x ", start, start + len - 1);
unsigned int read_len;
for (size_t addr = start; addr < start + len; addr += read_len) {
struct flash_region region;
get_flash_region(flash, addr, ®ion);
read_len = min(start + len, region.end + 1) - addr;
if ((region.write_prot && flash->flags.skip_unwritable_regions) ||
(region.read_prot && flash->flags.skip_unreadable_regions)) {
msg_gdbg("%s: Skipping verification of %s region (%#08"PRIx32"..%#08"PRIx32")\n",
__func__, region.name, region.start, region.end);
free(region.name);
continue;
}
if (region.read_prot) {
msg_gerr("%s: Verification imposible because %s region (%#08"PRIx32"..%#08"PRIx32") is unreadable.\n",
__func__, region.name, region.start, region.end);
free(region.name);
goto out_free;
}
msg_gdbg("%s: Verifying %s region (%#08"PRIx32"..%#08"PRIx32")\n",
__func__, region.name, region.start, region.end);
free(region.name);
ret = read_flash(flash, readbuf, addr, read_len);
if (ret) {
msg_gerr("Verification impossible because read failed "
"at 0x%x (len 0x%x)\n", start, len);
ret = -1;
goto out_free;
}
ret = compare_range(cmpbuf + (addr - start), readbuf, addr, read_len);
if (ret)
goto out_free;
}
out_free:
free(readbuf);
return ret;
}
/* Helper function for need_erase() that focuses on granularities of gran bytes. */
static int need_erase_gran_bytes(const uint8_t *have, const uint8_t *want, unsigned int len,
unsigned int gran, const uint8_t erased_value)
{
unsigned int i, j, limit;
for (j = 0; j < len / gran; j++) {
limit = min (gran, len - j * gran);
/* Are 'have' and 'want' identical? */
if (!memcmp(have + j * gran, want + j * gran, limit))
continue;
/* have needs to be in erased state. */
for (i = 0; i < limit; i++)
if (have[j * gran + i] != erased_value)
return 1;
}
return 0;
}
/*
* Check if the buffer @have can be programmed to the content of @want without
* erasing. This is only possible if all chunks of size @gran are either kept
* as-is or changed from an all-ones state to any other state.
*
* Warning: This function assumes that @have and @want point to naturally
* aligned regions.
*
* @have buffer with current content
* @want buffer with desired content
* @len length of the checked area
* @gran write granularity (enum, not count)
* @return 0 if no erase is needed, 1 otherwise
*/
int need_erase(const uint8_t *have, const uint8_t *want, unsigned int len,
enum write_granularity gran, const uint8_t erased_value)
{
int result = 0;
unsigned int i;
switch (gran) {
case WRITE_GRAN_1BIT:
for (i = 0; i < len; i++)
if ((have[i] & want[i]) != want[i]) {
result = 1;
break;
}
break;
case WRITE_GRAN_1BYTE:
for (i = 0; i < len; i++)
if ((have[i] != want[i]) && (have[i] != erased_value)) {
result = 1;
break;
}
break;
case WRITE_GRAN_128BYTES:
result = need_erase_gran_bytes(have, want, len, 128, erased_value);
break;
case WRITE_GRAN_256BYTES:
result = need_erase_gran_bytes(have, want, len, 256, erased_value);
break;
case WRITE_GRAN_264BYTES:
result = need_erase_gran_bytes(have, want, len, 264, erased_value);
break;
case WRITE_GRAN_512BYTES:
result = need_erase_gran_bytes(have, want, len, 512, erased_value);
break;
case WRITE_GRAN_528BYTES:
result = need_erase_gran_bytes(have, want, len, 528, erased_value);
break;
case WRITE_GRAN_1024BYTES:
result = need_erase_gran_bytes(have, want, len, 1024, erased_value);
break;
case WRITE_GRAN_1056BYTES:
result = need_erase_gran_bytes(have, want, len, 1056, erased_value);
break;
case WRITE_GRAN_1BYTE_IMPLICIT_ERASE:
/* Do not erase, handle content changes from anything->0xff by writing 0xff. */
result = 0;
break;
default:
msg_cerr("%s: Unsupported granularity! Please report a bug at "
"flashrom@flashrom.org\n", __func__);
}
return result;
}
/**
* Check if the buffer @have needs to be programmed to get the content of @want.
* If yes, return 1 and fill in first_start with the start address of the
* write operation and first_len with the length of the first to-be-written
* chunk. If not, return 0 and leave first_start and first_len undefined.
*
* Warning: This function assumes that @have and @want point to naturally
* aligned regions.
*
* @have buffer with current content
* @want buffer with desired content
* @len length of the checked area
* @gran write granularity (enum, not count)
* @first_start offset of the first byte which needs to be written (passed in
* value is increased by the offset of the first needed write
* relative to have/want or unchanged if no write is needed)
* @return length of the first contiguous area which needs to be written
* 0 if no write is needed
*
* FIXME: This function needs a parameter which tells it about coalescing
* in relation to the max write length of the programmer and the max write
* length of the chip.
*/
unsigned int get_next_write(const uint8_t *have, const uint8_t *want, unsigned int len,
unsigned int *first_start,
enum write_granularity gran)
{
bool need_write = false;
unsigned int rel_start = 0, first_len = 0;
unsigned int i, limit, stride;
switch (gran) {
case WRITE_GRAN_1BIT:
case WRITE_GRAN_1BYTE:
case WRITE_GRAN_1BYTE_IMPLICIT_ERASE:
stride = 1;
break;
case WRITE_GRAN_128BYTES:
stride = 128;
break;
case WRITE_GRAN_256BYTES:
stride = 256;
break;
case WRITE_GRAN_264BYTES:
stride = 264;
break;
case WRITE_GRAN_512BYTES:
stride = 512;
break;
case WRITE_GRAN_528BYTES:
stride = 528;
break;
case WRITE_GRAN_1024BYTES:
stride = 1024;
break;
case WRITE_GRAN_1056BYTES:
stride = 1056;
break;
default:
msg_cerr("%s: Unsupported granularity! Please report a bug at "
"flashrom@flashrom.org\n", __func__);
/* Claim that no write was needed. A write with unknown
* granularity is too dangerous to try.
*/
return 0;
}
for (i = 0; i < len / stride; i++) {
limit = min(stride, len - i * stride);
/* Are 'have' and 'want' identical? */
if (memcmp(have + i * stride, want + i * stride, limit)) {
if (!need_write) {
/* First location where have and want differ. */
need_write = true;
rel_start = i * stride;
}
} else {
if (need_write) {
/* First location where have and want
* do not differ anymore.
*/
break;
}
}
}
if (need_write)
first_len = min(i * stride - rel_start, len);
*first_start += rel_start;
return first_len;
}
void unmap_flash(struct flashctx *flash)
{
if (flash->virtual_registers != (chipaddr)ERROR_PTR) {
master_unmap_flash_region(flash->mst, (void *)flash->virtual_registers, flash->chip->total_size * 1024);
flash->physical_registers = 0;
flash->virtual_registers = (chipaddr)ERROR_PTR;
}
if (flash->virtual_memory != (chipaddr)ERROR_PTR) {
master_unmap_flash_region(flash->mst, (void *)flash->virtual_memory, flash->chip->total_size * 1024);
flash->physical_memory = 0;
flash->virtual_memory = (chipaddr)ERROR_PTR;
}
}
int map_flash(struct flashctx *flash)
{
/* Init pointers to the fail-safe state to distinguish them later from legit values. */
flash->virtual_memory = (chipaddr)ERROR_PTR;
flash->virtual_registers = (chipaddr)ERROR_PTR;
/* FIXME: This avoids mapping (and unmapping) of flash chip definitions with size 0.
* These are used for various probing-related hacks that would not map successfully anyway and should be
* removed ASAP. */
if (flash->chip->total_size == 0)
return 0;
const chipsize_t size = flash->chip->total_size * 1024;
uintptr_t base = flashbase ? flashbase : (0xffffffff - size + 1);
void *addr = master_map_flash_region(flash->mst, flash->chip->name, base, size);
if (addr == ERROR_PTR) {
msg_perr("Could not map flash chip %s at 0x%0*" PRIxPTR ".\n",
flash->chip->name, PRIxPTR_WIDTH, base);
return 1;
}
flash->physical_memory = base;
flash->virtual_memory = (chipaddr)addr;
/* FIXME: Special function registers normally live 4 MByte below flash space, but it might be somewhere
* completely different on some chips and programmers, or not mappable at all.
* Ignore these problems for now and always report success. */
if (flash->chip->feature_bits & FEATURE_REGISTERMAP) {
base = 0xffffffff - size - 0x400000 + 1;
addr = master_map_flash_region(flash->mst, "flash chip registers", base, size);
if (addr == ERROR_PTR) {
msg_pdbg2("Could not map flash chip registers %s at 0x%0*" PRIxPTR ".\n",
flash->chip->name, PRIxPTR_WIDTH, base);
return 0;
}
flash->physical_registers = base;
flash->virtual_registers = (chipaddr)addr;
}
return 0;
}
/*
* Return a string corresponding to the bustype parameter.
* Memory to store the string is allocated. The caller is responsible to free memory.
* If there is not enough memory remaining, then NULL is returned.
*/
char *flashbuses_to_text(enum chipbustype bustype)
{
char *ret, *ptr;
/*
* FIXME: Once all chipsets and flash chips have been updated, NONSPI
* will cease to exist and should be eliminated here as well.
*/
if (bustype == BUS_NONSPI)
return strdup("Non-SPI");
if (bustype == BUS_NONE)
return strdup("None");
ret = calloc(1, 1);
if (!ret)
return NULL;
for (unsigned int i = 0; i < ARRAY_SIZE(bustypes); i++)
{
if (bustype & bustypes[i].type) {
ptr = strcat_realloc(ret, bustypes[i].name);
if (!ptr) {
free(ret);
return NULL;
}
ret = ptr;
}
}
/* Kill last comma. */
ret[strlen(ret) - 2] = '\0';
ptr = realloc(ret, strlen(ret) + 1);
if (!ptr)
free(ret);
return ptr;
}
static int init_default_layout(struct flashctx *flash)
{
/* Fill default layout covering the whole chip. */
if (flashrom_layout_new(&flash->default_layout) ||
flashrom_layout_add_region(flash->default_layout,
0, flash->chip->total_size * 1024 - 1, "complete flash") ||
flashrom_layout_include_region(flash->default_layout, "complete flash"))
return -1;
return 0;
}
/* special unit-test hook */
#ifdef FLASHROM_TEST
write_func_t *g_test_write_injector;
#endif
static write_func_t *lookup_write_func_ptr(const struct flashchip *chip)
{
switch (chip->write) {
case WRITE_JEDEC: return &write_jedec;
case WRITE_JEDEC1: return &write_jedec_1;
case WRITE_OPAQUE: return &write_opaque;
case SPI_CHIP_WRITE1: return &spi_chip_write_1;
case SPI_CHIP_WRITE256: return &spi_chip_write_256;
case SPI_WRITE_AAI: return &spi_aai_write;
case SPI_WRITE_AT45DB: return &spi_write_at45db;
case WRITE_28SF040: return &write_28sf040;
case WRITE_82802AB: return &write_82802ab;
case WRITE_EN29LV640B: return &write_en29lv640b;
case EDI_CHIP_WRITE: return &edi_chip_write;
#ifdef FLASHROM_TEST
case TEST_WRITE_INJECTOR: return g_test_write_injector;
#endif
/* default: total function, 0 indicates no write function set.
* We explicitly do not want a default catch-all case in the switch
* to ensure unhandled enum's are compiler warnings.
*/
case NO_WRITE_FUNC: return NULL;
};
return NULL;
}
/*
* write_flash - wrapper for flash->write() with additional high-level policy
*
* @param flash flash chip
* @param buf buffer to write to flash
* @param start start address in flash
* @param len number of bytes to write
* @return 0 on success,
* -1 if any write fails.
*
* This wrapper simplifies most cases when the flash chip needs to be written
* since policy decisions such as non-fatal error handling is centralized.
*/
int write_flash(struct flashctx *flash, const uint8_t *buf,
unsigned int start, unsigned int len)
{
if (!flash->flags.skip_unwritable_regions) {
if (check_for_unwritable_regions(flash, start, len))
return -1;
}
unsigned int write_len;
for (unsigned int addr = start; addr < start + len; addr += write_len) {
struct flash_region region;
get_flash_region(flash, addr, ®ion);
write_len = min(start + len, region.end + 1) - addr;
const uint8_t *rbuf = buf + addr - start;
if (region.write_prot) {
msg_gdbg("%s: cannot write inside %s region (%#08"PRIx32"..%#08"PRIx32"), skipping (%#08x..%#08x).\n",
__func__, region.name, region.start, region.end, addr, addr + write_len - 1);
free(region.name);
continue;
}
msg_gdbg("%s: %s region (%#08"PRIx32"..%#08"PRIx32") is writable, writing range (%#08x..%#08x).\n",
__func__, region.name, region.start, region.end, addr, addr + write_len - 1);
write_func_t *write_func = lookup_write_func_ptr(flash->chip);
int ret = write_func(flash, rbuf, addr, write_len);
if (ret) {
msg_gerr("%s: failed to write (%#08x..%#08x).\n", __func__, addr, addr + write_len - 1);
free(region.name);
return -1;
}
free(region.name);
}
return 0;
}
typedef int (probe_func_t)(struct flashctx *flash);
static probe_func_t *lookup_probe_func_ptr(const struct flashchip *chip)
{
switch (chip->probe) {
case PROBE_JEDEC: return &probe_jedec;
case PROBE_JEDEC_29GL: return &probe_jedec_29gl;
case PROBE_OPAQUE: return &probe_opaque;
case PROBE_EDI_KB9012: return &edi_probe_kb9012;
case PROBE_AT82802AB: return &probe_82802ab;
case PROBE_W29EE011: return &probe_w29ee011;
case PROBE_EN29LV640B: return &probe_en29lv640b;
case PROBE_SPI_AT25F: return &probe_spi_at25f;
case PROBE_SPI_AT45DB: return &probe_spi_at45db;
case PROBE_SPI_BIG_SPANSION: return &probe_spi_big_spansion;
case PROBE_SPI_RDID: return &probe_spi_rdid;
case PROBE_SPI_RDID4: return &probe_spi_rdid4;
case PROBE_SPI_REMS: return &probe_spi_rems;
case PROBE_SPI_RES1: return &probe_spi_res1;
case PROBE_SPI_RES2: return &probe_spi_res2;
case PROBE_SPI_SFDP: return &probe_spi_sfdp;
case PROBE_SPI_ST95: return &probe_spi_st95;
/* default: total function, 0 indicates no probe function set.
* We explicitly do not want a default catch-all case in the switch
* to ensure unhandled enum's are compiler warnings.
*/
case NO_PROBE_FUNC: return NULL;
};
return NULL;
}
/*
* Probes the entries in flashchips array one by one, starting from `startchip` index.
* Probing keeps going until first match found or end of array reached.
*
* Returns:
* the position of the matched chip, i.e. index of the entry in flashchips array
* ERROR_FLASHROM_PROBE_NO_CHIPS_FOUND if no matches found
* ERROR_FLASHROM_PROBE_INTERNAL_ERROR if some unexpected error happened during this operation
*/
int probe_flash(struct registered_master *mst, int startchip, struct flashctx *flash, int force, const char *const chip_to_probe)
{
const struct flashchip *chip;
enum chipbustype buses_common;
char *tmp;
for (chip = flashchips + startchip; chip && chip->name; chip++) {
if (chip_to_probe && strcmp(chip->name, chip_to_probe) != 0)
continue;
buses_common = mst->buses_supported & chip->bustype;
if (!buses_common)
continue;
/* Only probe for SPI25 chips by default. */
if (chip->bustype == BUS_SPI && !chip_to_probe && chip->spi_cmd_set != SPI25)
continue;
msg_gdbg("Probing for %s %s, %d kB: ", chip->vendor, chip->name, chip->total_size);
probe_func_t *probe_func = lookup_probe_func_ptr(chip);
if (!probe_func && !force) {
msg_gdbg("failed! flashrom has no probe function for this flash chip.\n");
continue;
}
/* Start filling in the dynamic data. */
flash->chip = calloc(1, sizeof(*flash->chip));
if (!flash->chip) {
msg_gerr("Out of memory!\n");
return ERROR_FLASHROM_PROBE_INTERNAL_ERROR;
}
*flash->chip = *chip;
flash->mst = mst;
if (map_flash(flash) != 0)
goto notfound;
/* We handle a forced match like a real match, we just avoid probing. Note that probe_flash()
* is only called with force=1 after normal probing failed.
*/
if (force)
break;
if (probe_func == &probe_w29ee011)
if (!w29ee011_can_override(flash->chip->name, chip_to_probe))
goto notfound;
if (probe_func(flash) != 1)
goto notfound;
/* If this is the first chip found, accept it.
* If this is not the first chip found, accept it only if it is
* a non-generic match. SFDP and CFI are generic matches.
* startchip==0 means this call to probe_flash() is the first
* one for this programmer interface (master) and thus no other chip has
* been found on this interface.
*/
if (startchip == 0 && flash->chip->model_id == SFDP_DEVICE_ID) {
msg_cinfo("===\nSFDP has autodetected a flash chip.\n");
if (count_usable_erasers(flash) == 0)
msg_cinfo("The standard operations read and "
"verify should work, but support for "
"erase and write needs to be added manually.\n");
else
msg_cinfo("All standard operations (read, "
"verify, erase and write) should work.\n");
msg_cinfo("Additionally, flashrom supports RPMC commands via SFDP autodetection.\n"
"We may add support for more features via SFDP in future.\n"
"If you are interested, join us on the mailing list https://flashrom.org/contact.html#mailing-list-1\n"
"===\n");
}
/* First flash chip detected on this bus. */
if (startchip == 0)
break;
/* Not the first flash chip detected on this bus, but not a generic match either. */
if ((flash->chip->model_id != GENERIC_DEVICE_ID) && (flash->chip->model_id != SFDP_DEVICE_ID))
break;
/* Not the first flash chip detected on this bus, and it's just a generic match. Ignore it. */
notfound:
unmap_flash(flash);
free(flash->chip);
flash->chip = NULL;
}
if (!flash->chip)
return ERROR_FLASHROM_PROBE_NO_CHIPS_FOUND;
if (init_default_layout(flash) < 0)
return ERROR_FLASHROM_PROBE_INTERNAL_ERROR;
tmp = flashbuses_to_text(flash->chip->bustype);
msg_cinfo("%s %s flash chip \"%s\" (%d kB, %s) ", force ? "Assuming" : "Found",
flash->chip->vendor, flash->chip->name, flash->chip->total_size, tmp ? tmp : "?");
free(tmp);
if (master_uses_physmap(mst))
msg_cinfo("mapped at physical address 0x%0*" PRIxPTR ".\n",
PRIxPTR_WIDTH, flash->physical_memory);
else
msg_cinfo("on %s.\n", programmer->name);
/* Flash registers may more likely not be mapped if the chip was forced.
* Lock info may be stored in registers, so avoid lock info printing. */
if (!force) {
printlockfunc_t *printlock = lookup_printlock_func_ptr(flash);
if (printlock)
printlock(flash);
}
/* Get out of the way for later runs. */
unmap_flash(flash);
/* Return position of matching chip. */
return chip - flashchips;
}
static void setup_progress_from_layout(struct flashctx *flashctx,
enum flashrom_progress_stage stage)
{
if (!flashctx->progress_callback && !flashctx->deprecated_progress_callback)
return;
const struct flashrom_layout *const flash_layout = get_layout(flashctx);
size_t total = 0;
const struct romentry *entry = NULL;
while ((entry = layout_next_included(flash_layout, entry))) {
const struct flash_region *region = &entry->region;
total += region->end - region->start + 1;
}
init_progress(flashctx, stage, total);
}
static void setup_progress_from_layout_and_diff(struct flashctx *flashctx,
const void *have,
const void *want,
enum flashrom_progress_stage stage)
{
if (!flashctx->progress_callback && !flashctx->deprecated_progress_callback)
return;
const struct flashrom_layout *flash_layout = get_layout(flashctx);
const size_t page_size = flashctx->chip->page_size;
size_t total = 0;
const struct romentry *entry = NULL;
while ((entry = layout_next_included(flash_layout, entry))) {
const struct flash_region *region = &entry->region;
if (stage == FLASHROM_PROGRESS_ERASE) {
size_t offset;
for (offset = region->start; offset <= region->end; offset += page_size) {
const size_t len = min(page_size, region->end + 1 - offset);
if (need_erase(have, want, len, flashctx->chip->gran, ERASED_VALUE(flashctx)))
total += len;
}
}
if (stage == FLASHROM_PROGRESS_WRITE) {
unsigned int start = region->start;
unsigned int len;
while ((len = get_next_write(have + start, want + start,
region->end + 1 - start, &start, flashctx->chip->gran))) {
start += len;
total += len;
}
if (flashctx->chip->feature_bits & FEATURE_NO_ERASE)
/* For chips with FEATURE_NO_ERASE erase op is running as write under the hood.
* So typical write, which usually consists of erasing and then writing,
* would be writing and then writing again. The planned total length for the
* progress indicator for write is double. */
total *= 2;
}
}
init_progress(flashctx, stage, total);
}
/**
* @brief Reads the included layout regions into a buffer.
*
* If there is no layout set in the given flash context, the whole chip will
* be read.
*
* @param flashctx Flash context to be used.
* @param buffer Buffer of full chip size to read into.
* @return 0 on success,
* 1 if any read fails.
*/
static int read_by_layout(struct flashctx *const flashctx, uint8_t *const buffer)
{
const struct flashrom_layout *const layout = get_layout(flashctx);
const struct romentry *entry = NULL;
setup_progress_from_layout(flashctx, FLASHROM_PROGRESS_READ);
while ((entry = layout_next_included(layout, entry))) {
const struct flash_region *region = &entry->region;
const chipoff_t region_start = region->start;
const chipsize_t region_len = region->end - region->start + 1;
if (read_flash(flashctx, buffer + region_start, region_start, region_len))
return 1;
}
return 0;
}
/* Even if an error is found, the function will keep going and check the rest. */
static int selfcheck_eraseblocks(const struct flashchip *chip)
{
int i, j, k;
int ret = 0;
unsigned int prev_eraseblock_count = chip->total_size * 1024;
for (k = 0; k < NUM_ERASEFUNCTIONS; k++) {
unsigned int done = 0;
struct block_eraser eraser = chip->block_erasers[k];
unsigned int curr_eraseblock_count = 0;
for (i = 0; i < NUM_ERASEREGIONS; i++) {
/* Blocks with zero size are bugs in flashchips.c. */
if (eraser.eraseblocks[i].count &&
!eraser.eraseblocks[i].size) {
msg_gerr("ERROR: Flash chip %s erase function "
"%i region %i has size 0. Please report"
" a bug at flashrom@flashrom.org\n",
chip->name, k, i);
ret = 1;
}
/* Blocks with zero count are bugs in flashchips.c. */
if (!eraser.eraseblocks[i].count &&
eraser.eraseblocks[i].size) {
msg_gerr("ERROR: Flash chip %s erase function "
"%i region %i has count 0. Please report"
" a bug at flashrom@flashrom.org\n",
chip->name, k, i);
ret = 1;
}
done += eraser.eraseblocks[i].count *
eraser.eraseblocks[i].size;
curr_eraseblock_count += eraser.eraseblocks[i].count;
}
/* Empty eraseblock definition with erase function. */
if (!done && eraser.block_erase)
msg_gspew("Strange: Empty eraseblock definition with "
"non-empty erase function. Not an error.\n");
if (!done)
continue;
if (done != chip->total_size * 1024) {
msg_gerr("ERROR: Flash chip %s erase function %i "
"region walking resulted in 0x%06x bytes total,"
" expected 0x%06x bytes. Please report a bug at"
" flashrom@flashrom.org\n", chip->name, k,
done, chip->total_size * 1024);
ret = 1;
}
if (!eraser.block_erase)
continue;
/* Check if there are identical erase functions for different
* layouts. That would imply "magic" erase functions. The
* easiest way to check this is with function pointers.
*/
for (j = k + 1; j < NUM_ERASEFUNCTIONS; j++) {
if (eraser.block_erase ==
chip->block_erasers[j].block_erase) {
msg_gerr("ERROR: Flash chip %s erase function "
"%i and %i are identical. Please report"
" a bug at flashrom@flashrom.org\n",
chip->name, k, j);
ret = 1;
}
}
if (curr_eraseblock_count > prev_eraseblock_count) {
msg_gerr("ERROR: Flash chip %s erase function %i is not "
"in order. Please report a bug at flashrom@flashrom.org\n",
chip->name, k);
ret = 1;
}
prev_eraseblock_count = curr_eraseblock_count;
}
return ret;
}
static int erase_by_layout(struct flashctx *const flashctx)
{
bool all_skipped = true;
const uint32_t flash_size = flashctx->chip->total_size * 1024;
uint8_t* curcontents = malloc(flash_size);
uint8_t* newcontents = malloc(flash_size);
struct erase_layout *erase_layout;
create_erase_layout(flashctx, &erase_layout);
int ret = 0;
//erase layout creation failed
if (!erase_layout) {
ret = 1;
goto _ret;
}
//not enough memory
if (!curcontents || !newcontents) {
ret = 1;
goto _ret;
}
memset(curcontents, ~ERASED_VALUE(flashctx), flash_size);
memset(newcontents, ERASED_VALUE(flashctx), flash_size);
setup_progress_from_layout(flashctx, FLASHROM_PROGRESS_READ);
setup_progress_from_layout_and_diff(flashctx, curcontents, newcontents, FLASHROM_PROGRESS_ERASE);
const struct flashrom_layout *const flash_layout = get_layout(flashctx);
const struct romentry *entry = NULL;
while ((entry = layout_next_included(flash_layout, entry))) {
ret = erase_write(flashctx, entry->region.start, entry->region.end, curcontents, newcontents, erase_layout, &all_skipped);
if (ret) {
ret = 1;
msg_cerr("Erase Failed");
goto _ret;
}
}
_ret:
free(curcontents);
free(newcontents);
free_erase_layout(erase_layout, count_usable_erasers(flashctx));
return ret;
}
static int write_by_layout(struct flashctx *const flashctx,
void *const curcontents, const void *const newcontents,
bool *all_skipped)
{
const int erasefn_count = count_usable_erasers(flashctx);
int ret = 1;
const struct flashrom_layout *const flash_layout = get_layout(flashctx);
struct erase_layout *erase_layout;
create_erase_layout(flashctx, &erase_layout);
if (!flash_layout) {
goto _ret;
}
if (!erase_layout) {
goto _ret;
}
setup_progress_from_layout(flashctx, FLASHROM_PROGRESS_READ);
setup_progress_from_layout_and_diff(flashctx, curcontents, newcontents, FLASHROM_PROGRESS_WRITE);
setup_progress_from_layout_and_diff(flashctx, curcontents, newcontents, FLASHROM_PROGRESS_ERASE);
const struct romentry *entry = NULL;
while ((entry = layout_next_included(flash_layout, entry))) {
ret = erase_write(flashctx, entry->region.start,
entry->region.end,
curcontents,
(uint8_t *)newcontents,
erase_layout, all_skipped);
if (ret) {
msg_cerr("Write Failed!");
goto _ret;
}
}
_ret:
free_erase_layout(erase_layout, erasefn_count);
return ret;
}
/**
* @brief Compares the included layout regions with content from a buffer.
*
* If there is no layout set in the given flash context, the whole chip's
* contents will be compared.
*
* @param flashctx Flash context to be used.
* @param layout Flash layout information.
* @param curcontents A buffer of full chip size to read current chip contents into.
* @param newcontents The new image to compare to.
* @return 0 on success,
* 1 if reading failed,
* 3 if the contents don't match.
*/
static int verify_by_layout(
struct flashctx *const flashctx,
const struct flashrom_layout *const layout,
void *const curcontents, const uint8_t *const newcontents)
{
const struct romentry *entry = NULL;
setup_progress_from_layout(flashctx, FLASHROM_PROGRESS_READ);
while ((entry = layout_next_included(layout, entry))) {
const struct flash_region *region = &entry->region;
const chipoff_t region_start = region->start;
const chipsize_t region_len = region->end - region->start + 1;
if (read_flash(flashctx, curcontents + region_start, region_start, region_len))
return 1;
if (compare_range(newcontents + region_start, curcontents + region_start,
region_start, region_len))
return 3;
}
return 0;
}
static bool is_internal_programmer()
{
#if CONFIG_INTERNAL == 1
return programmer == &programmer_internal;
#else
return false;
#endif
}
static void nonfatal_help_message(void)
{
msg_gerr("Good, writing to the flash chip apparently didn't do anything.\n");
if (is_internal_programmer())
msg_gerr("This means we have to add special support for your board, programmer or flash\n"
"chip. Please report this to the mailing list at flashrom@flashrom.org or on\n"
"chat channels (see https://flashrom.org/contact.html for details), thanks!\n"
"-------------------------------------------------------------------------------\n"
"You may now reboot or simply leave the machine running.\n");
else
msg_gerr("Please check the connections (especially those to write protection pins) between\n"
"the programmer and the flash chip. If you think the error is caused by flashrom\n"
"please report this to the mailing list at flashrom@flashrom.org or on chat (see\n"
"https://flashrom.org/contact.html for details), thanks!\n");
}
void emergency_help_message(void)
{
msg_gerr("Your flash chip is in an unknown state.\n");
if (is_internal_programmer())
msg_gerr("Get help on chat (see https://flashrom.org/contact.html) or mail\n"
"flashrom@flashrom.org with the subject \"FAILED: <your board name>\"!"
"-------------------------------------------------------------------------------\n"
"DO NOT REBOOT OR POWEROFF!\n");
else
msg_gerr("Please report this to the mailing list at flashrom@flashrom.org or\n"
"on chat (see https://flashrom.org/contact.html for details), thanks!\n");
}
void list_programmers_linebreak(int startcol, int cols, int paren)
{
const char *pname;
int pnamelen;
int remaining = 0, firstline = 1;
size_t p;
int i;
for (p = 0; p < programmer_table_size; p++) {
pname = programmer_table[p]->name;
pnamelen = strlen(pname);
if (remaining - pnamelen - 2 < 0) {
if (firstline)
firstline = 0;
else
msg_ginfo("\n");
for (i = 0; i < startcol; i++)
msg_ginfo(" ");
remaining = cols - startcol;
} else {
msg_ginfo(" ");
remaining--;
}
if (paren && (p == 0)) {
msg_ginfo("(");
remaining--;
}
msg_ginfo("%s", pname);
remaining -= pnamelen;
if (p < programmer_table_size - 1) {
msg_ginfo(",");
remaining--;
} else {
if (paren)
msg_ginfo(")");
}
}
}
int selfcheck(void)
{
unsigned int i;
int ret = 0;
for (i = 0; i < programmer_table_size; i++) {
const struct programmer_entry *const p = programmer_table[i];
if (p == NULL) {
msg_gerr("Programmer with index %d is NULL instead of a valid pointer!\n", i);
ret = 1;
continue;
}
if (p->name == NULL) {
msg_gerr("All programmers need a valid name, but the one with index %d does not!\n", i);
ret = 1;
/* This might hide other problems with this programmer, but allows for better error
* messages below without jumping through hoops. */
continue;
}
switch (p->type) {
case USB:
case PCI:
case OTHER:
if (p->devs.note == NULL) {
if (strcmp("internal", p->name) == 0)
break; /* This one has its device list stored separately. */
msg_gerr("Programmer %s has neither a device list nor a textual description!\n",
p->name);
ret = 1;
}
break;
default:
msg_gerr("Programmer %s does not have a valid type set!\n", p->name);
ret = 1;
break;
}
if (p->init == NULL) {
msg_gerr("Programmer %s does not have a valid init function!\n", p->name);
ret = 1;
}
}
/* It would be favorable if we could check for the correct layout (especially termination) of various
* constant arrays: flashchips, chipset_enables, board_matches, boards_known, laptops_known.
* They are all defined as externs in this compilation unit so we don't know their sizes which vary
* depending on compiler flags, e.g. the target architecture, and can sometimes be 0.
* For 'flashchips' we export the size explicitly to work around this and to be able to implement the
* checks below. */
if (flashchips_size <= 1 || flashchips[flashchips_size - 1].name != NULL) {
msg_gerr("Flashchips table miscompilation!\n");
ret = 1;
} else {
for (i = 0; i < flashchips_size - 1; i++) {
const struct flashchip *chip = &flashchips[i];
if (chip->vendor == NULL || chip->name == NULL || chip->bustype == BUS_NONE) {
ret = 1;
msg_gerr("ERROR: Some field of flash chip #%d (%s) is misconfigured.\n"
"Please report a bug at flashrom@flashrom.org\n", i,
chip->name == NULL ? "unnamed" : chip->name);
}
if (selfcheck_eraseblocks(chip)) {
ret = 1;
}
}
}
#if CONFIG_INTERNAL == 1
ret |= selfcheck_board_enables();
#endif
/* TODO: implement similar sanity checks for other arrays where deemed necessary. */
return ret;
}
/* FIXME: This function signature needs to be improved once prepare_flash_access()
* has a better function signature.
*/
static int chip_safety_check(const struct flashctx *flash, int force,
int read_it, int write_it, int erase_it, int verify_it)
{
const struct flashchip *chip = flash->chip;
if (!programmer_may_write && (write_it || erase_it)) {
msg_perr("Write/erase is not working yet on your programmer in "
"its current configuration.\n");
/* --force is the wrong approach, but it's the best we can do
* until the generic programmer parameter parser is merged.
*/
if (!force)
return 1;
msg_cerr("Continuing anyway.\n");
}
if (read_it || erase_it || write_it || verify_it) {
/* Everything needs read. */
if (chip->tested.read == BAD) {
msg_cerr("Read is not working on this chip. ");
if (!force)
return 1;
msg_cerr("Continuing anyway.\n");
}
if (!lookup_read_func_ptr(chip)) {
msg_cerr("flashrom has no read function for this "
"flash chip.\n");
return 1;
}
}
if (erase_it || write_it) {
/* Write needs erase. */
if (chip->tested.erase == NA) {
msg_cerr("Erase is not possible on this chip.\n");
return 1;
}
if (chip->tested.erase == BAD) {
msg_cerr("Erase is not working on this chip. ");
if (!force)
return 1;
msg_cerr("Continuing anyway.\n");
}
if(count_usable_erasers(flash) == 0) {
msg_cerr("flashrom has no erase function for this "
"flash chip.\n");
return 1;
}
}
if (write_it) {
if (chip->tested.write == NA) {
msg_cerr("Write is not possible on this chip.\n");
return 1;
}
if (chip->tested.write == BAD) {
msg_cerr("Write is not working on this chip. ");
if (!force)
return 1;
msg_cerr("Continuing anyway.\n");
}
if (!lookup_write_func_ptr(chip)) {
msg_cerr("flashrom has no write function for this "
"flash chip.\n");
return 1;
}
}
return 0;
}
static int restore_flash_wp(struct flashctx *const flash, void *data)
{
struct flashrom_wp_cfg *wp_cfg = data;
enum flashrom_wp_result ret = flashrom_wp_write_cfg(flash, wp_cfg);
flashrom_wp_cfg_release(wp_cfg);
return (ret == FLASHROM_WP_OK) ? 0 : -1;
}
static int save_initial_flash_wp(struct flashctx *const flash)
{
struct flashrom_wp_cfg *initial_wp_cfg;
if (flashrom_wp_cfg_new(&initial_wp_cfg) != FLASHROM_WP_OK)
return -1;
if (flashrom_wp_read_cfg(initial_wp_cfg, flash) != FLASHROM_WP_OK) {
flashrom_wp_cfg_release(initial_wp_cfg);
return -1;
}
if (register_chip_restore(restore_flash_wp, flash, initial_wp_cfg)) {
flashrom_wp_cfg_release(initial_wp_cfg);
return -1;
}
return 0;
}
static int unlock_flash_wp(struct flashctx *const flash,
const bool write_it, const bool erase_it)
{
int ret = 0;
/* WP only disables write protection, so only use WP to unlock
* for write/erase operations.
*
* For read/verify operations, we still call the chip's unlock
* function, which may disable read locks if the chip has them.
*/
if (!write_it && !erase_it) {
msg_cdbg("Skipping writeprotect-based unlocking for read/verify operations.\n");
return -1;
}
/* Save original WP state to be restored later */
if (save_initial_flash_wp(flash)) {
ret = -1;
goto warn_out;
}
/* Disable WP */
struct flashrom_wp_cfg *unlocked_wp_cfg;
if (flashrom_wp_cfg_new(&unlocked_wp_cfg) != FLASHROM_WP_OK) {
ret = -1;
goto warn_out;
}
flashrom_wp_set_range(unlocked_wp_cfg, 0, 0);
flashrom_wp_set_mode(unlocked_wp_cfg, FLASHROM_WP_MODE_DISABLED);
if (flashrom_wp_write_cfg(flash, unlocked_wp_cfg) != FLASHROM_WP_OK) {
ret = -1;
}
flashrom_wp_cfg_release(unlocked_wp_cfg);
warn_out:
if (ret)
msg_cwarn("Failed to unlock flash status reg with wp support.\n");
return ret;
}
int prepare_flash_access(struct flashctx *const flash,
const bool read_it, const bool write_it,
const bool erase_it, const bool verify_it)
{
if (chip_safety_check(flash, flash->flags.force, read_it, write_it, erase_it, verify_it)) {
msg_cerr("Aborting.\n");
return 1;
}
if (layout_sanity_checks(flash)) {
msg_cerr("Requested regions can not be handled. Aborting.\n");
return 1;
}
if (map_flash(flash) != 0)
return 1;
/* Initialize chip_restore_fn_count before chip unlock calls. */
flash->chip_restore_fn_count = 0;
int ret = 1;
if (flash->chip->decode_range != NO_DECODE_RANGE_FUNC ||
(flash->mst->buses_supported & BUS_PROG && flash->mst->opaque.wp_write_cfg)) {
ret = unlock_flash_wp(flash, write_it, erase_it);
}
/*
* Fall back to chip unlock function if we haven't already successfully
* unlocked using WP (e.g. WP unlocking failed, chip had no WP support,
* WP was skipped for read/verify ops).
*
* Given the existence of read locks, we want to unlock for read,
* erase, write, and verify.
*/
blockprotect_func_t *bp_func = lookup_blockprotect_func_ptr(flash->chip);
if (ret && bp_func)
bp_func(flash);
flash->address_high_byte = -1;
flash->in_4ba_mode = false;
/* Be careful about 4BA chips and broken masters */
if (flash->chip->total_size > 16 * 1024 && spi_master_no_4ba_modes(flash)) {
/* If we can't use native instructions, bail out */
if ((flash->chip->feature_bits & FEATURE_4BA_NATIVE) != FEATURE_4BA_NATIVE
|| !spi_master_4ba(flash)) {
msg_cerr("Programmer doesn't support this chip. Aborting.\n");
return 1;
}
}
/* Enable/disable 4-byte addressing mode if flash chip supports it */
if (spi_chip_4ba(flash)) {
if (spi_master_4ba(flash))
ret = spi_enter_4ba(flash);
else
ret = spi_exit_4ba(flash);
if (ret) {
msg_cerr("Failed to set correct 4BA mode! Aborting.\n");
return 1;
}
}
return 0;
}
void finalize_flash_access(struct flashctx *const flash)
{
deregister_chip_restore(flash);
unmap_flash(flash);
}
int flashrom_flash_erase(struct flashctx *const flashctx)
{
if (prepare_flash_access(flashctx, false, false, true, false))
return 1;
const int ret = erase_by_layout(flashctx);
finalize_flash_access(flashctx);
return ret;
}
int flashrom_image_read(struct flashctx *const flashctx, void *const buffer, const size_t buffer_len)
{
const size_t flash_size = flashctx->chip->total_size * 1024;
if (flash_size > buffer_len)
return 2;
if (prepare_flash_access(flashctx, true, false, false, false))
return 1;
msg_cinfo("Reading flash... ");
int ret = 1;
if (read_by_layout(flashctx, buffer)) {
msg_cerr("Read operation failed!\n");
msg_cinfo("FAILED.\n");
goto _finalize_ret;
}
msg_cinfo("done.\n");
ret = 0;
_finalize_ret:
finalize_flash_access(flashctx);
return ret;
}
static void combine_image_by_layout(const struct flashctx *const flashctx,
uint8_t *const newcontents, const uint8_t *const oldcontents)
{
const struct flashrom_layout *const layout = get_layout(flashctx);
const struct romentry *included;
chipoff_t start = 0;
while ((included = layout_next_included_region(layout, start))) {
const struct flash_region *region = &included->region;
if (region->start > start) {
/* copy everything up to the start of this included region */
memcpy(newcontents + start, oldcontents + start, region->start - start);
}
/* skip this included region */
start = region->end + 1;
if (start == 0)
return;
}
/* copy the rest of the chip */
const chipsize_t copy_len = flashctx->chip->total_size * 1024 - start;
memcpy(newcontents + start, oldcontents + start, copy_len);
}
int flashrom_image_write(struct flashctx *const flashctx, void *const buffer, const size_t buffer_len,
const void *const refbuffer)
{
const size_t flash_size = flashctx->chip->total_size * 1024;
const bool verify_all = flashctx->flags.verify_whole_chip;
const bool verify = flashctx->flags.verify_after_write;
const struct flashrom_layout *const verify_layout =
verify_all ? get_default_layout(flashctx) : get_layout(flashctx);
if (buffer_len != flash_size)
return 4;
int ret = 1;
uint8_t *const newcontents = buffer;
const uint8_t *const refcontents = refbuffer;
uint8_t *const curcontents = malloc(flash_size);
uint8_t *oldcontents = NULL;
if (verify_all)
oldcontents = malloc(flash_size);
if (!curcontents || (verify_all && !oldcontents)) {
msg_gerr("Out of memory!\n");
goto _free_ret;
}
#if CONFIG_INTERNAL == 1
if (is_internal_programmer() && cb_check_image(newcontents, flash_size) < 0) {
if (flashctx->flags.force_boardmismatch) {
msg_pinfo("Proceeding anyway because user forced us to.\n");
} else {
msg_perr("Aborting. You can override this with "
"-p internal:boardmismatch=force.\n");
goto _free_ret;
}
}
#endif
if (prepare_flash_access(flashctx, false, true, false, verify))
goto _free_ret;
/* If given, assume flash chip contains same data as `refcontents`. */
if (refcontents) {
msg_cinfo("Assuming old flash chip contents as ref-file...\n");
memcpy(curcontents, refcontents, flash_size);
if (oldcontents)
memcpy(oldcontents, refcontents, flash_size);
} else {
/*
* Read the whole chip to be able to check whether regions need to be
* erased and to give better diagnostics in case write fails.
* The alternative is to read only the regions which are to be
* preserved, but in that case we might perform unneeded erase which
* takes time as well.
*/
msg_cinfo("Reading old flash chip contents... ");
if (verify_all) {
init_progress(flashctx, FLASHROM_PROGRESS_READ, flash_size);
if (read_flash(flashctx, oldcontents, 0, flash_size)) {
msg_cinfo("FAILED.\n");
goto _finalize_ret;
}
memcpy(curcontents, oldcontents, flash_size);
} else {
if (read_by_layout(flashctx, curcontents)) {
msg_cinfo("FAILED.\n");
goto _finalize_ret;
}
}
msg_cinfo("done.\n");
}
bool all_skipped = true;
msg_cinfo("Updating flash chip contents... ");
if (write_by_layout(flashctx, curcontents, newcontents, &all_skipped)) {
msg_cerr("Uh oh. Erase/write failed. ");
ret = 2;
if (verify_all) {
msg_cerr("Checking if anything has changed.\n");
msg_cinfo("Reading current flash chip contents... ");
init_progress(flashctx, FLASHROM_PROGRESS_READ, flash_size);
if (!read_flash(flashctx, curcontents, 0, flash_size)) {
msg_cinfo("done.\n");
if (!memcmp(oldcontents, curcontents, flash_size)) {
nonfatal_help_message();
goto _finalize_ret;
}
msg_cerr("Apparently at least some data has changed.\n");
} else
msg_cerr("Can't even read anymore!\n");
emergency_help_message();
goto _finalize_ret;
} else {
msg_cerr("\n");
}
emergency_help_message();
goto _finalize_ret;
}
/* Verify only if we actually changed something. */
if (verify && !all_skipped) {
msg_cinfo("Verifying flash... ");
/*
* Work around chips which "need some time to calm down."
*
* Frankly, it's not 100% clear why this delay is here at all,
* except for a terse message from 2009 of "a few reports where
* verify directly after erase had unpleasant side effects like
* corrupting flash or at least getting incorrect verify
* results". Ideally, if there were a few known problematic
* chips or programmers, we could add quirks flags for those
* specific implementations without penalizing all other
* flashrom users. But alas, we don't know which systems
* experienced those issues.
*
* Out of an extreme abundance of caution, we retain this
* delay, but only for a few non-SPI bus types that were the
* likely prevalent targets at the time. This is a complete
* guess, which conveniently avoids wasting time on common
* BUS_SPI and BUS_PROG systems.
*
* Background thread:
* Subject: RFC: removing 1 second verification delay
* https://mail.coreboot.org/hyperkitty/list/flashrom@flashrom.org/thread/SFV3OJBVVMDKRLI3FQA3DDDGEXJ7W4ED/
*/
if (flashctx->chip->bustype & (BUS_PARALLEL | BUS_LPC | BUS_FWH))
programmer_delay(flashctx, 1000*1000);
if (verify_all)
combine_image_by_layout(flashctx, newcontents, oldcontents);
ret = verify_by_layout(flashctx, verify_layout, curcontents, newcontents);
/* If we tried to write, and verification now fails, we
might have an emergency situation. */
if (ret)
emergency_help_message();
else
msg_cinfo("VERIFIED.\n");
} else {
/* We didn't change anything. */
ret = 0;
}
_finalize_ret:
finalize_flash_access(flashctx);
_free_ret:
free(oldcontents);
free(curcontents);
return ret;
}
int flashrom_image_verify(struct flashctx *const flashctx, const void *const buffer, const size_t buffer_len)
{
const struct flashrom_layout *const layout = get_layout(flashctx);
const size_t flash_size = flashctx->chip->total_size * 1024;
if (buffer_len != flash_size)
return 2;
const uint8_t *const newcontents = buffer;
uint8_t *const curcontents = malloc(flash_size);
if (!curcontents) {
msg_gerr("Out of memory!\n");
return 1;
}
int ret = 1;
if (prepare_flash_access(flashctx, false, false, false, true))
goto _free_ret;
msg_cinfo("Verifying flash... ");
ret = verify_by_layout(flashctx, layout, curcontents, newcontents);
if (!ret)
msg_cinfo("VERIFIED.\n");
finalize_flash_access(flashctx);
_free_ret:
free(curcontents);
return ret;
}
|