1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
|
/*
* This file is part of the flashrom project.
*
* Copyright (C) 2014 Google LLC.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
/*
* s25f.c - Helper functions for Spansion S25FL and S25FS SPI flash chips.
* Uses 24 bit addressing for the FS chips and 32 bit addressing for the FL
* chips (which is required by the overlaid sector size devices).
* TODO: Implement fancy hybrid sector architecture helpers.
*/
#include <stdlib.h>
#include <string.h>
#include "chipdrivers.h"
#include "spi.h"
/*
* RDAR and WRAR are supported on chips which have more than one set of status
* and control registers and take an address of the register to read/write.
* WRR, RDSR2, and RDCR are used on chips with a more limited set of control/
* status registers.
*
* WRR is somewhat peculiar. It shares the same opcode as JEDEC_WRSR, and if
* given one data byte (following the opcode) it acts the same way. If it's
* given two data bytes, the first data byte overwrites status register 1
* and the second data byte overwrites config register 1.
*/
#define CMD_WRR 0x01
#define CMD_WRDI 0x04
#define CMD_RDSR2 0x07 /* note: read SR1 with JEDEC RDSR opcode */
#define CMD_RDCR 0x35
#define CMD_RDAR 0x65
#define CMD_WRAR 0x71
/* TODO: For now, commands which use an address assume 24-bit addressing */
#define CMD_WRR_LEN 3
#define CMD_WRDI_LEN 1
#define CMD_RDAR_LEN 4
#define CMD_WRAR_LEN 5
#define CMD_RSTEN 0x66
#define CMD_RST 0x99
#define CR1NV_ADDR 0x000002
#define CR1_BPNV_O (1 << 3)
#define CR1_TBPROT_O (1 << 5)
#define CR3NV_ADDR 0x000004
#define CR3NV_20H_NV (1 << 3)
/* See "Embedded Algorithm Performance Tables for additional timing specs. */
#define T_W 145 * 1000 /* NV register write time (145ms) */
#define T_RPH 35 /* Reset pulse hold time (35us) */
#define S25FS_T_SE 145 * 1000 /* Sector Erase Time (145ms) */
#define S25FL_T_SE 130 * 1000 /* Sector Erase Time (130ms) */
static int s25f_legacy_software_reset(const struct flashctx *flash)
{
struct spi_command cmds[] = {
{
.writecnt = 1,
.writearr = (const uint8_t[]){ CMD_RSTEN },
.readcnt = 0,
.readarr = NULL,
}, {
.writecnt = 1,
.writearr = (const uint8_t[]){ 0xf0 },
.readcnt = 0,
.readarr = NULL,
}, {
.writecnt = 0,
.writearr = NULL,
.readcnt = 0,
.readarr = NULL,
}};
int result = spi_send_multicommand(flash, cmds);
if (result) {
msg_cerr("%s failed during command execution\n", __func__);
return result;
}
/* Allow time for reset command to execute. The datasheet specifies
* Trph = 35us, double that to be safe. */
programmer_delay(flash, T_RPH * 2);
return 0;
}
/* "Legacy software reset" is disabled by default on S25FS, use this instead. */
static int s25fs_software_reset(struct flashctx *flash)
{
struct spi_command cmds[] = {
{
.writecnt = 1,
.writearr = (const uint8_t[]){ CMD_RSTEN },
.readcnt = 0,
.readarr = NULL,
}, {
.writecnt = 1,
.writearr = (const uint8_t[]){ CMD_RST },
.readcnt = 0,
.readarr = NULL,
}, {
.writecnt = 0,
.writearr = NULL,
.readcnt = 0,
.readarr = NULL,
}};
int result = spi_send_multicommand(flash, cmds);
if (result) {
msg_cerr("%s failed during command execution\n", __func__);
return result;
}
/* Allow time for reset command to execute. Double tRPH to be safe. */
programmer_delay(flash, T_RPH * 2);
return 0;
}
static int s25f_poll_status(const struct flashctx *flash)
{
while (true) {
uint8_t tmp;
if (spi_read_register(flash, STATUS1, &tmp))
return -1;
if ((tmp & SPI_SR_WIP) == 0)
break;
/*
* The WIP bit on S25F chips remains set to 1 if erase or
* programming errors occur, so we must check for those
* errors here. If an error is encountered, do a software
* reset to clear WIP and other volatile bits, otherwise
* the chip will be unresponsive to further commands.
*/
if (tmp & SPI_SR_ERA_ERR) {
msg_cerr("Erase error occurred\n");
s25f_legacy_software_reset(flash);
return -1;
}
if (tmp & (1 << 6)) {
msg_cerr("Programming error occurred\n");
s25f_legacy_software_reset(flash);
return -1;
}
programmer_delay(flash, 1000 * 10);
}
return 0;
}
/* "Read Any Register" instruction only supported on S25FS */
static int s25fs_read_cr(const struct flashctx *flash, uint32_t addr)
{
uint8_t cfg;
/* By default, 8 dummy cycles are necessary for variable-latency
commands such as RDAR (see CR2NV[3:0]). */
uint8_t read_cr_cmd[] = {
CMD_RDAR,
(addr >> 16) & 0xff,
(addr >> 8) & 0xff,
(addr & 0xff),
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
};
int result = spi_send_command(flash, sizeof(read_cr_cmd), 1, read_cr_cmd, &cfg);
if (result) {
msg_cerr("%s failed during command execution at address 0x%"PRIx32"\n",
__func__, addr);
return -1;
}
return cfg;
}
/* "Write Any Register" instruction only supported on S25FS */
static int s25fs_write_cr(const struct flashctx *flash,
uint32_t addr, uint8_t data)
{
struct spi_command cmds[] = {
{
.writecnt = JEDEC_WREN_OUTSIZE,
.writearr = (const uint8_t[]){ JEDEC_WREN },
.readcnt = 0,
.readarr = NULL,
}, {
.writecnt = CMD_WRAR_LEN,
.writearr = (const uint8_t[]){
CMD_WRAR,
(addr >> 16) & 0xff,
(addr >> 8) & 0xff,
(addr & 0xff),
data
},
.readcnt = 0,
.readarr = NULL,
}, {
.writecnt = 0,
.writearr = NULL,
.readcnt = 0,
.readarr = NULL,
}};
int result = spi_send_multicommand(flash, cmds);
if (result) {
msg_cerr("%s failed during command execution at address 0x%"PRIx32"\n",
__func__, addr);
return -1;
}
programmer_delay(flash, T_W);
return s25f_poll_status(flash);
}
static int s25fs_restore_cr3nv(struct flashctx *flash, void *data)
{
int ret = 0;
uint8_t cfg = *(uint8_t *)data;
free(data);
msg_cdbg("Restoring CR3NV value to 0x%02x\n", cfg);
ret |= s25fs_write_cr(flash, CR3NV_ADDR, cfg);
ret |= s25fs_software_reset(flash);
return ret;
}
int s25fs_block_erase_d8(struct flashctx *flash, unsigned int addr, unsigned int blocklen)
{
static int cr3nv_checked = 0;
struct spi_command erase_cmds[] = {
{
.writecnt = JEDEC_WREN_OUTSIZE,
.writearr = (const uint8_t[]){ JEDEC_WREN },
.readcnt = 0,
.readarr = NULL,
}, {
.writecnt = JEDEC_BE_D8_OUTSIZE,
.writearr = (const uint8_t[]){
JEDEC_BE_D8,
(addr >> 16) & 0xff,
(addr >> 8) & 0xff,
(addr & 0xff)
},
.readcnt = 0,
.readarr = NULL,
}, {
.writecnt = 0,
.writearr = NULL,
.readcnt = 0,
.readarr = NULL,
}};
/* Check if hybrid sector architecture is in use and, if so,
* switch to uniform sectors. */
if (!cr3nv_checked) {
uint8_t cfg = s25fs_read_cr(flash, CR3NV_ADDR);
if (!(cfg & CR3NV_20H_NV)) {
s25fs_write_cr(flash, CR3NV_ADDR, cfg | CR3NV_20H_NV);
s25fs_software_reset(flash);
cfg = s25fs_read_cr(flash, CR3NV_ADDR);
if (!(cfg & CR3NV_20H_NV)) {
msg_cerr("%s: Unable to enable uniform "
"block sizes.\n", __func__);
return 1;
}
msg_cdbg("\n%s: CR3NV updated (0x%02x -> 0x%02x)\n",
__func__, cfg,
s25fs_read_cr(flash, CR3NV_ADDR));
/* Restore CR3V when flashrom exits */
uint8_t *data = calloc(1, sizeof(uint8_t));
if (!data) {
msg_cerr("Out of memory!\n");
return 1;
}
*data = cfg;
register_chip_restore(s25fs_restore_cr3nv, flash, data);
}
cr3nv_checked = 1;
}
int result = spi_send_multicommand(flash, erase_cmds);
if (result) {
msg_cerr("%s failed during command execution at address 0x%x\n",
__func__, addr);
return result;
}
programmer_delay(flash, S25FS_T_SE);
return s25f_poll_status(flash);
}
int s25fl_block_erase(struct flashctx *flash, unsigned int addr, unsigned int blocklen)
{
struct spi_command erase_cmds[] = {
{
.writecnt = JEDEC_WREN_OUTSIZE,
.writearr = (const uint8_t[]){
JEDEC_WREN
},
.readcnt = 0,
.readarr = NULL,
}, {
.writecnt = JEDEC_BE_DC_OUTSIZE,
.writearr = (const uint8_t[]){
JEDEC_BE_DC,
(addr >> 24) & 0xff,
(addr >> 16) & 0xff,
(addr >> 8) & 0xff,
(addr & 0xff)
},
.readcnt = 0,
.readarr = NULL,
}, {
.writecnt = 0,
.readcnt = 0,
}
};
int result = spi_send_multicommand(flash, erase_cmds);
if (result) {
msg_cerr("%s failed during command execution at address 0x%x\n",
__func__, addr);
return result;
}
programmer_delay(flash, S25FL_T_SE);
return s25f_poll_status(flash);
}
int probe_spi_big_spansion(struct flashctx *flash)
{
uint8_t cmd = JEDEC_RDID;
uint8_t dev_id[6]; /* We care only about 6 first bytes */
if (spi_send_command(flash, sizeof(cmd), sizeof(dev_id), &cmd, dev_id))
return 0;
msg_gdbg("Read id bytes: ");
for (size_t i = 0; i < sizeof(dev_id); i++)
msg_gdbg(" 0x%02x", dev_id[i]);
msg_gdbg(".\n");
/*
* The structure of the RDID output is as follows:
*
* offset value meaning
* 00h 01h Manufacturer ID for Spansion
* 01h * Memory interface type (02h, 20h, 40h, 60h)
* 02h * Memory capacity (18h = 128 Mb, 19h = 256 Mb, 20h = 512 Mb)
* 03h 4Dh Full size of the RDID output (ignored)
* 04h 00h FS: 256-kB physical sectors
* 04h 01h FS: 64-kB physical sectors
* 04h 00h FL: 256-kB physical sectors
* 04h 01h FL: Mix of 64-kB and 4KB overlaid sectors
* 05h 80h FL family
* 05h 81h FS family
*
* Need to use bytes 1, 2, 4, and 5 to properly identify one of eight
* possible chips:
*
* 2 types * 2 possible sizes * 2 possible sector layouts
*
*/
uint32_t model_id =
(uint32_t)dev_id[1] << 24 |
(uint32_t)dev_id[2] << 16 |
(uint32_t)dev_id[4] << 8 |
(uint32_t)dev_id[5] << 0;
if (dev_id[0] == flash->chip->manufacture_id && model_id == flash->chip->model_id)
return 1;
return 0;
}
|