File: readwind_gfs.f90

package info (click to toggle)
flexpart 9.02-21
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 4,896 kB
  • sloc: f90: 14,310; makefile: 28; sh: 18
file content (719 lines) | stat: -rw-r--r-- 25,352 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
!**********************************************************************
! Copyright 1998,1999,2000,2001,2002,2005,2007,2008,2009,2010         *
! Andreas Stohl, Petra Seibert, A. Frank, Gerhard Wotawa,             *
! Caroline Forster, Sabine Eckhardt, John Burkhart, Harald Sodemann   *
!                                                                     *
! This file is part of FLEXPART.                                      *
!                                                                     *
! FLEXPART is free software: you can redistribute it and/or modify    *
! it under the terms of the GNU General Public License as published by*
! the Free Software Foundation, either version 3 of the License, or   *
! (at your option) any later version.                                 *
!                                                                     *
! FLEXPART is distributed in the hope that it will be useful,         *
! but WITHOUT ANY WARRANTY; without even the implied warranty of      *
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the       *
! GNU General Public License for more details.                        *
!                                                                     *
! You should have received a copy of the GNU General Public License   *
! along with FLEXPART.  If not, see <http://www.gnu.org/licenses/>.   *
!**********************************************************************

subroutine readwind(indj,n,uuh,vvh,wwh)

  !***********************************************************************
  !*                                                                     *
  !*             TRAJECTORY MODEL SUBROUTINE READWIND                    *
  !*                                                                     *
  !***********************************************************************
  !*                                                                     *
  !*             AUTHOR:      G. WOTAWA                                  *
  !*             DATE:        1997-08-05                                 *
  !*             LAST UPDATE: 2000-10-17, Andreas Stohl                  *
  !*             CHANGE: 01/02/2001, Bernd C. Krueger, Variables tth and *
  !*                     qvh (on eta coordinates) in common block        *
  !*             CHANGE: 16/11/2005, Caroline Forster, GFS data          *
  !*             CHANGE: 11/01/2008, Harald Sodemann, Input of GRIB1/2   *
  !*                     data with the ECMWF grib_api library            *
  !*             CHANGE: 03/12/2008, Harald Sodemann, update to f90 with *
  !*                                 ECMWF grib_api                      *
  !*                                                                     *
  !***********************************************************************
  !*                                                                     *
  !* DESCRIPTION:                                                        *
  !*                                                                     *
  !* READING OF ECMWF METEOROLOGICAL FIELDS FROM INPUT DATA FILES. THE   *
  !* INPUT DATA FILES ARE EXPECTED TO BE AVAILABLE IN GRIB CODE          *
  !*                                                                     *
  !* INPUT:                                                              *
  !* indj               indicates number of the wind field to be read in *
  !* n                  temporal index for meteorological fields (1 to 3)*
  !*                                                                     *
  !* IMPORTANT VARIABLES FROM COMMON BLOCK:                              *
  !*                                                                     *
  !* wfname             File name of data to be read in                  *
  !* nx,ny,nuvz,nwz     expected field dimensions                        *
  !* nlev_ec            number of vertical levels ecmwf model            *
  !* uu,vv,ww           wind fields                                      *
  !* tt,qv              temperature and specific humidity                *
  !* ps                 surface pressure                                 *
  !*                                                                     *
  !***********************************************************************

  use grib_api
  use par_mod
  use com_mod

  implicit none

  !HSO  new parameters for grib_api
  integer :: ifile
  integer :: iret
  integer :: igrib
  integer :: gribVer,parCat,parNum,typSurf,valSurf,discipl
  !HSO end edits
  real :: uuh(0:nxmax-1,0:nymax-1,nuvzmax)
  real :: vvh(0:nxmax-1,0:nymax-1,nuvzmax)
  real :: wwh(0:nxmax-1,0:nymax-1,nwzmax)
  integer :: ii,indj,i,j,k,n,levdiff2,ifield,iumax,iwmax

  ! NCEP
  integer :: numpt,numpu,numpv,numpw,numprh
  real :: help, temp, ew
  real :: elev
  real :: ulev1(0:nxmax-1,0:nymax-1),vlev1(0:nxmax-1,0:nymax-1)
  real :: tlev1(0:nxmax-1,0:nymax-1)
  real :: qvh2(0:nxmax-1,0:nymax-1)

  integer :: i179,i180,i181

  ! VARIABLES AND ARRAYS NEEDED FOR GRIB DECODING
  !HSO kept isec1, isec2 and zsec4 for consistency with gribex GRIB input

  integer :: isec1(8),isec2(3)
  real(kind=4) :: zsec4(jpunp)
  real(kind=4) :: xaux,yaux,xaux0,yaux0
  real(kind=8) :: xauxin,yauxin
  real,parameter :: eps=1.e-4
  real(kind=4) :: ewss(0:nxmax-1,0:nymax-1),nsss(0:nxmax-1,0:nymax-1)
  real :: plev1,hlev1,ff10m,fflev1

  logical :: hflswitch,strswitch

  !HSO  for grib api error messages
  character(len=24) :: gribErrorMsg = 'Error reading grib file'
  character(len=20) :: gribFunction = 'readwind_gfs'


  hflswitch=.false.
  strswitch=.false.
  levdiff2=nlev_ec-nwz+1
  iumax=0
  iwmax=0


  ! OPENING OF DATA FILE (GRIB CODE)

  !HSO
5   call grib_open_file(ifile,path(3)(1:length(3)) &
         //trim(wfname(indj)),'r',iret)
  if (iret.ne.GRIB_SUCCESS) then
    goto 888   ! ERROR DETECTED
  endif
  !turn on support for multi fields messages
  call grib_multi_support_on

  numpt=0
  numpu=0
  numpv=0
  numpw=0
  numprh=0
  ifield=0
10   ifield=ifield+1
  !
  ! GET NEXT FIELDS
  !
  call grib_new_from_file(ifile,igrib,iret)
  if (iret.eq.GRIB_END_OF_FILE)  then
    goto 50    ! EOF DETECTED
  elseif (iret.ne.GRIB_SUCCESS) then
    goto 888   ! ERROR DETECTED
  endif

  !first see if we read GRIB1 or GRIB2
  call grib_get_int(igrib,'editionNumber',gribVer,iret)
  call grib_check(iret,gribFunction,gribErrorMsg)

  if (gribVer.eq.1) then ! GRIB Edition 1

  !read the grib1 identifiers
  call grib_get_int(igrib,'indicatorOfParameter',isec1(6),iret)
  call grib_check(iret,gribFunction,gribErrorMsg)
  call grib_get_int(igrib,'indicatorOfTypeOfLevel',isec1(7),iret)
  call grib_check(iret,gribFunction,gribErrorMsg)
  call grib_get_int(igrib,'level',isec1(8),iret)
  call grib_check(iret,gribFunction,gribErrorMsg)

  else ! GRIB Edition 2

  !read the grib2 identifiers
  call grib_get_int(igrib,'discipline',discipl,iret)
  call grib_check(iret,gribFunction,gribErrorMsg)
  call grib_get_int(igrib,'parameterCategory',parCat,iret)
  call grib_check(iret,gribFunction,gribErrorMsg)
  call grib_get_int(igrib,'parameterNumber',parNum,iret)
  call grib_check(iret,gribFunction,gribErrorMsg)
  call grib_get_int(igrib,'typeOfFirstFixedSurface',typSurf,iret)
  call grib_check(iret,gribFunction,gribErrorMsg)
  call grib_get_int(igrib,'scaledValueOfFirstFixedSurface', &
       valSurf,iret)
  call grib_check(iret,gribFunction,gribErrorMsg)

  !convert to grib1 identifiers
  isec1(6)=-1
  isec1(7)=-1
  isec1(8)=-1
  if ((parCat.eq.0).and.(parNum.eq.0).and.(typSurf.eq.100)) then ! T
    isec1(6)=11          ! indicatorOfParameter
    isec1(7)=100         ! indicatorOfTypeOfLevel
    isec1(8)=valSurf/100 ! level, convert to hPa
  elseif ((parCat.eq.2).and.(parNum.eq.2).and.(typSurf.eq.100)) then ! U
    isec1(6)=33          ! indicatorOfParameter
    isec1(7)=100         ! indicatorOfTypeOfLevel
    isec1(8)=valSurf/100 ! level, convert to hPa
  elseif ((parCat.eq.2).and.(parNum.eq.3).and.(typSurf.eq.100)) then ! V
    isec1(6)=34          ! indicatorOfParameter
    isec1(7)=100         ! indicatorOfTypeOfLevel
    isec1(8)=valSurf/100 ! level, convert to hPa
  elseif ((parCat.eq.2).and.(parNum.eq.8).and.(typSurf.eq.100)) then ! W
    isec1(6)=39          ! indicatorOfParameter
    isec1(7)=100         ! indicatorOfTypeOfLevel
    isec1(8)=valSurf/100 ! level, convert to hPa
  elseif ((parCat.eq.1).and.(parNum.eq.1).and.(typSurf.eq.100)) then ! RH
    isec1(6)=52          ! indicatorOfParameter
    isec1(7)=100         ! indicatorOfTypeOfLevel
    isec1(8)=valSurf/100 ! level, convert to hPa
  elseif ((parCat.eq.1).and.(parNum.eq.1).and.(typSurf.eq.103)) then ! RH2
    isec1(6)=52          ! indicatorOfParameter
    isec1(7)=105         ! indicatorOfTypeOfLevel
    isec1(8)=2
  elseif ((parCat.eq.0).and.(parNum.eq.0).and.(typSurf.eq.103)) then ! T2
    isec1(6)=11          ! indicatorOfParameter
    isec1(7)=105         ! indicatorOfTypeOfLevel
    isec1(8)=2
  elseif ((parCat.eq.2).and.(parNum.eq.2).and.(typSurf.eq.103)) then ! U10
    isec1(6)=33          ! indicatorOfParameter
    isec1(7)=105         ! indicatorOfTypeOfLevel
    isec1(8)=10
  elseif ((parCat.eq.2).and.(parNum.eq.3).and.(typSurf.eq.103)) then ! V10
    isec1(6)=34          ! indicatorOfParameter
    isec1(7)=105         ! indicatorOfTypeOfLevel
    isec1(8)=10
  elseif ((parCat.eq.3).and.(parNum.eq.1).and.(typSurf.eq.101)) then ! SLP
    isec1(6)=2           ! indicatorOfParameter
    isec1(7)=102         ! indicatorOfTypeOfLevel
    isec1(8)=0
  elseif ((parCat.eq.3).and.(parNum.eq.0).and.(typSurf.eq.1)) then ! SP
    isec1(6)=1           ! indicatorOfParameter
    isec1(7)=1           ! indicatorOfTypeOfLevel
    isec1(8)=0
  elseif ((parCat.eq.1).and.(parNum.eq.13).and.(typSurf.eq.1)) then ! SNOW
    isec1(6)=66          ! indicatorOfParameter
    isec1(7)=1           ! indicatorOfTypeOfLevel
    isec1(8)=0
  elseif ((parCat.eq.0).and.(parNum.eq.0).and.(typSurf.eq.104)) then ! T sigma 0
    isec1(6)=11          ! indicatorOfParameter
    isec1(7)=107         ! indicatorOfTypeOfLevel
    isec1(8)=0.995       ! lowest sigma level
  elseif ((parCat.eq.2).and.(parNum.eq.2).and.(typSurf.eq.104)) then ! U sigma 0
    isec1(6)=33          ! indicatorOfParameter
    isec1(7)=107         ! indicatorOfTypeOfLevel
    isec1(8)=0.995       ! lowest sigma level
  elseif ((parCat.eq.2).and.(parNum.eq.3).and.(typSurf.eq.104)) then ! V sigma 0
    isec1(6)=34          ! indicatorOfParameter
    isec1(7)=107         ! indicatorOfTypeOfLevel
    isec1(8)=0.995       ! lowest sigma level
  elseif ((parCat.eq.3).and.(parNum.eq.5).and.(typSurf.eq.1)) then ! TOPO
    isec1(6)=7           ! indicatorOfParameter
    isec1(7)=1           ! indicatorOfTypeOfLevel
    isec1(8)=0
  elseif ((parCat.eq.0).and.(parNum.eq.0).and.(typSurf.eq.1) &
       .and.(discipl.eq.2)) then ! LSM
    isec1(6)=81          ! indicatorOfParameter
    isec1(7)=1           ! indicatorOfTypeOfLevel
    isec1(8)=0
  elseif ((parCat.eq.3).and.(parNum.eq.196).and.(typSurf.eq.1)) then ! BLH
    isec1(6)=221         ! indicatorOfParameter
    isec1(7)=1           ! indicatorOfTypeOfLevel
    isec1(8)=0
  elseif ((parCat.eq.1).and.(parNum.eq.7).and.(typSurf.eq.1)) then ! LSP/TP
    isec1(6)=62          ! indicatorOfParameter
    isec1(7)=1           ! indicatorOfTypeOfLevel
    isec1(8)=0
  elseif ((parCat.eq.1).and.(parNum.eq.196).and.(typSurf.eq.1)) then ! CP
    isec1(6)=63          ! indicatorOfParameter
    isec1(7)=1           ! indicatorOfTypeOfLevel
    isec1(8)=0
  endif

  endif ! gribVer

  if (isec1(6).ne.-1) then
  !  get the size and data of the values array
    call grib_get_real4_array(igrib,'values',zsec4,iret)
    call grib_check(iret,gribFunction,gribErrorMsg)
  endif

  if(ifield.eq.1) then

  !get the required fields from section 2
  !store compatible to gribex input
  call grib_get_int(igrib,'numberOfPointsAlongAParallel', &
       isec2(2),iret)
  call grib_check(iret,gribFunction,gribErrorMsg)
  call grib_get_int(igrib,'numberOfPointsAlongAMeridian', &
       isec2(3),iret)
  call grib_check(iret,gribFunction,gribErrorMsg)
  call grib_get_real8(igrib,'longitudeOfFirstGridPointInDegrees', &
       xauxin,iret)
  call grib_check(iret,gribFunction,gribErrorMsg)
  call grib_get_real8(igrib,'latitudeOfLastGridPointInDegrees', &
       yauxin,iret)
  call grib_check(iret,gribFunction,gribErrorMsg)
  xaux=xauxin+real(nxshift)*dx
  yaux=yauxin

  ! CHECK GRID SPECIFICATIONS

    if(isec2(2).ne.nxfield) stop 'READWIND: NX NOT CONSISTENT'
    if(isec2(3).ne.ny) stop 'READWIND: NY NOT CONSISTENT'
    if(xaux.eq.0.) xaux=-179.0     ! NCEP DATA
    xaux0=xlon0
    yaux0=ylat0
    if(xaux.lt.0.) xaux=xaux+360.
    if(yaux.lt.0.) yaux=yaux+360.
    if(xaux0.lt.0.) xaux0=xaux0+360.
    if(yaux0.lt.0.) yaux0=yaux0+360.
    if(abs(xaux-xaux0).gt.eps) &
         stop 'READWIND: LOWER LEFT LONGITUDE NOT CONSISTENT'
    if(abs(yaux-yaux0).gt.eps) &
         stop 'READWIND: LOWER LEFT LATITUDE NOT CONSISTENT'
  endif
  !HSO end of edits

  i179=nint(179./dx)
  if (dx.lt.0.7) then
    i180=nint(180./dx)+1    ! 0.5 deg data
  else
    i180=nint(179./dx)+1    ! 1 deg data
  endif
  i181=i180+1

  if (isec1(6).ne.-1) then

  do j=0,nymin1
    do i=0,nxfield-1
      if((isec1(6).eq.011).and.(isec1(7).eq.100)) then
  ! TEMPERATURE
         if((i.eq.0).and.(j.eq.0)) then
            do ii=1,nuvz
              if ((isec1(8)*100.0).eq.akz(ii)) numpt=ii
            end do
        endif
        help=zsec4(nxfield*(ny-j-1)+i+1)
        if(i.le.i180) then
          tth(i179+i,j,numpt,n)=help
        else
          tth(i-i181,j,numpt,n)=help
        endif
      endif
      if((isec1(6).eq.033).and.(isec1(7).eq.100)) then
  ! U VELOCITY
         if((i.eq.0).and.(j.eq.0)) then
            do ii=1,nuvz
              if ((isec1(8)*100.0).eq.akz(ii)) numpu=ii
            end do
        endif
        help=zsec4(nxfield*(ny-j-1)+i+1)
        if(i.le.i180) then
          uuh(i179+i,j,numpu)=help
        else
          uuh(i-i181,j,numpu)=help
        endif
      endif
      if((isec1(6).eq.034).and.(isec1(7).eq.100)) then
  ! V VELOCITY
         if((i.eq.0).and.(j.eq.0)) then
            do ii=1,nuvz
              if ((isec1(8)*100.0).eq.akz(ii)) numpv=ii
            end do
        endif
        help=zsec4(nxfield*(ny-j-1)+i+1)
        if(i.le.i180) then
          vvh(i179+i,j,numpv)=help
        else
          vvh(i-i181,j,numpv)=help
        endif
      endif
      if((isec1(6).eq.052).and.(isec1(7).eq.100)) then
  ! RELATIVE HUMIDITY -> CONVERT TO SPECIFIC HUMIDITY LATER
         if((i.eq.0).and.(j.eq.0)) then
            do ii=1,nuvz
              if ((isec1(8)*100.0).eq.akz(ii)) numprh=ii
            end do
        endif
        help=zsec4(nxfield*(ny-j-1)+i+1)
        if(i.le.i180) then
          qvh(i179+i,j,numprh,n)=help
        else
          qvh(i-i181,j,numprh,n)=help
        endif
      endif
      if((isec1(6).eq.001).and.(isec1(7).eq.001)) then
  ! SURFACE PRESSURE
        help=zsec4(nxfield*(ny-j-1)+i+1)
        if(i.le.i180) then
          ps(i179+i,j,1,n)=help
        else
          ps(i-i181,j,1,n)=help
        endif
      endif
      if((isec1(6).eq.039).and.(isec1(7).eq.100)) then
  ! W VELOCITY
         if((i.eq.0).and.(j.eq.0)) then
            do ii=1,nuvz
              if ((isec1(8)*100.0).eq.akz(ii)) numpw=ii
            end do
        endif
        help=zsec4(nxfield*(ny-j-1)+i+1)
        if(i.le.i180) then
          wwh(i179+i,j,numpw)=help
        else
          wwh(i-i181,j,numpw)=help
        endif
      endif
      if((isec1(6).eq.066).and.(isec1(7).eq.001)) then
  ! SNOW DEPTH
        help=zsec4(nxfield*(ny-j-1)+i+1)
        if(i.le.i180) then
          sd(i179+i,j,1,n)=help
        else
          sd(i-i181,j,1,n)=help
        endif
      endif
      if((isec1(6).eq.002).and.(isec1(7).eq.102)) then
  ! MEAN SEA LEVEL PRESSURE
        help=zsec4(nxfield*(ny-j-1)+i+1)
        if(i.le.i180) then
          msl(i179+i,j,1,n)=help
        else
          msl(i-i181,j,1,n)=help
        endif
      endif
      if((isec1(6).eq.071).and.(isec1(7).eq.244)) then
  ! TOTAL CLOUD COVER
        help=zsec4(nxfield*(ny-j-1)+i+1)
        if(i.le.i180) then
          tcc(i179+i,j,1,n)=help
        else
          tcc(i-i181,j,1,n)=help
        endif
      endif
      if((isec1(6).eq.033).and.(isec1(7).eq.105).and. &
           (isec1(8).eq.10)) then
  ! 10 M U VELOCITY
        help=zsec4(nxfield*(ny-j-1)+i+1)
        if(i.le.i180) then
          u10(i179+i,j,1,n)=help
        else
          u10(i-i181,j,1,n)=help
        endif
      endif
      if((isec1(6).eq.034).and.(isec1(7).eq.105).and. &
           (isec1(8).eq.10)) then
  ! 10 M V VELOCITY
        help=zsec4(nxfield*(ny-j-1)+i+1)
        if(i.le.i180) then
          v10(i179+i,j,1,n)=help
        else
          v10(i-i181,j,1,n)=help
        endif
      endif
      if((isec1(6).eq.011).and.(isec1(7).eq.105).and. &
           (isec1(8).eq.02)) then
  ! 2 M TEMPERATURE
        help=zsec4(nxfield*(ny-j-1)+i+1)
        if(i.le.i180) then
          tt2(i179+i,j,1,n)=help
        else
          tt2(i-i181,j,1,n)=help
        endif
      endif
      if((isec1(6).eq.017).and.(isec1(7).eq.105).and. &
           (isec1(8).eq.02)) then
  ! 2 M DEW POINT TEMPERATURE
        help=zsec4(nxfield*(ny-j-1)+i+1)
        if(i.le.i180) then
          td2(i179+i,j,1,n)=help
        else
          td2(i-i181,j,1,n)=help
        endif
      endif
      if((isec1(6).eq.062).and.(isec1(7).eq.001)) then
  ! LARGE SCALE PREC.
        help=zsec4(nxfield*(ny-j-1)+i+1)
        if(i.le.i180) then
          lsprec(i179+i,j,1,n)=help
        else
          lsprec(i-i181,j,1,n)=help
        endif
      endif
      if((isec1(6).eq.063).and.(isec1(7).eq.001)) then
  ! CONVECTIVE PREC.
        help=zsec4(nxfield*(ny-j-1)+i+1)
        if(i.le.i180) then
          convprec(i179+i,j,1,n)=help
        else
          convprec(i-i181,j,1,n)=help
        endif
      endif
      if((isec1(6).eq.007).and.(isec1(7).eq.001)) then
  ! TOPOGRAPHY
        help=zsec4(nxfield*(ny-j-1)+i+1)
        if(i.le.i180) then
          oro(i179+i,j)=help
          excessoro(i179+i,j)=0.0 ! ISOBARIC SURFACES: SUBGRID TERRAIN DISREGARDED
        else
          oro(i-i181,j)=help
          excessoro(i-i181,j)=0.0 ! ISOBARIC SURFACES: SUBGRID TERRAIN DISREGARDED
        endif
      endif
      if((isec1(6).eq.081).and.(isec1(7).eq.001)) then
  ! LAND SEA MASK
        help=zsec4(nxfield*(ny-j-1)+i+1)
        if(i.le.i180) then
          lsm(i179+i,j)=help
        else
          lsm(i-i181,j)=help
        endif
      endif
      if((isec1(6).eq.221).and.(isec1(7).eq.001)) then
  ! MIXING HEIGHT
        help=zsec4(nxfield*(ny-j-1)+i+1)
        if(i.le.i180) then
          hmix(i179+i,j,1,n)=help
        else
          hmix(i-i181,j,1,n)=help
        endif
      endif
      if((isec1(6).eq.052).and.(isec1(7).eq.105).and. &
           (isec1(8).eq.02)) then
  ! 2 M RELATIVE HUMIDITY
        help=zsec4(nxfield*(ny-j-1)+i+1)
        if(i.le.i180) then
          qvh2(i179+i,j)=help
        else
          qvh2(i-i181,j)=help
        endif
      endif
      if((isec1(6).eq.011).and.(isec1(7).eq.107)) then
  ! TEMPERATURE LOWEST SIGMA LEVEL
        help=zsec4(nxfield*(ny-j-1)+i+1)
        if(i.le.i180) then
          tlev1(i179+i,j)=help
        else
          tlev1(i-i181,j)=help
        endif
      endif
      if((isec1(6).eq.033).and.(isec1(7).eq.107)) then
  ! U VELOCITY LOWEST SIGMA LEVEL
        help=zsec4(nxfield*(ny-j-1)+i+1)
        if(i.le.i180) then
          ulev1(i179+i,j)=help
        else
          ulev1(i-i181,j)=help
        endif
      endif
      if((isec1(6).eq.034).and.(isec1(7).eq.107)) then
  ! V VELOCITY LOWEST SIGMA LEVEL
        help=zsec4(nxfield*(ny-j-1)+i+1)
        if(i.le.i180) then
          vlev1(i179+i,j)=help
        else
          vlev1(i-i181,j)=help
        endif
      endif

    end do
  end do

  endif

  if((isec1(6).eq.33).and.(isec1(7).eq.100)) then
  ! NCEP ISOBARIC LEVELS
    iumax=iumax+1
  endif

  call grib_release(igrib)
  goto 10                      !! READ NEXT LEVEL OR PARAMETER
  !
  ! CLOSING OF INPUT DATA FILE
  !

  !HSO close grib file
50   continue
  call grib_close_file(ifile)

  ! SENS. HEAT FLUX
  sshf(:,:,1,n)=0.0     ! not available from gfs.tccz.pgrbfxx files
  hflswitch=.false.    ! Heat flux not available
  ! SOLAR RADIATIVE FLUXES
  ssr(:,:,1,n)=0.0      ! not available from gfs.tccz.pgrbfxx files
  ! EW SURFACE STRESS
  ewss=0.0         ! not available from gfs.tccz.pgrbfxx files
  ! NS SURFACE STRESS
  nsss=0.0         ! not available from gfs.tccz.pgrbfxx files
  strswitch=.false.    ! stress not available

  ! CONVERT TP TO LSP (GRIB2 only)
  if (gribVer.eq.2) then
    do j=0,nymin1
    do i=0,nxfield-1
     if(i.le.i180) then
     if (convprec(i179+i,j,1,n).lt.lsprec(i179+i,j,1,n)) then ! neg precip would occur
         lsprec(i179+i,j,1,n)= &
              lsprec(i179+i,j,1,n)-convprec(i179+i,j,1,n)
     else
         lsprec(i179+i,j,1,n)=0
     endif
     else
     if (convprec(i-i181,j,1,n).lt.lsprec(i-i181,j,1,n)) then
          lsprec(i-i181,j,1,n)= &
               lsprec(i-i181,j,1,n)-convprec(i-i181,j,1,n)
     else
          lsprec(i-i181,j,1,n)=0
     endif
     endif
    enddo
    enddo
  endif
  !HSO end edits


  ! TRANSFORM RH TO SPECIFIC HUMIDITY

  do j=0,ny-1
    do i=0,nxfield-1
      do k=1,nuvz
        help=qvh(i,j,k,n)
        temp=tth(i,j,k,n)
        plev1=akm(k)+bkm(k)*ps(i,j,1,n)
        elev=ew(temp)*help/100.0
        qvh(i,j,k,n)=xmwml*(elev/(plev1-((1.0-xmwml)*elev)))
      end do
    end do
  end do

  ! CALCULATE 2 M DEW POINT FROM 2 M RELATIVE HUMIDITY
  ! USING BOLTON'S (1980) FORMULA
  ! BECAUSE td2 IS NOT AVAILABLE FROM NCEP GFS DATA

  do j=0,ny-1
    do i=0,nxfield-1
        help=qvh2(i,j)
        temp=tt2(i,j,1,n)
        elev=ew(temp)/100.*help/100.   !vapour pressure in hPa
        td2(i,j,1,n)=243.5/(17.67/log(elev/6.112)-1)+273.
        if (help.le.0.) td2(i,j,1,n)=tt2(i,j,1,n)
    end do
  end do

  if(levdiff2.eq.0) then
    iwmax=nlev_ec+1
    do i=0,nxmin1
      do j=0,nymin1
        wwh(i,j,nlev_ec+1)=0.
      end do
    end do
  endif


  ! For global fields, assign the leftmost data column also to the rightmost
  ! data column; if required, shift whole grid by nxshift grid points
  !*************************************************************************

  if (xglobal) then
    call shift_field_0(ewss,nxfield,ny)
    call shift_field_0(nsss,nxfield,ny)
    call shift_field_0(oro,nxfield,ny)
    call shift_field_0(excessoro,nxfield,ny)
    call shift_field_0(lsm,nxfield,ny)
    call shift_field_0(ulev1,nxfield,ny)
    call shift_field_0(vlev1,nxfield,ny)
    call shift_field_0(tlev1,nxfield,ny)
    call shift_field_0(qvh2,nxfield,ny)
    call shift_field(ps,nxfield,ny,1,1,2,n)
    call shift_field(sd,nxfield,ny,1,1,2,n)
    call shift_field(msl,nxfield,ny,1,1,2,n)
    call shift_field(tcc,nxfield,ny,1,1,2,n)
    call shift_field(u10,nxfield,ny,1,1,2,n)
    call shift_field(v10,nxfield,ny,1,1,2,n)
    call shift_field(tt2,nxfield,ny,1,1,2,n)
    call shift_field(td2,nxfield,ny,1,1,2,n)
    call shift_field(lsprec,nxfield,ny,1,1,2,n)
    call shift_field(convprec,nxfield,ny,1,1,2,n)
    call shift_field(sshf,nxfield,ny,1,1,2,n)
    call shift_field(ssr,nxfield,ny,1,1,2,n)
    call shift_field(hmix,nxfield,ny,1,1,2,n)
    call shift_field(tth,nxfield,ny,nuvzmax,nuvz,2,n)
    call shift_field(qvh,nxfield,ny,nuvzmax,nuvz,2,n)
    call shift_field(uuh,nxfield,ny,nuvzmax,nuvz,1,1)
    call shift_field(vvh,nxfield,ny,nuvzmax,nuvz,1,1)
    call shift_field(wwh,nxfield,ny,nwzmax,nwz,1,1)
  endif

  do i=0,nxmin1
    do j=0,nymin1
  ! Convert precip. from mm/s -> mm/hour
      convprec(i,j,1,n)=convprec(i,j,1,n)*3600.
      lsprec(i,j,1,n)=lsprec(i,j,1,n)*3600.
      surfstr(i,j,1,n)=sqrt(ewss(i,j)**2+nsss(i,j)**2)
    end do
  end do

  if ((.not.hflswitch).or.(.not.strswitch)) then
  !  write(*,*) 'WARNING: No flux data contained in GRIB file ',
  !    +  wfname(indj)

  ! CALCULATE USTAR AND SSHF USING THE PROFILE METHOD
  !***************************************************************************

    do i=0,nxmin1
      do j=0,nymin1
        hlev1=30.0                     ! HEIGHT OF FIRST MODEL SIGMA LAYER
        ff10m= sqrt(u10(i,j,1,n)**2+v10(i,j,1,n)**2)
        fflev1=sqrt(ulev1(i,j)**2+vlev1(i,j)**2)
        call pbl_profile(ps(i,j,1,n),td2(i,j,1,n),hlev1, &
             tt2(i,j,1,n),tlev1(i,j),ff10m,fflev1, &
             surfstr(i,j,1,n),sshf(i,j,1,n))
        if(sshf(i,j,1,n).gt.200.) sshf(i,j,1,n)=200.
        if(sshf(i,j,1,n).lt.-400.) sshf(i,j,1,n)=-400.
      end do
    end do
  endif


  if(iumax.ne.nuvz) stop 'READWIND: NUVZ NOT CONSISTENT'
  if(iumax.ne.nwz)    stop 'READWIND: NWZ NOT CONSISTENT'

  return
888   write(*,*) ' #### FLEXPART MODEL ERROR! WINDFIELD         #### '
  write(*,*) ' #### ',wfname(indj),'                    #### '
  write(*,*) ' #### IS NOT GRIB FORMAT !!!                  #### '
  stop 'Execution terminated'
999   write(*,*) ' #### FLEXPART MODEL ERROR! WINDFIELD         #### '
  write(*,*) ' #### ',wfname(indj),'                    #### '
  write(*,*) ' #### CANNOT BE OPENED !!!                    #### '
  stop 'Execution terminated'

end subroutine readwind