1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
|
/*
* This file is part of the flashrom project.
*
* Copyright (C) 2013 Ricardo Ribalda - Qtechnology A/S
* Copyright (C) 2011, 2014 Stefan Tauner
*
* Based on nicinctel_spi.c and ichspi.c
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
/*
* Datasheet: Intel 82580 Quad/Dual Gigabit Ethernet LAN Controller Datasheet
* 3.3.1.4: General EEPROM Software Access
* 4.7: Access to shared resources (FIXME: we should probably use this semaphore interface)
* 7.4: Register Descriptions
*/
/*
* Datasheet: Intel Ethernet Controller I210: Datasheet
* 8.4.3: EEPROM-Mode Read Register
* 8.4.6: EEPROM-Mode Write Register
* Write process inspired on kernel e1000_i210.c
*/
#include <stdlib.h>
#include <unistd.h>
#include "spi.h"
#include "programmer.h"
#include "hwaccess_physmap.h"
#include "platform/pci.h"
#include "platform/udelay.h"
#define PCI_VENDOR_ID_INTEL 0x8086
#define MEMMAP_SIZE 0x1c /* Only EEC, EERD and EEWR are needed. */
#define EEC 0x10 /* EEPROM/Flash Control Register */
#define EERD 0x14 /* EEPROM Read Register */
#define EEWR 0x18 /* EEPROM Write Register */
/* EPROM/Flash Control Register bits */
#define EE_SCK 0
#define EE_CS 1
#define EE_SI 2
#define EE_SO 3
#define EE_REQ 6
#define EE_GNT 7
#define EE_PRES 8
#define EE_SIZE 11
#define EE_SIZE_MASK 0xf
#define EE_FLUPD 23
#define EE_FLUDONE 26
/* EEPROM Read Register bits */
#define EERD_START 0
#define EERD_DONE 1
#define EERD_ADDR 2
#define EERD_DATA 16
/* EEPROM Write Register bits */
#define EEWR_CMDV 0
#define EEWR_DONE 1
#define EEWR_ADDR 2
#define EEWR_DATA 16
#define EE_PAGE_MASK 0x3f
#define UNPROG_DEVICE 0x1509
struct nicintel_eeprom_data {
struct pci_dev *nicintel_pci;
uint8_t *nicintel_eebar;
/* Intel 82580 variable(s) */
uint32_t eec;
/* Intel I210 variable(s) */
bool done_i210_write;
};
/*
* Warning: is_i210() below makes assumptions on these PCI ids.
* It may have to be updated when this list is extended.
*/
static const struct dev_entry nics_intel_ee[] = {
{PCI_VENDOR_ID_INTEL, 0x150e, OK, "Intel", "82580 Quad Gigabit Ethernet Controller (Copper)"},
{PCI_VENDOR_ID_INTEL, 0x150f, NT , "Intel", "82580 Quad Gigabit Ethernet Controller (Fiber)"},
{PCI_VENDOR_ID_INTEL, 0x1510, NT , "Intel", "82580 Quad Gigabit Ethernet Controller (Backplane)"},
{PCI_VENDOR_ID_INTEL, 0x1511, NT , "Intel", "82580 Quad Gigabit Ethernet Controller (Ext. PHY)"},
{PCI_VENDOR_ID_INTEL, 0x1511, NT , "Intel", "82580 Dual Gigabit Ethernet Controller (Copper)"},
{PCI_VENDOR_ID_INTEL, UNPROG_DEVICE, OK, "Intel", "Unprogrammed 82580 Quad/Dual Gigabit Ethernet Controller"},
{PCI_VENDOR_ID_INTEL, 0x1531, OK, "Intel", "I210 Gigabit Network Connection Unprogrammed"},
{PCI_VENDOR_ID_INTEL, 0x1532, NT, "Intel", "I211 Gigabit Network Connection Unprogrammed"},
{PCI_VENDOR_ID_INTEL, 0x1533, OK, "Intel", "I210 Gigabit Network Connection"},
{PCI_VENDOR_ID_INTEL, 0x1536, NT, "Intel", "I210 Gigabit Network Connection SERDES Fiber"},
{PCI_VENDOR_ID_INTEL, 0x1537, NT, "Intel", "I210 Gigabit Network Connection SERDES Backplane"},
{PCI_VENDOR_ID_INTEL, 0x1538, NT, "Intel", "I210 Gigabit Network Connection SGMII"},
{PCI_VENDOR_ID_INTEL, 0x1539, NT, "Intel", "I211 Gigabit Network Connection"},
{0},
};
static inline bool is_i210(uint16_t device_id)
{
return (device_id & 0xfff0) == 0x1530;
}
static int nicintel_ee_probe_i210(struct flashctx *flash)
{
/* Emulated eeprom has a fixed size of 4 KB */
flash->chip->total_size = 4;
flash->chip->page_size = flash->chip->total_size * 1024;
flash->chip->tested = TEST_OK_PREWB;
flash->chip->gran = WRITE_GRAN_1BYTE_IMPLICIT_ERASE;
flash->chip->block_erasers->eraseblocks[0].size = flash->chip->page_size;
flash->chip->block_erasers->eraseblocks[0].count = 1;
return 1;
}
static int nicintel_ee_probe_82580(struct flashctx *flash)
{
const struct nicintel_eeprom_data *data = flash->mst->opaque.data;
if (data->nicintel_pci->device_id == UNPROG_DEVICE)
flash->chip->total_size = 16; /* Fall back to minimum supported size. */
else {
uint32_t tmp = pci_mmio_readl(data->nicintel_eebar + EEC);
tmp = ((tmp >> EE_SIZE) & EE_SIZE_MASK);
switch (tmp) {
case 7:
flash->chip->total_size = 16;
break;
case 8:
flash->chip->total_size = 32;
break;
default:
msg_cerr("Unsupported chip size 0x%"PRIx32"\n", tmp);
return 0;
}
}
flash->chip->page_size = EE_PAGE_MASK + 1;
flash->chip->tested = TEST_OK_PREWB;
flash->chip->gran = WRITE_GRAN_1BYTE_IMPLICIT_ERASE;
flash->chip->block_erasers->eraseblocks[0].size = (EE_PAGE_MASK + 1);
flash->chip->block_erasers->eraseblocks[0].count = (flash->chip->total_size * 1024) / (EE_PAGE_MASK + 1);
return 1;
}
#define MAX_ATTEMPTS 10000000
static int nicintel_ee_read_word(uint8_t *eebar, unsigned int addr, uint16_t *data)
{
uint32_t tmp = BIT(EERD_START) | (addr << EERD_ADDR);
pci_mmio_writel(tmp, eebar + EERD);
/* Poll done flag. 10.000.000 cycles seem to be enough. */
uint32_t i;
for (i = 0; i < MAX_ATTEMPTS; i++) {
tmp = pci_mmio_readl(eebar + EERD);
if (tmp & BIT(EERD_DONE)) {
*data = (tmp >> EERD_DATA) & 0xffff;
return 0;
}
}
return -1;
}
static int nicintel_ee_read(struct flashctx *flash, uint8_t *buf, unsigned int addr, unsigned int len)
{
const struct nicintel_eeprom_data *opaque_data = flash->mst->opaque.data;
uint16_t data;
/* The NIC interface always reads 16 b words so we need to convert the address and handle odd address
* explicitly at the start (and also at the end in the loop below). */
if (addr & 1) {
if (nicintel_ee_read_word(opaque_data->nicintel_eebar, addr / 2, &data))
return -1;
*buf++ = data & 0xff;
addr++;
len--;
}
while (len > 0) {
if (nicintel_ee_read_word(opaque_data->nicintel_eebar, addr / 2, &data))
return -1;
*buf++ = data & 0xff;
addr++;
len--;
if (len > 0) {
*buf++ = (data >> 8) & 0xff;
addr++;
len--;
}
}
return 0;
}
static int nicintel_ee_write_word_i210(uint8_t *eebar, unsigned int addr, uint16_t data)
{
uint32_t eewr;
eewr = addr << EEWR_ADDR;
eewr |= data << EEWR_DATA;
eewr |= BIT(EEWR_CMDV);
pci_mmio_writel(eewr, eebar + EEWR);
default_delay(5);
int i;
for (i = 0; i < MAX_ATTEMPTS; i++)
if (pci_mmio_readl(eebar + EEWR) & BIT(EEWR_DONE))
return 0;
return -1;
}
static int nicintel_ee_write_i210(struct flashctx *flash, const uint8_t *buf,
unsigned int addr, unsigned int len)
{
struct nicintel_eeprom_data *opaque_data = flash->mst->opaque.data;
opaque_data->done_i210_write = true;
if (addr & 1) {
uint16_t data;
if (nicintel_ee_read_word(opaque_data->nicintel_eebar, addr / 2, &data)) {
msg_perr("Timeout reading heading byte\n");
return -1;
}
data &= 0xff;
data |= (buf ? (buf[0]) : 0xff) << 8;
if (nicintel_ee_write_word_i210(opaque_data->nicintel_eebar, addr / 2, data)) {
msg_perr("Timeout writing heading word\n");
return -1;
}
if (buf)
buf ++;
addr ++;
len --;
}
while (len > 0) {
uint16_t data;
if (len == 1) {
if (nicintel_ee_read_word(opaque_data->nicintel_eebar, addr / 2, &data)) {
msg_perr("Timeout reading tail byte\n");
return -1;
}
data &= 0xff00;
data |= buf ? (buf[0]) : 0xff;
} else {
if (buf)
data = buf[0] | (buf[1] << 8);
else
data = 0xffff;
}
if (nicintel_ee_write_word_i210(opaque_data->nicintel_eebar, addr / 2, data)) {
msg_perr("Timeout writing Shadow RAM\n");
return -1;
}
if (buf)
buf += 2;
if (len > 2)
len -= 2;
else
len = 0;
addr += 2;
}
return 0;
}
static int nicintel_ee_erase_i210(struct flashctx *flash, unsigned int addr, unsigned int len)
{
return nicintel_ee_write_i210(flash, NULL, addr, len);
}
static int nicintel_ee_bitset(uint8_t *eebar, int reg, int bit, bool val)
{
uint32_t tmp;
tmp = pci_mmio_readl(eebar + reg);
if (val)
tmp |= BIT(bit);
else
tmp &= ~BIT(bit);
pci_mmio_writel(tmp, eebar + reg);
return -1;
}
/* Shifts one byte out while receiving another one by bitbanging (denoted "direct access" in the datasheet). */
static int nicintel_ee_bitbang(uint8_t *eebar, uint8_t mosi, uint8_t *miso)
{
uint8_t out = 0x0;
int i;
for (i = 7; i >= 0; i--) {
nicintel_ee_bitset(eebar, EEC, EE_SI, mosi & BIT(i));
nicintel_ee_bitset(eebar, EEC, EE_SCK, 1);
if (miso != NULL) {
uint32_t tmp = pci_mmio_readl(eebar + EEC);
if (tmp & BIT(EE_SO))
out |= BIT(i);
}
nicintel_ee_bitset(eebar, EEC, EE_SCK, 0);
}
if (miso != NULL)
*miso = out;
return 0;
}
/* Polls the WIP bit of the status register of the attached EEPROM via bitbanging. */
static int nicintel_ee_ready(uint8_t *eebar)
{
unsigned int i;
for (i = 0; i < 1000; i++) {
nicintel_ee_bitset(eebar, EEC, EE_CS, 0);
nicintel_ee_bitbang(eebar, JEDEC_RDSR, NULL);
uint8_t rdsr;
nicintel_ee_bitbang(eebar, 0x00, &rdsr);
nicintel_ee_bitset(eebar, EEC, EE_CS, 1);
default_delay(1);
if (!(rdsr & SPI_SR_WIP)) {
return 0;
}
}
return -1;
}
/* Requests direct access to the SPI pins. */
static int nicintel_ee_req(uint8_t *eebar)
{
uint32_t tmp;
nicintel_ee_bitset(eebar, EEC, EE_REQ, 1);
tmp = pci_mmio_readl(eebar + EEC);
if (!(tmp & BIT(EE_GNT))) {
msg_perr("Enabling eeprom access failed.\n");
return 1;
}
nicintel_ee_bitset(eebar, EEC, EE_SCK, 0);
return 0;
}
static int nicintel_ee_write_82580(struct flashctx *flash, const uint8_t *buf, unsigned int addr, unsigned int len)
{
const struct nicintel_eeprom_data *opaque_data = flash->mst->opaque.data;
uint8_t *eebar = opaque_data->nicintel_eebar;
if (nicintel_ee_req(eebar))
return -1;
int ret = -1;
if (nicintel_ee_ready(eebar))
goto out;
while (len > 0) {
/* WREN */
nicintel_ee_bitset(eebar, EEC, EE_CS, 0);
nicintel_ee_bitbang(eebar, JEDEC_WREN, NULL);
nicintel_ee_bitset(eebar, EEC, EE_CS, 1);
default_delay(1);
/* data */
nicintel_ee_bitset(eebar, EEC, EE_CS, 0);
nicintel_ee_bitbang(eebar, JEDEC_BYTE_PROGRAM, NULL);
nicintel_ee_bitbang(eebar, (addr >> 8) & 0xff, NULL);
nicintel_ee_bitbang(eebar, addr & 0xff, NULL);
while (len > 0) {
nicintel_ee_bitbang(eebar, (buf) ? *buf++ : 0xff, NULL);
len--;
addr++;
if (!(addr & EE_PAGE_MASK))
break;
}
nicintel_ee_bitset(eebar, EEC, EE_CS, 1);
default_delay(1);
if (nicintel_ee_ready(eebar))
goto out;
}
ret = 0;
out:
nicintel_ee_bitset(eebar, EEC, EE_REQ, 0); /* Give up direct access. */
return ret;
}
static int nicintel_ee_erase_82580(struct flashctx *flash, unsigned int addr, unsigned int len)
{
return nicintel_ee_write_82580(flash, NULL, addr, len);
}
static int nicintel_ee_shutdown_i210(void *opaque_data)
{
struct nicintel_eeprom_data *data = opaque_data;
int ret = 0;
if (!data->done_i210_write)
goto out;
uint32_t flup = pci_mmio_readl(data->nicintel_eebar + EEC);
flup |= BIT(EE_FLUPD);
pci_mmio_writel(flup, data->nicintel_eebar + EEC);
int i;
for (i = 0; i < MAX_ATTEMPTS; i++)
if (pci_mmio_readl(data->nicintel_eebar + EEC) & BIT(EE_FLUDONE))
goto out;
ret = -1;
msg_perr("Flash update failed\n");
out:
free(data);
return ret;
}
static int nicintel_ee_shutdown_82580(void *opaque_data)
{
struct nicintel_eeprom_data *data = opaque_data;
uint8_t *eebar = data->nicintel_eebar;
int ret = 0;
if (data->nicintel_pci->device_id != UNPROG_DEVICE) {
uint32_t old_eec = data->eec;
/* Request bitbanging and unselect the chip first to be safe. */
if (nicintel_ee_req(eebar) || nicintel_ee_bitset(eebar, EEC, EE_CS, 1)) {
ret = -1;
goto out;
}
/* Try to restore individual bits we care about. */
ret = nicintel_ee_bitset(eebar, EEC, EE_SCK, old_eec & BIT(EE_SCK));
ret |= nicintel_ee_bitset(eebar, EEC, EE_SI, old_eec & BIT(EE_SI));
ret |= nicintel_ee_bitset(eebar, EEC, EE_CS, old_eec & BIT(EE_CS));
/* REQ will be cleared by hardware anyway after 2 seconds of inactivity
* on the SPI pins (3.3.2.1). */
ret |= nicintel_ee_bitset(eebar, EEC, EE_REQ, old_eec & BIT(EE_REQ));
}
out:
free(data);
return ret;
}
static const struct opaque_master opaque_master_nicintel_ee_82580 = {
.probe = nicintel_ee_probe_82580,
.read = nicintel_ee_read,
.write = nicintel_ee_write_82580,
.erase = nicintel_ee_erase_82580,
.shutdown = nicintel_ee_shutdown_82580,
};
static const struct opaque_master opaque_master_nicintel_ee_i210 = {
.probe = nicintel_ee_probe_i210,
.read = nicintel_ee_read,
.write = nicintel_ee_write_i210,
.erase = nicintel_ee_erase_i210,
.shutdown = nicintel_ee_shutdown_i210,
};
static int nicintel_ee_init(const struct programmer_cfg *cfg)
{
const struct opaque_master *mst;
uint32_t eec = 0;
uint8_t *eebar;
struct pci_dev *dev = pcidev_init(cfg, nics_intel_ee, PCI_BASE_ADDRESS_0);
if (!dev)
return 1;
uint32_t io_base_addr = pcidev_readbar(dev, PCI_BASE_ADDRESS_0);
if (!io_base_addr)
return 1;
if (!is_i210(dev->device_id)) {
eebar = rphysmap("Intel Gigabit NIC w/ SPI EEPROM", io_base_addr, MEMMAP_SIZE);
if (!eebar)
return 1;
if (dev->device_id != UNPROG_DEVICE) {
eec = pci_mmio_readl(eebar + EEC);
/* C.f. 3.3.1.5 for the detection mechanism (maybe? contradicting
the EE_PRES definition),
and 3.3.1.7 for possible recovery. */
if (!(eec & BIT(EE_PRES))) {
msg_perr("Controller reports no EEPROM is present.\n");
return 1;
}
}
mst = &opaque_master_nicintel_ee_82580;
} else {
eebar = rphysmap("Intel i210 NIC w/ emulated EEPROM",
io_base_addr + 0x12000, MEMMAP_SIZE);
if (!eebar)
return 1;
mst = &opaque_master_nicintel_ee_i210;
}
struct nicintel_eeprom_data *data = calloc(1, sizeof(*data));
if (!data) {
msg_perr("Unable to allocate space for OPAQUE master data\n");
return 1;
}
data->nicintel_pci = dev;
data->nicintel_eebar = eebar;
data->eec = eec;
data->done_i210_write = false;
return register_opaque_master(mst, data);
}
const struct programmer_entry programmer_nicintel_eeprom = {
.name = "nicintel_eeprom",
.type = PCI,
.devs.dev = nics_intel_ee,
.init = nicintel_ee_init,
};
|