1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
|
Models and Tables
=================
Use the ``db.Model`` class to define models, or the ``db.Table`` class to create tables.
Both handle Flask-SQLAlchemy's bind keys to associate with a specific engine.
Initializing the Base Class
---------------------------
``SQLAlchemy`` 2.x offers several possible base classes for your models:
`DeclarativeBase`_ or `DeclarativeBaseNoMeta`_.
Create a subclass of one of those classes:
.. code-block:: python
from flask import Flask
from flask_sqlalchemy import SQLAlchemy
from sqlalchemy.orm import DeclarativeBase
class Base(DeclarativeBase):
pass
.. _DeclarativeBase: https://docs.sqlalchemy.org/en/20/orm/mapping_api.html#sqlalchemy.orm.DeclarativeBase
.. _DeclarativeBaseNoMeta: https://docs.sqlalchemy.org/en/20/orm/mapping_api.html#sqlalchemy.orm.DeclarativeBaseNoMeta
If desired, you can enable `SQLAlchemy's native support for data classes`_
by adding `MappedAsDataclass` as an additional parent class.
.. code-block:: python
from sqlalchemy.orm import DeclarativeBase, MappedAsDataclass
class Base(DeclarativeBase, MappedAsDataclass):
pass
.. _SQLAlchemy's native support for data classes: https://docs.sqlalchemy.org/en/20/changelog/whatsnew_20.html#native-support-for-dataclasses-mapped-as-orm-models
You can optionally construct the :class:`.SQLAlchemy` object with a custom
:class:`~sqlalchemy.schema.MetaData` object. This allows you to specify a custom
constraint `naming convention`_. This makes constraint names consistent and predictable,
useful when using migrations, as described by `Alembic`_.
.. code-block:: python
from sqlalchemy import MetaData
class Base(DeclarativeBase):
metadata = MetaData(naming_convention={
"ix": 'ix_%(column_0_label)s',
"uq": "uq_%(table_name)s_%(column_0_name)s",
"ck": "ck_%(table_name)s_%(constraint_name)s",
"fk": "fk_%(table_name)s_%(column_0_name)s_%(referred_table_name)s",
"pk": "pk_%(table_name)s"
})
.. _naming convention: https://docs.sqlalchemy.org/core/constraints.html#constraint-naming-conventions
.. _Alembic: https://alembic.sqlalchemy.org/en/latest/naming.html
Initialize the Extension
------------------------
Once you've defined a base class, create the ``db`` object using the ``SQLAlchemy`` constructor.
.. code-block:: python
db = SQLAlchemy(model_class=Base)
Defining Models
---------------
See SQLAlchemy's `declarative documentation`_ for full information about defining model
classes declaratively.
.. _declarative documentation: https://docs.sqlalchemy.org/en/20/orm/declarative_tables.html
Subclass ``db.Model`` to create a model class. Unlike plain SQLAlchemy,
Flask-SQLAlchemy's model will automatically generate a table name if ``__tablename__``
is not set and a primary key column is defined.
.. code-block:: python
from sqlalchemy.orm import Mapped, mapped_column
class User(db.Model):
id: Mapped[int] = mapped_column(db.Integer, primary_key=True)
username: Mapped[str] = mapped_column(db.String, unique=True, nullable=False)
email: Mapped[str] = mapped_column(db.String)
Defining a model does not create it in the database. Use :meth:`~.SQLAlchemy.create_all`
to create the models and tables after defining them. If you define models in submodules,
you must import them so that SQLAlchemy knows about them before calling ``create_all``.
.. code-block:: python
with app.app_context():
db.create_all()
Defining Tables
---------------
See SQLAlchemy's `table documentation`_ for full information about defining table
objects.
.. _table documentation: https://docs.sqlalchemy.org/en/20/core/metadata.html
Create instances of ``db.Table`` to define tables. The class takes a table name, then
any columns and other table parts such as columns and constraints. Unlike plain
SQLAlchemy, the ``metadata`` argument is not required. A metadata will be chosen based
on the ``bind_key`` argument, or the default will be used.
A common reason to create a table directly is when defining many to many relationships.
The association table doesn't need its own model class, as it will be accessed through
the relevant relationship attributes on the related models.
.. code-block:: python
import sqlalchemy as sa
user_book_m2m = db.Table(
"user_book",
sa.Column("user_id", sa.ForeignKey(User.id), primary_key=True),
sa.Column("book_id", sa.ForeignKey(Book.id), primary_key=True),
)
Reflecting Tables
-----------------
If you are connecting to a database that already has tables, SQLAlchemy can detect that
schema and create tables with columns automatically. This is called reflection. Those
tables can also be assigned to model classes with the ``__table__`` attribute instead of
defining the full model.
Call the :meth:`~.SQLAlchemy.reflect` method on the extension. It will reflect all the
tables for each bind key. Each metadata's ``tables`` attribute will contain the detected
table objects.
.. code-block:: python
with app.app_context():
db.reflect()
class User:
__table__ = db.metadatas["auth"].tables["user"]
In most cases, it will be more maintainable to define the model classes yourself. You
only need to define the models and columns you will actually use, even if you're
connecting to a broader schema. IDEs will know the available attributes, and migration
tools like Alembic can detect changes and generate schema migrations.
|