File: verttransform_gfs.f90

package info (click to toggle)
flexpart 9.02-21
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 4,896 kB
  • sloc: f90: 14,310; makefile: 28; sh: 18
file content (590 lines) | stat: -rw-r--r-- 20,342 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
!**********************************************************************
! Copyright 1998,1999,2000,2001,2002,2005,2007,2008,2009,2010         *
! Andreas Stohl, Petra Seibert, A. Frank, Gerhard Wotawa,             *
! Caroline Forster, Sabine Eckhardt, John Burkhart, Harald Sodemann   *
!                                                                     *
! This file is part of FLEXPART.                                      *
!                                                                     *
! FLEXPART is free software: you can redistribute it and/or modify    *
! it under the terms of the GNU General Public License as published by*
! the Free Software Foundation, either version 3 of the License, or   *
! (at your option) any later version.                                 *
!                                                                     *
! FLEXPART is distributed in the hope that it will be useful,         *
! but WITHOUT ANY WARRANTY; without even the implied warranty of      *
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the       *
! GNU General Public License for more details.                        *
!                                                                     *
! You should have received a copy of the GNU General Public License   *
! along with FLEXPART.  If not, see <http://www.gnu.org/licenses/>.   *
!**********************************************************************

subroutine verttransform(n,uuh,vvh,wwh,pvh)
  !                         i  i   i   i   i
  !*****************************************************************************
  !                                                                            *
  !     This subroutine transforms temperature, dew point temperature and      *
  !     wind components from eta to meter coordinates.                         *
  !     The vertical wind component is transformed from Pa/s to m/s using      *
  !     the conversion factor pinmconv.                                        *
  !     In addition, this routine calculates vertical density gradients        *
  !     needed for the parameterization of the turbulent velocities.           *
  !                                                                            *
  !     Author: A. Stohl, G. Wotawa                                            *
  !                                                                            *
  !     12 August 1996                                                         *
  !     Update: 16 January 1998                                                *
  !                                                                            *
  !     Major update: 17 February 1999                                         *
  !     by G. Wotawa                                                           *
  !     CHANGE 17/11/2005 Caroline Forster, NCEP GFS version                   *
  !                                                                            *
  !   - Vertical levels for u, v and w are put together                        *
  !   - Slope correction for vertical velocity: Modification of calculation    *
  !     procedure                                                              *
  !                                                                            *
  !*****************************************************************************
  !  Changes, Bernd C. Krueger, Feb. 2001:
  !   Variables tth and qvh (on eta coordinates) from common block
  !*****************************************************************************
  !                                                                            *
  ! Variables:                                                                 *
  ! nx,ny,nz                        field dimensions in x,y and z direction    *
  ! uu(0:nxmax,0:nymax,nzmax,2)     wind components in x-direction [m/s]       *
  ! vv(0:nxmax,0:nymax,nzmax,2)     wind components in y-direction [m/s]       *
  ! ww(0:nxmax,0:nymax,nzmax,2)     wind components in z-direction [deltaeta/s]*
  ! tt(0:nxmax,0:nymax,nzmax,2)     temperature [K]                            *
  ! pv(0:nxmax,0:nymax,nzmax,2)     potential voriticity (pvu)                 *
  ! ps(0:nxmax,0:nymax,2)           surface pressure [Pa]                      *
  ! clouds(0:nxmax,0:nymax,0:nzmax,2) cloud field for wet deposition           *
  !                                                                            *
  !*****************************************************************************

  use par_mod
  use com_mod
  use cmapf_mod

  implicit none

  integer :: ix,jy,kz,iz,n,kmin,kl,klp,ix1,jy1,ixp,jyp,ixm,jym
  integer :: rain_cloud_above,kz_inv
  real :: f_qvsat,pressure
  real :: rh,lsp,convp
  real :: uvzlev(nuvzmax),rhoh(nuvzmax),pinmconv(nzmax)
  real :: ew,pint,tv,tvold,pold,dz1,dz2,dz,ui,vi
  real :: xlon,ylat,xlonr,dzdx,dzdy
  real :: dzdx1,dzdx2,dzdy1,dzdy2
  real :: uuaux,vvaux,uupolaux,vvpolaux,ddpol,ffpol,wdummy
  real :: uuh(0:nxmax-1,0:nymax-1,nuvzmax)
  real :: vvh(0:nxmax-1,0:nymax-1,nuvzmax)
  real :: pvh(0:nxmax-1,0:nymax-1,nuvzmax)
  real :: wwh(0:nxmax-1,0:nymax-1,nwzmax)
  real :: wzlev(nwzmax),uvwzlev(0:nxmax-1,0:nymax-1,nzmax)
  real,parameter :: const=r_air/ga

  ! NCEP version
  integer :: llev, i

  logical :: init = .true.


  !*************************************************************************
  ! If verttransform is called the first time, initialize heights of the   *
  ! z levels in meter. The heights are the heights of model levels, where  *
  ! u,v,T and qv are given, and of the interfaces, where w is given. So,   *
  ! the vertical resolution in the z system is doubled. As reference point,*
  ! the lower left corner of the grid is used.                             *
  ! Unlike in the eta system, no difference between heights for u,v and    *
  ! heights for w exists.                                                  *
  !*************************************************************************

  if (init) then

  ! Search for a point with high surface pressure (i.e. not above significant topography)
  ! Then, use this point to construct a reference z profile, to be used at all times
  !*****************************************************************************

    do jy=0,nymin1
      do ix=0,nxmin1
        if (ps(ix,jy,1,n).gt.100000.) then
          ixm=ix
          jym=jy
          goto 3
        endif
      end do
    end do
3   continue


    tvold=tt2(ixm,jym,1,n)*(1.+0.378*ew(td2(ixm,jym,1,n))/ &
         ps(ixm,jym,1,n))
    pold=ps(ixm,jym,1,n)
    height(1)=0.

    do kz=2,nuvz
      pint=akz(kz)+bkz(kz)*ps(ixm,jym,1,n)
      tv=tth(ixm,jym,kz,n)*(1.+0.608*qvh(ixm,jym,kz,n))


  ! NOTE: In FLEXPART versions up to 4.0, the number of model levels was doubled
  ! upon the transformation to z levels. In order to save computer memory, this is
  ! not done anymore in the standard version. However, this option can still be
  ! switched on by replacing the following lines with those below, that are
  ! currently commented out.
  ! Note that two more changes are necessary in this subroutine below.
  ! One change is also necessary in gridcheck.f, and another one in verttransform_nests.
  !*****************************************************************************

      if (abs(tv-tvold).gt.0.2) then
        height(kz)= &
             height(kz-1)+const*log(pold/pint)* &
             (tv-tvold)/log(tv/tvold)
      else
        height(kz)=height(kz-1)+ &
             const*log(pold/pint)*tv
      endif

  ! Switch on following lines to use doubled vertical resolution
  !*************************************************************
  !    if (abs(tv-tvold).gt.0.2) then
  !      height((kz-1)*2)=
  !    +      height(max((kz-2)*2,1))+const*log(pold/pint)*
  !    +      (tv-tvold)/log(tv/tvold)
  !    else
  !      height((kz-1)*2)=height(max((kz-2)*2,1))+
  !    +      const*log(pold/pint)*tv
  !    endif
  ! End doubled vertical resolution

      tvold=tv
      pold=pint
    end do


  ! Switch on following lines to use doubled vertical resolution
  !*************************************************************
  !  do 7 kz=3,nz-1,2
  !    height(kz)=0.5*(height(kz-1)+height(kz+1))
  !  height(nz)=height(nz-1)+height(nz-1)-height(nz-2)
  ! End doubled vertical resolution


  ! Determine highest levels that can be within PBL
  !************************************************

    do kz=1,nz
      if (height(kz).gt.hmixmax) then
        nmixz=kz
        goto 9
      endif
    end do
9   continue

  ! Do not repeat initialization of the Cartesian z grid
  !*****************************************************

    init=.false.

  endif


  ! Loop over the whole grid
  !*************************

  do jy=0,nymin1
    do ix=0,nxmin1

  ! NCEP version: find first level above ground
      llev = 0
      do i=1,nuvz
       if (ps(ix,jy,1,n).lt.akz(i)) llev=i
      end do
       llev = llev+1
       if (llev.gt.nuvz-2) llev = nuvz-2
  !     if (llev.eq.nuvz-2) write(*,*) 'verttransform
  !    +WARNING: LLEV eq NUZV-2'
  ! NCEP version


  ! compute height of pressure levels above ground
  !***********************************************

      tvold=tth(ix,jy,llev,n)*(1.+0.608*qvh(ix,jy,llev,n))
      pold=akz(llev)
      uvzlev(llev)=0.
      wzlev(llev)=0.
      uvwzlev(ix,jy,llev)=0.
      rhoh(llev)=pold/(r_air*tvold)

      do kz=llev+1,nuvz
        pint=akz(kz)+bkz(kz)*ps(ix,jy,1,n)
        tv=tth(ix,jy,kz,n)*(1.+0.608*qvh(ix,jy,kz,n))
        rhoh(kz)=pint/(r_air*tv)

        if (abs(tv-tvold).gt.0.2) then
          uvzlev(kz)=uvzlev(kz-1)+const*log(pold/pint)* &
               (tv-tvold)/log(tv/tvold)
        else
          uvzlev(kz)=uvzlev(kz-1)+const*log(pold/pint)*tv
        endif
        wzlev(kz)=uvzlev(kz)
        uvwzlev(ix,jy,kz)=uvzlev(kz)

        tvold=tv
        pold=pint
      end do


  ! Switch on following lines to use doubled vertical resolution
  ! Switch off the three lines above.
  !*************************************************************
  !22          uvwzlev(ix,jy,(kz-1)*2)=uvzlev(kz)
  !     do 23 kz=2,nwz
  !23          uvwzlev(ix,jy,(kz-1)*2+1)=wzlev(kz)
  ! End doubled vertical resolution

  ! pinmconv=(h2-h1)/(p2-p1)

      pinmconv(llev)=(uvwzlev(ix,jy,llev+1)-uvwzlev(ix,jy,llev))/ &
           ((aknew(llev+1)+bknew(llev+1)*ps(ix,jy,1,n))- &
           (aknew(llev)+bknew(llev)*ps(ix,jy,1,n)))
      do kz=llev+1,nz-1
        pinmconv(kz)=(uvwzlev(ix,jy,kz+1)-uvwzlev(ix,jy,kz-1))/ &
             ((aknew(kz+1)+bknew(kz+1)*ps(ix,jy,1,n))- &
             (aknew(kz-1)+bknew(kz-1)*ps(ix,jy,1,n)))
      end do
      pinmconv(nz)=(uvwzlev(ix,jy,nz)-uvwzlev(ix,jy,nz-1))/ &
           ((aknew(nz)+bknew(nz)*ps(ix,jy,1,n))- &
           (aknew(nz-1)+bknew(nz-1)*ps(ix,jy,1,n)))


  ! Levels, where u,v,t and q are given
  !************************************

      uu(ix,jy,1,n)=uuh(ix,jy,llev)
      vv(ix,jy,1,n)=vvh(ix,jy,llev)
      tt(ix,jy,1,n)=tth(ix,jy,llev,n)
      qv(ix,jy,1,n)=qvh(ix,jy,llev,n)
      pv(ix,jy,1,n)=pvh(ix,jy,llev)
      rho(ix,jy,1,n)=rhoh(llev)
      pplev(ix,jy,1,n)=akz(llev)
      uu(ix,jy,nz,n)=uuh(ix,jy,nuvz)
      vv(ix,jy,nz,n)=vvh(ix,jy,nuvz)
      tt(ix,jy,nz,n)=tth(ix,jy,nuvz,n)
      qv(ix,jy,nz,n)=qvh(ix,jy,nuvz,n)
      pv(ix,jy,nz,n)=pvh(ix,jy,nuvz)
      rho(ix,jy,nz,n)=rhoh(nuvz)
      pplev(ix,jy,nz,n)=akz(nuvz)
      kmin=llev+1
      do iz=2,nz-1
        do kz=kmin,nuvz
          if(height(iz).gt.uvzlev(nuvz)) then
            uu(ix,jy,iz,n)=uu(ix,jy,nz,n)
            vv(ix,jy,iz,n)=vv(ix,jy,nz,n)
            tt(ix,jy,iz,n)=tt(ix,jy,nz,n)
            qv(ix,jy,iz,n)=qv(ix,jy,nz,n)
            pv(ix,jy,iz,n)=pv(ix,jy,nz,n)
            rho(ix,jy,iz,n)=rho(ix,jy,nz,n)
            pplev(ix,jy,iz,n)=pplev(ix,jy,nz,n)
            goto 30
          endif
          if ((height(iz).gt.uvzlev(kz-1)).and. &
               (height(iz).le.uvzlev(kz))) then
           dz1=height(iz)-uvzlev(kz-1)
           dz2=uvzlev(kz)-height(iz)
           dz=dz1+dz2
           uu(ix,jy,iz,n)=(uuh(ix,jy,kz-1)*dz2+uuh(ix,jy,kz)*dz1)/dz
           vv(ix,jy,iz,n)=(vvh(ix,jy,kz-1)*dz2+vvh(ix,jy,kz)*dz1)/dz
           tt(ix,jy,iz,n)=(tth(ix,jy,kz-1,n)*dz2 &
                +tth(ix,jy,kz,n)*dz1)/dz
           qv(ix,jy,iz,n)=(qvh(ix,jy,kz-1,n)*dz2 &
                +qvh(ix,jy,kz,n)*dz1)/dz
           pv(ix,jy,iz,n)=(pvh(ix,jy,kz-1)*dz2+pvh(ix,jy,kz)*dz1)/dz
           rho(ix,jy,iz,n)=(rhoh(kz-1)*dz2+rhoh(kz)*dz1)/dz
           pplev(ix,jy,iz,n)=(akz(kz-1)*dz2+akz(kz)*dz1)/dz
          endif
        end do
30      continue
      end do


  ! Levels, where w is given
  !*************************

      ww(ix,jy,1,n)=wwh(ix,jy,llev)*pinmconv(llev)
      ww(ix,jy,nz,n)=wwh(ix,jy,nwz)*pinmconv(nz)
      kmin=llev+1
      do iz=2,nz
        do kz=kmin,nwz
          if ((height(iz).gt.wzlev(kz-1)).and. &
               (height(iz).le.wzlev(kz))) then
           dz1=height(iz)-wzlev(kz-1)
           dz2=wzlev(kz)-height(iz)
           dz=dz1+dz2
           ww(ix,jy,iz,n)=(wwh(ix,jy,kz-1)*pinmconv(kz-1)*dz2 &
                +wwh(ix,jy,kz)*pinmconv(kz)*dz1)/dz

          endif
        end do
      end do


  ! Compute density gradients at intermediate levels
  !*************************************************

      drhodz(ix,jy,1,n)=(rho(ix,jy,2,n)-rho(ix,jy,1,n))/ &
           (height(2)-height(1))
      do kz=2,nz-1
        drhodz(ix,jy,kz,n)=(rho(ix,jy,kz+1,n)-rho(ix,jy,kz-1,n))/ &
             (height(kz+1)-height(kz-1))
      end do
      drhodz(ix,jy,nz,n)=drhodz(ix,jy,nz-1,n)

    end do
  end do


  !****************************************************************
  ! Compute slope of eta levels in windward direction and resulting
  ! vertical wind correction
  !****************************************************************

  do jy=1,ny-2
    do ix=1,nx-2

  ! NCEP version: find first level above ground
      llev = 0
      do i=1,nuvz
       if (ps(ix,jy,1,n).lt.akz(i)) llev=i
      end do
       llev = llev+1
       if (llev.gt.nuvz-2) llev = nuvz-2
  !     if (llev.eq.nuvz-2) write(*,*) 'verttransform
  !    +WARNING: LLEV eq NUZV-2'
  ! NCEP version

      kmin=llev+1
      do iz=2,nz-1

        ui=uu(ix,jy,iz,n)*dxconst/cos((real(jy)*dy+ylat0)*pi180)
        vi=vv(ix,jy,iz,n)*dyconst

        do kz=kmin,nz
          if ((height(iz).gt.uvwzlev(ix,jy,kz-1)).and. &
               (height(iz).le.uvwzlev(ix,jy,kz))) then
            dz1=height(iz)-uvwzlev(ix,jy,kz-1)
            dz2=uvwzlev(ix,jy,kz)-height(iz)
            dz=dz1+dz2
            kl=kz-1
            klp=kz
            goto 47
          endif
        end do

47      ix1=ix-1
        jy1=jy-1
        ixp=ix+1
        jyp=jy+1

        dzdx1=(uvwzlev(ixp,jy,kl)-uvwzlev(ix1,jy,kl))/2.
        dzdx2=(uvwzlev(ixp,jy,klp)-uvwzlev(ix1,jy,klp))/2.
        dzdx=(dzdx1*dz2+dzdx2*dz1)/dz

        dzdy1=(uvwzlev(ix,jyp,kl)-uvwzlev(ix,jy1,kl))/2.
        dzdy2=(uvwzlev(ix,jyp,klp)-uvwzlev(ix,jy1,klp))/2.
        dzdy=(dzdy1*dz2+dzdy2*dz1)/dz

        ww(ix,jy,iz,n)=ww(ix,jy,iz,n)+(dzdx*ui+dzdy*vi)

      end do

    end do
  end do


  ! If north pole is in the domain, calculate wind velocities in polar
  ! stereographic coordinates
  !*******************************************************************

  if (nglobal) then
    do jy=int(switchnorthg)-2,nymin1
      ylat=ylat0+real(jy)*dy
      do ix=0,nxmin1
        xlon=xlon0+real(ix)*dx
        do iz=1,nz
          call cc2gll(northpolemap,ylat,xlon,uu(ix,jy,iz,n), &
               vv(ix,jy,iz,n),uupol(ix,jy,iz,n), &
               vvpol(ix,jy,iz,n))
        end do
      end do
    end do


    do iz=1,nz

  ! CALCULATE FFPOL, DDPOL FOR CENTRAL GRID POINT
      xlon=xlon0+real(nx/2-1)*dx
      xlonr=xlon*pi/180.
      ffpol=sqrt(uu(nx/2-1,nymin1,iz,n)**2+ &
           vv(nx/2-1,nymin1,iz,n)**2)
      if(vv(nx/2-1,nymin1,iz,n).lt.0.) then
        ddpol=atan(uu(nx/2-1,nymin1,iz,n)/ &
             vv(nx/2-1,nymin1,iz,n))-xlonr
      elseif (vv(nx/2-1,nymin1,iz,n).gt.0.) then
        ddpol=pi+atan(uu(nx/2-1,nymin1,iz,n)/ &
             vv(nx/2-1,nymin1,iz,n))-xlonr
      else
        ddpol=pi/2-xlonr
      endif
      if(ddpol.lt.0.) ddpol=2.0*pi+ddpol
      if(ddpol.gt.2.0*pi) ddpol=ddpol-2.0*pi

  ! CALCULATE U,V FOR 180 DEG, TRANSFORM TO POLAR STEREOGRAPHIC GRID
      xlon=180.0
      xlonr=xlon*pi/180.
      ylat=90.0
      uuaux=-ffpol*sin(xlonr+ddpol)
      vvaux=-ffpol*cos(xlonr+ddpol)
      call cc2gll(northpolemap,ylat,xlon,uuaux,vvaux,uupolaux, &
           vvpolaux)

      jy=nymin1
      do ix=0,nxmin1
        uupol(ix,jy,iz,n)=uupolaux
        vvpol(ix,jy,iz,n)=vvpolaux
      end do
    end do


  ! Fix: Set W at pole to the zonally averaged W of the next equator-
  ! ward parallel of latitude

  do iz=1,nz
      wdummy=0.
      jy=ny-2
      do ix=0,nxmin1
        wdummy=wdummy+ww(ix,jy,iz,n)
      end do
      wdummy=wdummy/real(nx)
      jy=nymin1
      do ix=0,nxmin1
        ww(ix,jy,iz,n)=wdummy
      end do
  end do

  endif


  ! If south pole is in the domain, calculate wind velocities in polar
  ! stereographic coordinates
  !*******************************************************************

  if (sglobal) then
    do jy=0,int(switchsouthg)+3
      ylat=ylat0+real(jy)*dy
      do ix=0,nxmin1
        xlon=xlon0+real(ix)*dx
        do iz=1,nz
          call cc2gll(southpolemap,ylat,xlon,uu(ix,jy,iz,n), &
               vv(ix,jy,iz,n),uupol(ix,jy,iz,n), &
               vvpol(ix,jy,iz,n))
        end do
      end do
    end do

    do iz=1,nz

  ! CALCULATE FFPOL, DDPOL FOR CENTRAL GRID POINT
      xlon=xlon0+real(nx/2-1)*dx
      xlonr=xlon*pi/180.
      ffpol=sqrt(uu(nx/2-1,0,iz,n)**2+ &
           vv(nx/2-1,0,iz,n)**2)
      if(vv(nx/2-1,0,iz,n).lt.0.) then
        ddpol=atan(uu(nx/2-1,0,iz,n)/ &
             vv(nx/2-1,0,iz,n))+xlonr
      elseif (vv(nx/2-1,0,iz,n).gt.0.) then
        ddpol=pi+atan(uu(nx/2-1,0,iz,n)/ &
             vv(nx/2-1,0,iz,n))-xlonr
      else
        ddpol=pi/2-xlonr
      endif
      if(ddpol.lt.0.) ddpol=2.0*pi+ddpol
      if(ddpol.gt.2.0*pi) ddpol=ddpol-2.0*pi

  ! CALCULATE U,V FOR 180 DEG, TRANSFORM TO POLAR STEREOGRAPHIC GRID
      xlon=180.0
      xlonr=xlon*pi/180.
      ylat=-90.0
      uuaux=+ffpol*sin(xlonr-ddpol)
      vvaux=-ffpol*cos(xlonr-ddpol)
      call cc2gll(northpolemap,ylat,xlon,uuaux,vvaux,uupolaux, &
           vvpolaux)

      jy=0
      do ix=0,nxmin1
        uupol(ix,jy,iz,n)=uupolaux
        vvpol(ix,jy,iz,n)=vvpolaux
      end do
    end do


  ! Fix: Set W at pole to the zonally averaged W of the next equator-
  ! ward parallel of latitude

    do iz=1,nz
      wdummy=0.
      jy=1
      do ix=0,nxmin1
        wdummy=wdummy+ww(ix,jy,iz,n)
      end do
      wdummy=wdummy/real(nx)
      jy=0
      do ix=0,nxmin1
        ww(ix,jy,iz,n)=wdummy
      end do
    end do
  endif


  !   write (*,*) 'initializing clouds, n:',n,nymin1,nxmin1,nz
  !   create a cloud and rainout/washout field, clouds occur where rh>80%
  !   total cloudheight is stored at level 0
  do jy=0,nymin1
    do ix=0,nxmin1
      rain_cloud_above=0
      lsp=lsprec(ix,jy,1,n)
      convp=convprec(ix,jy,1,n)
      cloudsh(ix,jy,n)=0
      do kz_inv=1,nz-1
         kz=nz-kz_inv+1
         pressure=rho(ix,jy,kz,n)*r_air*tt(ix,jy,kz,n)
         rh=qv(ix,jy,kz,n)/f_qvsat(pressure,tt(ix,jy,kz,n))
         clouds(ix,jy,kz,n)=0
         if (rh.gt.0.8) then ! in cloud
            if ((lsp.gt.0.01).or.(convp.gt.0.01)) then ! cloud and precipitation
               rain_cloud_above=1
               cloudsh(ix,jy,n)=cloudsh(ix,jy,n)+ &
                    height(kz)-height(kz-1)
               if (lsp.ge.convp) then
                  clouds(ix,jy,kz,n)=3 ! lsp dominated rainout
               else
                  clouds(ix,jy,kz,n)=2 ! convp dominated rainout
               endif
            else ! no precipitation
                  clouds(ix,jy,kz,n)=1 ! cloud
            endif
         else ! no cloud
            if (rain_cloud_above.eq.1) then ! scavenging
               if (lsp.ge.convp) then
                  clouds(ix,jy,kz,n)=5 ! lsp dominated washout
               else
                  clouds(ix,jy,kz,n)=4 ! convp dominated washout
               endif
            endif
         endif
      end do
    end do
  end do


end subroutine verttransform