1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
|
/*
* This file is part of the flashrom project.
*
* Copyright (C) 2009 Peter Stuge <peter@stuge.se>
* Copyright (C) 2009 coresystems GmbH
* Copyright (C) 2010 Carl-Daniel Hailfinger
* Copyright (C) 2010 Rudolf Marek <r.marek@assembler.cz>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <unistd.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include "flash.h"
#include "platform.h"
#include "hwaccess_physmap.h"
#if !defined(__DJGPP__) && !defined(__LIBPAYLOAD__)
/* No file access needed/possible to get mmap access permissions or access MSR. */
#include <unistd.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <fcntl.h>
#endif
#ifdef __DJGPP__
#include <dpmi.h>
#include <malloc.h>
#include <sys/nearptr.h>
#define ONE_MEGABYTE (1024 * 1024)
#define MEM_DEV "dpmi"
static void *realmem_map_aligned;
static void *map_first_meg(uintptr_t phys_addr, size_t len)
{
void *realmem_map;
size_t pagesize;
if (realmem_map_aligned)
return realmem_map_aligned + phys_addr;
/* valloc() from DJGPP 2.05 does not work properly */
pagesize = getpagesize();
realmem_map = malloc(ONE_MEGABYTE + pagesize);
if (!realmem_map)
return ERROR_PTR;
realmem_map_aligned = (void *)(((size_t) realmem_map +
(pagesize - 1)) & ~(pagesize - 1));
if (__djgpp_map_physical_memory(realmem_map_aligned, ONE_MEGABYTE, 0)) {
free(realmem_map);
realmem_map_aligned = NULL;
return ERROR_PTR;
}
return realmem_map_aligned + phys_addr;
}
static void *sys_physmap(uintptr_t phys_addr, size_t len)
{
int ret;
__dpmi_meminfo mi;
/* Enable 4GB limit on DS descriptor. */
if (!__djgpp_nearptr_enable())
return ERROR_PTR;
if ((phys_addr + len - 1) < ONE_MEGABYTE) {
/* We need to use another method to map first 1MB. */
return map_first_meg(phys_addr, len);
}
mi.address = phys_addr;
mi.size = len;
ret = __dpmi_physical_address_mapping(&mi);
if (ret != 0)
return ERROR_PTR;
return (void *) mi.address + __djgpp_conventional_base;
}
#define sys_physmap_rw_uncached sys_physmap
#define sys_physmap_ro_cached sys_physmap
static void sys_physunmap_unaligned(void *virt_addr, size_t len)
{
__dpmi_meminfo mi;
/* There is no known way to unmap the first 1 MB. The DPMI server will
* do this for us on exit.
*/
if ((virt_addr >= realmem_map_aligned) &&
((virt_addr + len) <= (realmem_map_aligned + ONE_MEGABYTE))) {
return;
}
mi.address = (unsigned long) virt_addr;
__dpmi_free_physical_address_mapping(&mi);
}
#elif defined(__LIBPAYLOAD__)
#include <arch/virtual.h>
#define MEM_DEV ""
static void *sys_physmap(uintptr_t phys_addr, size_t len)
{
return (void *)phys_to_virt(phys_addr);
}
#define sys_physmap_rw_uncached sys_physmap
#define sys_physmap_ro_cached sys_physmap
static void sys_physunmap_unaligned(void *virt_addr, size_t len)
{
}
#elif defined(__MACH__) && defined(__APPLE__)
#include <DirectHW/DirectHW.h>
#define MEM_DEV "DirectHW"
static void *sys_physmap(uintptr_t phys_addr, size_t len)
{
/* The short form of ?: is a GNU extension.
* FIXME: map_physical returns NULL both for errors and for success
* if the region is mapped at virtual address zero. If in doubt, report
* an error until a better interface exists.
*/
return map_physical(phys_addr, len) ? : ERROR_PTR;
}
/* The OS X driver does not differentiate between mapping types. */
#define sys_physmap_rw_uncached sys_physmap
#define sys_physmap_ro_cached sys_physmap
static void sys_physunmap_unaligned(void *virt_addr, size_t len)
{
unmap_physical(virt_addr, len);
}
#else
#include <sys/mman.h>
#if defined (__sun) && (defined(__i386) || defined(__amd64))
# define MEM_DEV "/dev/xsvc"
#else
# define MEM_DEV "/dev/mem"
#endif
static int fd_mem = -1;
static int fd_mem_cached = -1;
/* For MMIO access. Must be uncached, doesn't make sense to restrict to ro. */
static void *sys_physmap_rw_uncached(uintptr_t phys_addr, size_t len)
{
void *virt_addr;
if (-1 == fd_mem) {
/* Open the memory device UNCACHED. Important for MMIO. */
if (-1 == (fd_mem = open(MEM_DEV, O_RDWR | O_SYNC))) {
msg_perr("Critical error: open(" MEM_DEV "): %s\n", strerror(errno));
return ERROR_PTR;
}
}
virt_addr = mmap(NULL, len, PROT_WRITE | PROT_READ, MAP_SHARED, fd_mem, (off_t)phys_addr);
return MAP_FAILED == virt_addr ? ERROR_PTR : virt_addr;
}
/* For reading DMI/coreboot/whatever tables. We should never write, and we
* do not care about caching.
*/
static void *sys_physmap_ro_cached(uintptr_t phys_addr, size_t len)
{
void *virt_addr;
if (-1 == fd_mem_cached) {
/* Open the memory device CACHED. */
if (-1 == (fd_mem_cached = open(MEM_DEV, O_RDWR))) {
msg_perr("Critical error: open(" MEM_DEV "): %s\n", strerror(errno));
return ERROR_PTR;
}
}
virt_addr = mmap(NULL, len, PROT_READ, MAP_SHARED, fd_mem_cached, (off_t)phys_addr);
return MAP_FAILED == virt_addr ? ERROR_PTR : virt_addr;
}
static void sys_physunmap_unaligned(void *virt_addr, size_t len)
{
munmap(virt_addr, len);
}
#endif
#define PHYSM_RW 0
#define PHYSM_RO 1
#define PHYSM_NOCLEANUP 0
#define PHYSM_CLEANUP 1
#define PHYSM_EXACT 0
#define PHYSM_ROUND 1
/* Round start to nearest page boundary below and set len so that the resulting address range ends at the lowest
* possible page boundary where the original address range is still entirely contained. It returns the
* difference between the rounded start address and the original start address. */
static uintptr_t round_to_page_boundaries(uintptr_t *start, size_t *len)
{
uintptr_t page_size = getpagesize();
uintptr_t page_mask = ~(page_size-1);
uintptr_t end = *start + *len;
uintptr_t old_start = *start;
msg_gspew("page_size=%" PRIxPTR "\n", page_size);
msg_gspew("pre-rounding: start=0x%0*" PRIxPTR ", len=0x%zx, end=0x%0*" PRIxPTR "\n",
PRIxPTR_WIDTH, *start, *len, PRIxPTR_WIDTH, end);
*start = *start & page_mask;
end = (end + page_size - 1) & page_mask;
*len = end - *start;
msg_gspew("post-rounding: start=0x%0*" PRIxPTR ", len=0x%zx, end=0x%0*" PRIxPTR "\n",
PRIxPTR_WIDTH, *start, *len, PRIxPTR_WIDTH, *start + *len);
return old_start - *start;
}
struct undo_physmap_data {
void *virt_addr;
size_t len;
};
static int undo_physmap(void *data)
{
if (data == NULL) {
msg_perr("%s: tried to physunmap without valid data!\n", __func__);
return 1;
}
struct undo_physmap_data *d = data;
physunmap_unaligned(d->virt_addr, d->len);
free(data);
return 0;
}
static void *physmap_common(const char *descr, uintptr_t phys_addr, size_t len, bool readonly, bool autocleanup,
bool round)
{
void *virt_addr;
uintptr_t offset = 0;
if (len == 0) {
msg_pspew("Not mapping %s, zero size at 0x%0*" PRIxPTR ".\n", descr, PRIxPTR_WIDTH, phys_addr);
return ERROR_PTR;
}
if (round)
offset = round_to_page_boundaries(&phys_addr, &len);
if (readonly)
virt_addr = sys_physmap_ro_cached(phys_addr, len);
else
virt_addr = sys_physmap_rw_uncached(phys_addr, len);
if (ERROR_PTR == virt_addr) {
if (NULL == descr)
descr = "memory";
msg_perr("Error accessing %s, 0x%zx bytes at 0x%0*" PRIxPTR "\n",
descr, len, PRIxPTR_WIDTH, phys_addr);
msg_perr(MEM_DEV " mmap failed: %s\n", strerror(errno));
#ifdef __linux__
if (EINVAL == errno) {
msg_perr("In Linux this error can be caused by the CONFIG_NONPROMISC_DEVMEM (<2.6.27),\n");
msg_perr("CONFIG_STRICT_DEVMEM (>=2.6.27) and CONFIG_X86_PAT kernel options.\n");
msg_perr("Please check if either is enabled in your kernel before reporting a failure.\n");
msg_perr("You can override CONFIG_X86_PAT at boot with the nopat kernel parameter but\n");
msg_perr("disabling the other option unfortunately requires a kernel recompile. Sorry!\n");
}
#elif defined (__OpenBSD__)
msg_perr("Please set securelevel=-1 in /etc/rc.securelevel "
"and reboot, or reboot into\n"
"single user mode.\n");
#endif
return ERROR_PTR;
}
if (autocleanup) {
struct undo_physmap_data *d = malloc(sizeof(*d));
if (d == NULL) {
msg_perr("%s: Out of memory!\n", __func__);
physunmap_unaligned(virt_addr, len);
return ERROR_PTR;
}
d->virt_addr = virt_addr;
d->len = len;
if (register_shutdown(undo_physmap, d) != 0) {
msg_perr("%s: Could not register shutdown function!\n", __func__);
physunmap_unaligned(virt_addr, len);
return ERROR_PTR;
}
}
return virt_addr + offset;
}
void physunmap_unaligned(void *virt_addr, size_t len)
{
/* No need to check for zero size, such mappings would have yielded ERROR_PTR. */
if (virt_addr == ERROR_PTR) {
msg_perr("Trying to unmap a nonexisting mapping!\n"
"Please report a bug at flashrom@flashrom.org\n");
return;
}
sys_physunmap_unaligned(virt_addr, len);
}
void physunmap(void *virt_addr, size_t len)
{
uintptr_t tmp;
/* No need to check for zero size, such mappings would have yielded ERROR_PTR. */
if (virt_addr == ERROR_PTR) {
msg_perr("Trying to unmap a nonexisting mapping!\n"
"Please report a bug at flashrom@flashrom.org\n");
return;
}
tmp = (uintptr_t)virt_addr;
/* We assume that the virtual address of a page-aligned physical address is page-aligned as well. By
* extension, rounding a virtual unaligned address as returned by physmap should yield the same offset
* between rounded and original virtual address as between rounded and original physical address.
*/
round_to_page_boundaries(&tmp, &len);
virt_addr = (void *)tmp;
physunmap_unaligned(virt_addr, len);
}
void *physmap(const char *descr, uintptr_t phys_addr, size_t len)
{
return physmap_common(descr, phys_addr, len, PHYSM_RW, PHYSM_NOCLEANUP, PHYSM_ROUND);
}
void *rphysmap(const char *descr, uintptr_t phys_addr, size_t len)
{
return physmap_common(descr, phys_addr, len, PHYSM_RW, PHYSM_CLEANUP, PHYSM_ROUND);
}
void *physmap_ro(const char *descr, uintptr_t phys_addr, size_t len)
{
return physmap_common(descr, phys_addr, len, PHYSM_RO, PHYSM_NOCLEANUP, PHYSM_ROUND);
}
void *physmap_ro_unaligned(const char *descr, uintptr_t phys_addr, size_t len)
{
return physmap_common(descr, phys_addr, len, PHYSM_RO, PHYSM_NOCLEANUP, PHYSM_EXACT);
}
/* Prevent reordering and/or merging of reads/writes to hardware.
* Such reordering and/or merging would break device accesses which depend on the exact access order.
*/
static inline void sync_primitive(void)
{
/* This is not needed for...
* - x86: uses uncached accesses which have a strongly ordered memory model.
* - MIPS: uses uncached accesses in mode 2 on /dev/mem which has also a strongly ordered memory model.
* - ARM: uses a strongly ordered memory model for device memories.
*
* See also https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/Documentation/memory-barriers.txt
*/
// cf. http://lxr.free-electrons.com/source/arch/powerpc/include/asm/barrier.h
#if defined(__powerpc) || defined(__powerpc__) || defined(__powerpc64__) || defined(__POWERPC__) || \
defined(__ppc__) || defined(__ppc64__) || defined(_M_PPC) || defined(_ARCH_PPC) || \
defined(_ARCH_PPC64) || defined(__ppc)
__asm__("eieio" : : : "memory");
#elif (__sparc__) || defined (__sparc)
#if defined(__sparc_v9__) || defined(__sparcv9)
/* Sparc V9 CPUs support three different memory orderings that range from x86-like TSO to PowerPC-like
* RMO. The modes can be switched at runtime thus to make sure we maintain the right order of access we
* use the strongest hardware memory barriers that exist on Sparc V9. */
__asm__ volatile ("membar #Sync" ::: "memory");
#elif defined(__sparc_v8__) || defined(__sparcv8)
/* On SPARC V8 there is no RMO just PSO and that does not apply to I/O accesses... but if V8 code is run
* on V9 CPUs it might apply... or not... we issue a write barrier anyway. That's the most suitable
* operation in the V8 instruction set anyway. If you know better then please tell us. */
__asm__ volatile ("stbar");
#else
#error Unknown and/or unsupported SPARC instruction set version detected.
#endif
#endif
}
void mmio_writeb(uint8_t val, void *addr)
{
*(volatile uint8_t *) addr = val;
sync_primitive();
}
void mmio_writew(uint16_t val, void *addr)
{
*(volatile uint16_t *) addr = val;
sync_primitive();
}
void mmio_writel(uint32_t val, void *addr)
{
*(volatile uint32_t *) addr = val;
sync_primitive();
}
uint8_t mmio_readb(const void *addr)
{
return *(volatile const uint8_t *) addr;
}
uint16_t mmio_readw(const void *addr)
{
return *(volatile const uint16_t *) addr;
}
uint32_t mmio_readl(const void *addr)
{
return *(volatile const uint32_t *) addr;
}
void mmio_readn(const void *addr, uint8_t *buf, size_t len)
{
memcpy(buf, addr, len);
return;
}
void mmio_le_writeb(uint8_t val, void *addr)
{
mmio_writeb(cpu_to_le8(val), addr);
}
void mmio_le_writew(uint16_t val, void *addr)
{
mmio_writew(cpu_to_le16(val), addr);
}
void mmio_le_writel(uint32_t val, void *addr)
{
mmio_writel(cpu_to_le32(val), addr);
}
uint8_t mmio_le_readb(const void *addr)
{
return le_to_cpu8(mmio_readb(addr));
}
uint16_t mmio_le_readw(const void *addr)
{
return le_to_cpu16(mmio_readw(addr));
}
uint32_t mmio_le_readl(const void *addr)
{
return le_to_cpu32(mmio_readl(addr));
}
enum mmio_write_type {
mmio_write_type_b,
mmio_write_type_w,
mmio_write_type_l,
};
struct undo_mmio_write_data {
void *addr;
int reg;
enum mmio_write_type type;
union {
uint8_t bdata;
uint16_t wdata;
uint32_t ldata;
};
};
static int undo_mmio_write(void *p)
{
struct undo_mmio_write_data *data = p;
msg_pdbg("Restoring MMIO space at %p\n", data->addr);
switch (data->type) {
case mmio_write_type_b:
mmio_writeb(data->bdata, data->addr);
break;
case mmio_write_type_w:
mmio_writew(data->wdata, data->addr);
break;
case mmio_write_type_l:
mmio_writel(data->ldata, data->addr);
break;
}
/* p was allocated in register_undo_mmio_write. */
free(p);
return 0;
}
#define register_undo_mmio_write(a, c) \
{ \
struct undo_mmio_write_data *undo_mmio_write_data; \
undo_mmio_write_data = malloc(sizeof(*undo_mmio_write_data)); \
if (!undo_mmio_write_data) { \
msg_gerr("Out of memory!\n"); \
exit(1); \
} \
undo_mmio_write_data->addr = a; \
undo_mmio_write_data->type = mmio_write_type_##c; \
undo_mmio_write_data->c##data = mmio_read##c(a); \
register_shutdown(undo_mmio_write, undo_mmio_write_data); \
}
#define register_undo_mmio_writeb(a) register_undo_mmio_write(a, b)
#define register_undo_mmio_writew(a) register_undo_mmio_write(a, w)
#define register_undo_mmio_writel(a) register_undo_mmio_write(a, l)
void rmmio_writeb(uint8_t val, void *addr)
{
register_undo_mmio_writeb(addr);
mmio_writeb(val, addr);
}
void rmmio_writew(uint16_t val, void *addr)
{
register_undo_mmio_writew(addr);
mmio_writew(val, addr);
}
void rmmio_writel(uint32_t val, void *addr)
{
register_undo_mmio_writel(addr);
mmio_writel(val, addr);
}
void rmmio_le_writeb(uint8_t val, void *addr)
{
register_undo_mmio_writeb(addr);
mmio_le_writeb(val, addr);
}
void rmmio_le_writew(uint16_t val, void *addr)
{
register_undo_mmio_writew(addr);
mmio_le_writew(val, addr);
}
void rmmio_le_writel(uint32_t val, void *addr)
{
register_undo_mmio_writel(addr);
mmio_le_writel(val, addr);
}
void rmmio_valb(void *addr)
{
register_undo_mmio_writeb(addr);
}
void rmmio_valw(void *addr)
{
register_undo_mmio_writew(addr);
}
void rmmio_vall(void *addr)
{
register_undo_mmio_writel(addr);
}
|