1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
|
!**********************************************************************
! Copyright 1998,1999,2000,2001,2002,2005,2007,2008,2009,2010 *
! Andreas Stohl, Petra Seibert, A. Frank, Gerhard Wotawa, *
! Caroline Forster, Sabine Eckhardt, John Burkhart, Harald Sodemann *
! *
! This file is part of FLEXPART. *
! *
! FLEXPART is free software: you can redistribute it and/or modify *
! it under the terms of the GNU General Public License as published by*
! the Free Software Foundation, either version 3 of the License, or *
! (at your option) any later version. *
! *
! FLEXPART is distributed in the hope that it will be useful, *
! but WITHOUT ANY WARRANTY; without even the implied warranty of *
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
! GNU General Public License for more details. *
! *
! You should have received a copy of the GNU General Public License *
! along with FLEXPART. If not, see <http://www.gnu.org/licenses/>. *
!**********************************************************************
subroutine conccalc(itime,weight)
! i i
!*****************************************************************************
! *
! Calculation of the concentrations on a regular grid using volume *
! sampling *
! *
! Author: A. Stohl *
! *
! 24 May 1996 *
! *
! April 2000: Update to calculate age spectra *
! Bug fix to avoid negative conc. at the domain boundaries, *
! as suggested by Petra Seibert *
! *
! 2 July 2002: re-order if-statements in order to optimize CPU time *
! *
! *
!*****************************************************************************
! *
! Variables: *
! nspeciesdim = nspec for forward runs, 1 for backward runs *
! *
!*****************************************************************************
use unc_mod
use outg_mod
use par_mod
use com_mod
implicit none
integer :: itime,itage,i,ix,jy,ixp,jyp,kz,ks,n,nage
integer :: il,ind,indz,indzp,nrelpointer
real :: rddx,rddy,p1,p2,p3,p4,dz1,dz2,dz
real :: weight,hx,hy,hz,h,xd,yd,zd,xkern,r2,c(maxspec),ddx,ddy
real :: rhoprof(2),rhoi
real :: xl,yl,wx,wy,w
real,parameter :: factor=.596831, hxmax=6.0, hymax=4.0, hzmax=150.
! For forward simulations, make a loop over the number of species;
! for backward simulations, make an additional loop over the
! releasepoints
!***************************************************************************
do i=1,numpart
if (itra1(i).ne.itime) goto 20
! Determine age class of the particle
itage=abs(itra1(i)-itramem(i))
do nage=1,nageclass
if (itage.lt.lage(nage)) goto 33
end do
33 continue
! For special runs, interpolate the air density to the particle position
!************************************************************************
!***********************************************************************
!AF IND_SOURCE switches between different units for concentrations at the source
!Af NOTE that in backward simulations the release of particles takes place
!Af at the receptor and the sampling at the source.
!Af 1="mass"
!Af 2="mass mixing ratio"
!Af IND_RECEPTOR switches between different units for concentrations at the receptor
!Af 1="mass"
!Af 2="mass mixing ratio"
!Af switches for the conccalcfile:
!AF IND_SAMP = 0 : xmass * 1
!Af IND_SAMP = -1 : xmass / rho
!Af ind_samp is defined in readcommand.f
if ( ind_samp .eq. -1 ) then
ix=int(xtra1(i))
jy=int(ytra1(i))
ixp=ix+1
jyp=jy+1
ddx=xtra1(i)-real(ix)
ddy=ytra1(i)-real(jy)
rddx=1.-ddx
rddy=1.-ddy
p1=rddx*rddy
p2=ddx*rddy
p3=rddx*ddy
p4=ddx*ddy
do il=2,nz
if (height(il).gt.ztra1(i)) then
indz=il-1
indzp=il
goto 6
endif
end do
6 continue
dz1=ztra1(i)-height(indz)
dz2=height(indzp)-ztra1(i)
dz=1./(dz1+dz2)
! Take density from 2nd wind field in memory (accurate enough, no time interpolation needed)
!*****************************************************************************
do ind=indz,indzp
rhoprof(ind-indz+1)=p1*rho(ix ,jy ,ind,2) &
+p2*rho(ixp,jy ,ind,2) &
+p3*rho(ix ,jyp,ind,2) &
+p4*rho(ixp,jyp,ind,2)
end do
rhoi=(dz1*rhoprof(2)+dz2*rhoprof(1))*dz
elseif (ind_samp.eq.0) then
rhoi = 1.
endif
!****************************************************************************
! 1. Evaluate grid concentrations using a uniform kernel of bandwidths dx, dy
!****************************************************************************
! For backward simulations, look from which release point the particle comes from
! For domain-filling trajectory option, npoint contains a consecutive particle
! number, not the release point information. Therefore, nrelpointer is set to 1
! for the domain-filling option.
!*****************************************************************************
if ((ioutputforeachrelease.eq.0).or.(mdomainfill.eq.1)) then
nrelpointer=1
else
nrelpointer=npoint(i)
endif
do kz=1,numzgrid ! determine height of cell
if (outheight(kz).gt.ztra1(i)) goto 21
end do
21 continue
if (kz.le.numzgrid) then ! inside output domain
!********************************
! Do everything for mother domain
!********************************
xl=(xtra1(i)*dx+xoutshift)/dxout
yl=(ytra1(i)*dy+youtshift)/dyout
ix=int(xl)
if (xl.lt.0.) ix=ix-1
jy=int(yl)
if (yl.lt.0.) jy=jy-1
! if (i.eq.10000) write(*,*) itime,xtra1(i),ytra1(i),ztra1(i),xl,yl
! For particles aged less than 3 hours, attribute particle mass to grid cell
! it resides in rather than use the kernel, in order to avoid its smoothing effect.
! For older particles, use the uniform kernel.
! If a particle is close to the domain boundary, do not use the kernel either.
!*****************************************************************************
if ((itage.lt.10800).or.(xl.lt.0.5).or.(yl.lt.0.5).or. &
(xl.gt.real(numxgrid-1)-0.5).or. &
(yl.gt.real(numygrid-1)-0.5)) then ! no kernel, direct attribution to grid cell
if ((ix.ge.0).and.(jy.ge.0).and.(ix.le.numxgrid-1).and. &
(jy.le.numygrid-1)) then
do ks=1,nspec
gridunc(ix,jy,kz,ks,nrelpointer,nclass(i),nage)= &
gridunc(ix,jy,kz,ks,nrelpointer,nclass(i),nage)+ &
xmass1(i,ks)/rhoi*weight
end do
endif
else ! attribution via uniform kernel
ddx=xl-real(ix) ! distance to left cell border
ddy=yl-real(jy) ! distance to lower cell border
if (ddx.gt.0.5) then
ixp=ix+1
wx=1.5-ddx
else
ixp=ix-1
wx=0.5+ddx
endif
if (ddy.gt.0.5) then
jyp=jy+1
wy=1.5-ddy
else
jyp=jy-1
wy=0.5+ddy
endif
! Determine mass fractions for four grid points
!**********************************************
if ((ix.ge.0).and.(ix.le.numxgrid-1)) then
if ((jy.ge.0).and.(jy.le.numygrid-1)) then
w=wx*wy
do ks=1,nspec
gridunc(ix,jy,kz,ks,nrelpointer,nclass(i),nage)= &
gridunc(ix,jy,kz,ks,nrelpointer,nclass(i),nage)+ &
xmass1(i,ks)/rhoi*weight*w
end do
endif
if ((jyp.ge.0).and.(jyp.le.numygrid-1)) then
w=wx*(1.-wy)
do ks=1,nspec
gridunc(ix,jyp,kz,ks,nrelpointer,nclass(i),nage)= &
gridunc(ix,jyp,kz,ks,nrelpointer,nclass(i),nage)+ &
xmass1(i,ks)/rhoi*weight*w
end do
endif
endif
if ((ixp.ge.0).and.(ixp.le.numxgrid-1)) then
if ((jyp.ge.0).and.(jyp.le.numygrid-1)) then
w=(1.-wx)*(1.-wy)
do ks=1,nspec
gridunc(ixp,jyp,kz,ks,nrelpointer,nclass(i),nage)= &
gridunc(ixp,jyp,kz,ks,nrelpointer,nclass(i),nage)+ &
xmass1(i,ks)/rhoi*weight*w
end do
endif
if ((jy.ge.0).and.(jy.le.numygrid-1)) then
w=(1.-wx)*wy
do ks=1,nspec
gridunc(ixp,jy,kz,ks,nrelpointer,nclass(i),nage)= &
gridunc(ixp,jy,kz,ks,nrelpointer,nclass(i),nage)+ &
xmass1(i,ks)/rhoi*weight*w
end do
endif
endif
endif
!************************************
! Do everything for the nested domain
!************************************
if (nested_output.eq.1) then
xl=(xtra1(i)*dx+xoutshiftn)/dxoutn
yl=(ytra1(i)*dy+youtshiftn)/dyoutn
ix=int(xl)
if (xl.lt.0.) ix=ix-1
jy=int(yl)
if (yl.lt.0.) jy=jy-1
! For particles aged less than 3 hours, attribute particle mass to grid cell
! it resides in rather than use the kernel, in order to avoid its smoothing effect.
! For older particles, use the uniform kernel.
! If a particle is close to the domain boundary, do not use the kernel either.
!*****************************************************************************
if ((itage.lt.10800).or.(xl.lt.0.5).or.(yl.lt.0.5).or. &
(xl.gt.real(numxgridn-1)-0.5).or. &
(yl.gt.real(numygridn-1)-0.5)) then ! no kernel, direct attribution to grid cell
if ((ix.ge.0).and.(jy.ge.0).and.(ix.le.numxgridn-1).and. &
(jy.le.numygridn-1)) then
do ks=1,nspec
griduncn(ix,jy,kz,ks,nrelpointer,nclass(i),nage)= &
griduncn(ix,jy,kz,ks,nrelpointer,nclass(i),nage)+ &
xmass1(i,ks)/rhoi*weight
end do
endif
else ! attribution via uniform kernel
ddx=xl-real(ix) ! distance to left cell border
ddy=yl-real(jy) ! distance to lower cell border
if (ddx.gt.0.5) then
ixp=ix+1
wx=1.5-ddx
else
ixp=ix-1
wx=0.5+ddx
endif
if (ddy.gt.0.5) then
jyp=jy+1
wy=1.5-ddy
else
jyp=jy-1
wy=0.5+ddy
endif
! Determine mass fractions for four grid points
!**********************************************
if ((ix.ge.0).and.(ix.le.numxgridn-1)) then
if ((jy.ge.0).and.(jy.le.numygridn-1)) then
w=wx*wy
do ks=1,nspec
griduncn(ix,jy,kz,ks,nrelpointer,nclass(i),nage)= &
griduncn(ix,jy,kz,ks,nrelpointer,nclass(i),nage)+ &
xmass1(i,ks)/rhoi*weight*w
end do
endif
if ((jyp.ge.0).and.(jyp.le.numygridn-1)) then
w=wx*(1.-wy)
do ks=1,nspec
griduncn(ix,jyp,kz,ks,nrelpointer,nclass(i),nage)= &
griduncn(ix,jyp,kz,ks,nrelpointer,nclass(i),nage)+ &
xmass1(i,ks)/rhoi*weight*w
end do
endif
endif
if ((ixp.ge.0).and.(ixp.le.numxgridn-1)) then
if ((jyp.ge.0).and.(jyp.le.numygridn-1)) then
w=(1.-wx)*(1.-wy)
do ks=1,nspec
griduncn(ixp,jyp,kz,ks,nrelpointer,nclass(i),nage)= &
griduncn(ixp,jyp,kz,ks,nrelpointer,nclass(i),nage)+ &
xmass1(i,ks)/rhoi*weight*w
end do
endif
if ((jy.ge.0).and.(jy.le.numygridn-1)) then
w=(1.-wx)*wy
do ks=1,nspec
griduncn(ixp,jy,kz,ks,nrelpointer,nclass(i),nage)= &
griduncn(ixp,jy,kz,ks,nrelpointer,nclass(i),nage)+ &
xmass1(i,ks)/rhoi*weight*w
end do
endif
endif
endif
endif
endif
20 continue
end do
!***********************************************************************
! 2. Evaluate concentrations at receptor points, using the kernel method
!***********************************************************************
do n=1,numreceptor
! Reset concentrations
!*********************
do ks=1,nspec
c(ks)=0.
end do
! Estimate concentration at receptor
!***********************************
do i=1,numpart
if (itra1(i).ne.itime) goto 40
itage=abs(itra1(i)-itramem(i))
hz=min(50.+0.3*sqrt(real(itage)),hzmax)
zd=ztra1(i)/hz
if (zd.gt.1.) goto 40 ! save computing time, leave loop
hx=min((0.29+2.222e-3*sqrt(real(itage)))*dx+ &
real(itage)*1.2e-5,hxmax) ! 80 km/day
xd=(xtra1(i)-xreceptor(n))/hx
if (xd*xd.gt.1.) goto 40 ! save computing time, leave loop
hy=min((0.18+1.389e-3*sqrt(real(itage)))*dy+ &
real(itage)*7.5e-6,hymax) ! 80 km/day
yd=(ytra1(i)-yreceptor(n))/hy
if (yd*yd.gt.1.) goto 40 ! save computing time, leave loop
h=hx*hy*hz
r2=xd*xd+yd*yd+zd*zd
if (r2.lt.1.) then
xkern=factor*(1.-r2)
do ks=1,nspec
c(ks)=c(ks)+xmass1(i,ks)*xkern/h
end do
endif
40 continue
end do
do ks=1,nspec
creceptor(n,ks)=creceptor(n,ks)+2.*weight*c(ks)/receptorarea(n)
end do
end do
end subroutine conccalc
|