1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
|
!**********************************************************************
! Copyright 1998,1999,2000,2001,2002,2005,2007,2008,2009,2010 *
! Andreas Stohl, Petra Seibert, A. Frank, Gerhard Wotawa, *
! Caroline Forster, Sabine Eckhardt, John Burkhart, Harald Sodemann *
! *
! This file is part of FLEXPART. *
! *
! FLEXPART is free software: you can redistribute it and/or modify *
! it under the terms of the GNU General Public License as published by*
! the Free Software Foundation, either version 3 of the License, or *
! (at your option) any later version. *
! *
! FLEXPART is distributed in the hope that it will be useful, *
! but WITHOUT ANY WARRANTY; without even the implied warranty of *
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
! GNU General Public License for more details. *
! *
! You should have received a copy of the GNU General Public License *
! along with FLEXPART. If not, see <http://www.gnu.org/licenses/>. *
!**********************************************************************
subroutine calcpv(n,uuh,vvh,pvh)
! i i i o
!*****************************************************************************
! *
! Calculation of potential vorticity on 3-d grid. *
! *
! Author: P. James *
! 3 February 2000 *
! *
! Adaptation to FLEXPART, A. Stohl, 1 May 2000 *
! *
!*****************************************************************************
! *
! Variables: *
! n temporal index for meteorological fields (1 to 2) *
! *
! Constants: *
! *
!*****************************************************************************
use par_mod
use com_mod
implicit none
integer :: n,ix,jy,i,j,k,kl,ii,jj,klvrp,klvrm,klpt,kup,kdn,kch
integer :: jyvp,jyvm,ixvp,ixvm,jumpx,jumpy,jux,juy,ivrm,ivrp,ivr
integer :: nlck
real :: vx(2),uy(2),phi,tanphi,cosphi,dvdx,dudy,f
real :: theta,thetap,thetam,dthetadp,dt1,dt2,dt,ppmk
real :: pvavr,ppml(nuvzmax)
real :: thup,thdn
real,parameter :: eps=1.e-5, p0=101325
real :: uuh(0:nxmax-1,0:nymax-1,nuvzmax)
real :: vvh(0:nxmax-1,0:nymax-1,nuvzmax)
real :: pvh(0:nxmax-1,0:nymax-1,nuvzmax)
! Set number of levels to check for adjacent theta
nlck=nuvz/3
!
! Loop over entire grid
!**********************
do jy=0,nymin1
if (sglobal.and.jy.eq.0) goto 10
if (nglobal.and.jy.eq.nymin1) goto 10
phi = (ylat0 + jy * dy) * pi / 180.
f = 0.00014585 * sin(phi)
tanphi = tan(phi)
cosphi = cos(phi)
! Provide a virtual jy+1 and jy-1 in case we are on domain edge (Lat)
jyvp=jy+1
jyvm=jy-1
if (jy.eq.0) jyvm=0
if (jy.eq.nymin1) jyvp=nymin1
! Define absolute gap length
jumpy=2
if (jy.eq.0.or.jy.eq.nymin1) jumpy=1
if (sglobal.and.jy.eq.1) then
jyvm=1
jumpy=1
end if
if (nglobal.and.jy.eq.ny-2) then
jyvp=ny-2
jumpy=1
end if
juy=jumpy
!
do ix=0,nxmin1
! Provide a virtual ix+1 and ix-1 in case we are on domain edge (Long)
ixvp=ix+1
ixvm=ix-1
jumpx=2
if (xglobal) then
ivrp=ixvp
ivrm=ixvm
if (ixvm.lt.0) ivrm=ixvm+nxmin1
if (ixvp.ge.nx) ivrp=ixvp-nx+1
else
if (ix.eq.0) ixvm=0
if (ix.eq.nxmin1) ixvp=nxmin1
ivrp=ixvp
ivrm=ixvm
! Define absolute gap length
if (ix.eq.0.or.ix.eq.nxmin1) jumpx=1
end if
jux=jumpx
! Precalculate pressure values for efficiency
do kl=1,nuvz
ppml(kl)=akz(kl)+bkz(kl)*ps(ix,jy,1,n)
end do
!
! Loop over the vertical
!***********************
do kl=1,nuvz
ppmk=akz(kl)+bkz(kl)*ps(ix,jy,1,n)
theta=tth(ix,jy,kl,n)*(100000./ppmk)**kappa
klvrp=kl+1
klvrm=kl-1
klpt=kl
! If top or bottom level, dthetadp is evaluated between the current
! level and the level inside, otherwise between level+1 and level-1
!
if (klvrp.gt.nuvz) klvrp=nuvz
if (klvrm.lt.1) klvrm=1
ppmk=akz(klvrp)+bkz(klvrp)*ps(ix,jy,1,n)
thetap=tth(ix,jy,klvrp,n)*(100000./ppmk)**kappa
ppmk=akz(klvrm)+bkz(klvrm)*ps(ix,jy,1,n)
thetam=tth(ix,jy,klvrm,n)*(100000./ppmk)**kappa
dthetadp=(thetap-thetam)/(ppml(klvrp)-ppml(klvrm))
! Compute vertical position at pot. temperature surface on subgrid
! and the wind at that position
!*****************************************************************
! a) in x direction
ii=0
do i=ixvm,ixvp,jumpx
ivr=i
if (xglobal) then
if (i.lt.0) ivr=ivr+nxmin1
if (i.ge.nx) ivr=ivr-nx+1
end if
ii=ii+1
! Search adjacent levels for current theta value
! Spiral out from current level for efficiency
kup=klpt-1
kdn=klpt
kch=0
40 continue
! Upward branch
kup=kup+1
if (kch.ge.nlck) goto 21 ! No more levels to check,
! ! and no values found
if (kup.ge.nuvz) goto 41
kch=kch+1
k=kup
ppmk=akz(k)+bkz(k)*ps(ivr,jy,1,n)
thdn=tth(ivr,jy,k,n)*(100000./ppmk)**kappa
ppmk=akz(k+1)+bkz(k+1)*ps(ivr,jy,1,n)
thup=tth(ivr,jy,k+1,n)*(100000./ppmk)**kappa
if (((thdn.ge.theta).and.(thup.le.theta)).or. &
((thdn.le.theta).and.(thup.ge.theta))) then
dt1=abs(theta-thdn)
dt2=abs(theta-thup)
dt=dt1+dt2
if (dt.lt.eps) then ! Avoid division by zero error
dt1=0.5 ! G.W., 10.4.1996
dt2=0.5
dt=1.0
endif
vx(ii)=(vvh(ivr,jy,k)*dt2+vvh(ivr,jy,k+1)*dt1)/dt
goto 20
endif
41 continue
! Downward branch
kdn=kdn-1
if (kdn.lt.1) goto 40
kch=kch+1
k=kdn
ppmk=akz(k)+bkz(k)*ps(ivr,jy,1,n)
thdn=tth(ivr,jy,k,n)*(100000./ppmk)**kappa
ppmk=akz(k+1)+bkz(k+1)*ps(ivr,jy,1,n)
thup=tth(ivr,jy,k+1,n)*(100000./ppmk)**kappa
if (((thdn.ge.theta).and.(thup.le.theta)).or. &
((thdn.le.theta).and.(thup.ge.theta))) then
dt1=abs(theta-thdn)
dt2=abs(theta-thup)
dt=dt1+dt2
if (dt.lt.eps) then ! Avoid division by zero error
dt1=0.5 ! G.W., 10.4.1996
dt2=0.5
dt=1.0
endif
vx(ii)=(vvh(ivr,jy,k)*dt2+vvh(ivr,jy,k+1)*dt1)/dt
goto 20
endif
goto 40
! This section used when no values were found
21 continue
! Must use vv at current level and long. jux becomes smaller by 1
vx(ii)=vvh(ix,jy,kl)
jux=jux-1
! Otherwise OK
20 continue
end do
if (jux.gt.0) then
dvdx=(vx(2)-vx(1))/real(jux)/(dx*pi/180.)
else
dvdx=vvh(ivrp,jy,kl)-vvh(ivrm,jy,kl)
dvdx=dvdx/real(jumpx)/(dx*pi/180.)
! Only happens if no equivalent theta value
! can be found on either side, hence must use values
! from either side, same pressure level.
end if
! b) in y direction
jj=0
do j=jyvm,jyvp,jumpy
jj=jj+1
! Search adjacent levels for current theta value
! Spiral out from current level for efficiency
kup=klpt-1
kdn=klpt
kch=0
70 continue
! Upward branch
kup=kup+1
if (kch.ge.nlck) goto 51 ! No more levels to check,
! ! and no values found
if (kup.ge.nuvz) goto 71
kch=kch+1
k=kup
ppmk=akz(k)+bkz(k)*ps(ix,j,1,n)
thdn=tth(ix,j,k,n)*(100000./ppmk)**kappa
ppmk=akz(k+1)+bkz(k+1)*ps(ix,j,1,n)
thup=tth(ix,j,k+1,n)*(100000./ppmk)**kappa
if (((thdn.ge.theta).and.(thup.le.theta)).or. &
((thdn.le.theta).and.(thup.ge.theta))) then
dt1=abs(theta-thdn)
dt2=abs(theta-thup)
dt=dt1+dt2
if (dt.lt.eps) then ! Avoid division by zero error
dt1=0.5 ! G.W., 10.4.1996
dt2=0.5
dt=1.0
endif
uy(jj)=(uuh(ix,j,k)*dt2+uuh(ix,j,k+1)*dt1)/dt
goto 50
endif
71 continue
! Downward branch
kdn=kdn-1
if (kdn.lt.1) goto 70
kch=kch+1
k=kdn
ppmk=akz(k)+bkz(k)*ps(ix,j,1,n)
thdn=tth(ix,j,k,n)*(100000./ppmk)**kappa
ppmk=akz(k+1)+bkz(k+1)*ps(ix,j,1,n)
thup=tth(ix,j,k+1,n)*(100000./ppmk)**kappa
if (((thdn.ge.theta).and.(thup.le.theta)).or. &
((thdn.le.theta).and.(thup.ge.theta))) then
dt1=abs(theta-thdn)
dt2=abs(theta-thup)
dt=dt1+dt2
if (dt.lt.eps) then ! Avoid division by zero error
dt1=0.5 ! G.W., 10.4.1996
dt2=0.5
dt=1.0
endif
uy(jj)=(uuh(ix,j,k)*dt2+uuh(ix,j,k+1)*dt1)/dt
goto 50
endif
goto 70
! This section used when no values were found
51 continue
! Must use uu at current level and lat. juy becomes smaller by 1
uy(jj)=uuh(ix,jy,kl)
juy=juy-1
! Otherwise OK
50 continue
end do
if (juy.gt.0) then
dudy=(uy(2)-uy(1))/real(juy)/(dy*pi/180.)
else
dudy=uuh(ix,jyvp,kl)-uuh(ix,jyvm,kl)
dudy=dudy/real(jumpy)/(dy*pi/180.)
end if
!
pvh(ix,jy,kl)=dthetadp*(f+(dvdx/cosphi-dudy &
+uuh(ix,jy,kl)*tanphi)/r_earth)*(-1.e6)*9.81
!
! Resest jux and juy
jux=jumpx
juy=jumpy
end do
end do
10 continue
end do
!
! Fill in missing PV values on poles, if present
! Use mean PV of surrounding latitude ring
!
if (sglobal) then
do kl=1,nuvz
pvavr=0.
do ix=0,nxmin1
pvavr=pvavr+pvh(ix,1,kl)
end do
pvavr=pvavr/real(nx)
jy=0
do ix=0,nxmin1
pvh(ix,jy,kl)=pvavr
end do
end do
end if
if (nglobal) then
do kl=1,nuvz
pvavr=0.
do ix=0,nxmin1
pvavr=pvavr+pvh(ix,ny-2,kl)
end do
pvavr=pvavr/real(nx)
jy=nymin1
do ix=0,nxmin1
pvh(ix,jy,kl)=pvavr
end do
end do
end if
end subroutine calcpv
|