1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
|
!**********************************************************************
! Copyright 1998,1999,2000,2001,2002,2005,2007,2008,2009,2010 *
! Andreas Stohl, Petra Seibert, A. Frank, Gerhard Wotawa, *
! Caroline Forster, Sabine Eckhardt, John Burkhart, Harald Sodemann *
! *
! This file is part of FLEXPART. *
! *
! FLEXPART is free software: you can redistribute it and/or modify *
! it under the terms of the GNU General Public License as published by*
! the Free Software Foundation, either version 3 of the License, or *
! (at your option) any later version. *
! *
! FLEXPART is distributed in the hope that it will be useful, *
! but WITHOUT ANY WARRANTY; without even the implied warranty of *
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
! GNU General Public License for more details. *
! *
! You should have received a copy of the GNU General Public License *
! along with FLEXPART. If not, see <http://www.gnu.org/licenses/>. *
!**********************************************************************
subroutine init_domainfill
!
!*****************************************************************************
! *
! Initializes particles equally distributed over the first release location *
! specified in file RELEASES. This box is assumed to be the domain for doing *
! domain-filling trajectory calculations. *
! All particles carry the same amount of mass which alltogether comprises the*
! mass of air within the box. *
! *
! Author: A. Stohl *
! *
! 15 October 2002 *
! *
!*****************************************************************************
! *
! Variables: *
! *
! numparticlecount consecutively counts the number of particles released *
! nx_we(2) grid indices for western and eastern boundary of domain- *
! filling trajectory calculations *
! ny_sn(2) grid indices for southern and northern boundary of domain- *
! filling trajectory calculations *
! *
!*****************************************************************************
use point_mod
use par_mod
use com_mod
implicit none
integer :: j,ix,jy,kz,ncolumn,numparttot
real :: gridarea(0:nymax-1),pp(nzmax),ylat,ylatp,ylatm,hzone,ran1
real :: cosfactm,cosfactp,deltacol,dz1,dz2,dz,pnew,fractus
real,parameter :: pih=pi/180.
real :: colmass(0:nxmax-1,0:nymax-1),colmasstotal,zposition
integer :: ixm,ixp,jym,jyp,indzm,indzp,in,indzh,i,jj
real :: pvpart,ddx,ddy,rddx,rddy,p1,p2,p3,p4,y1(2)
integer :: idummy = -11
! Determine the release region (only full grid cells), over which particles
! shall be initialized
! Use 2 fields for west/east and south/north boundary
!**************************************************************************
nx_we(1)=max(int(xpoint1(1)),0)
nx_we(2)=min((int(xpoint2(1))+1),nxmin1)
ny_sn(1)=max(int(ypoint1(1)),0)
ny_sn(2)=min((int(ypoint2(1))+1),nymin1)
! For global simulations (both global wind data and global domain-filling),
! set a switch, such that no boundary conditions are used
!**************************************************************************
if (xglobal.and.sglobal.and.nglobal) then
if ((nx_we(1).eq.0).and.(nx_we(2).eq.nxmin1).and. &
(ny_sn(1).eq.0).and.(ny_sn(2).eq.nymin1)) then
gdomainfill=.true.
else
gdomainfill=.false.
endif
endif
! Do not release particles twice (i.e., not at both in the leftmost and rightmost
! grid cell) for a global domain
!*****************************************************************************
if (xglobal) nx_we(2)=min(nx_we(2),nx-2)
! Calculate area of grid cell with formula M=2*pi*R*h*dx/360,
! see Netz, Formeln der Mathematik, 5. Auflage (1983), p.90
!************************************************************
do jy=ny_sn(1),ny_sn(2) ! loop about latitudes
ylat=ylat0+real(jy)*dy
ylatp=ylat+0.5*dy
ylatm=ylat-0.5*dy
if ((ylatm.lt.0).and.(ylatp.gt.0.)) then
hzone=1./dyconst
else
cosfactp=cos(ylatp*pih)*r_earth
cosfactm=cos(ylatm*pih)*r_earth
if (cosfactp.lt.cosfactm) then
hzone=sqrt(r_earth**2-cosfactp**2)- &
sqrt(r_earth**2-cosfactm**2)
else
hzone=sqrt(r_earth**2-cosfactm**2)- &
sqrt(r_earth**2-cosfactp**2)
endif
endif
gridarea(jy)=2.*pi*r_earth*hzone*dx/360.
end do
! Do the same for the south pole
if (sglobal) then
ylat=ylat0
ylatp=ylat+0.5*dy
ylatm=ylat
cosfactm=0.
cosfactp=cos(ylatp*pih)*r_earth
hzone=sqrt(r_earth**2-cosfactm**2)- &
sqrt(r_earth**2-cosfactp**2)
gridarea(0)=2.*pi*r_earth*hzone*dx/360.
endif
! Do the same for the north pole
if (nglobal) then
ylat=ylat0+real(nymin1)*dy
ylatp=ylat
ylatm=ylat-0.5*dy
cosfactp=0.
cosfactm=cos(ylatm*pih)*r_earth
hzone=sqrt(r_earth**2-cosfactp**2)- &
sqrt(r_earth**2-cosfactm**2)
gridarea(nymin1)=2.*pi*r_earth*hzone*dx/360.
endif
! Calculate total mass of each grid column and of the whole atmosphere
!*********************************************************************
colmasstotal=0.
do jy=ny_sn(1),ny_sn(2) ! loop about latitudes
do ix=nx_we(1),nx_we(2) ! loop about longitudes
pp(1)=rho(ix,jy,1,1)*r_air*tt(ix,jy,1,1)
pp(nz)=rho(ix,jy,nz,1)*r_air*tt(ix,jy,nz,1)
colmass(ix,jy)=(pp(1)-pp(nz))/ga*gridarea(jy)
colmasstotal=colmasstotal+colmass(ix,jy)
end do
end do
write(*,*) 'Atm. mass: ',colmasstotal
if (ipin.eq.0) numpart=0
! Determine the particle positions
!*********************************
numparttot=0
numcolumn=0
do jy=ny_sn(1),ny_sn(2) ! loop about latitudes
ylat=ylat0+real(jy)*dy
do ix=nx_we(1),nx_we(2) ! loop about longitudes
ncolumn=nint(0.999*real(npart(1))*colmass(ix,jy)/ &
colmasstotal)
if (ncolumn.eq.0) goto 30
if (ncolumn.gt.numcolumn) numcolumn=ncolumn
! Calculate pressure at the altitudes of model surfaces, using the air density
! information, which is stored as a 3-d field
!*****************************************************************************
do kz=1,nz
pp(kz)=rho(ix,jy,kz,1)*r_air*tt(ix,jy,kz,1)
end do
deltacol=(pp(1)-pp(nz))/real(ncolumn)
pnew=pp(1)+deltacol/2.
jj=0
do j=1,ncolumn
jj=jj+1
! For columns with many particles (i.e. around the equator), distribute
! the particles equally, for columns with few particles (i.e. around the
! poles), distribute the particles randomly
!***********************************************************************
if (ncolumn.gt.20) then
pnew=pnew-deltacol
else
pnew=pp(1)-ran1(idummy)*(pp(1)-pp(nz))
endif
do kz=1,nz-1
if ((pp(kz).ge.pnew).and.(pp(kz+1).lt.pnew)) then
dz1=pp(kz)-pnew
dz2=pnew-pp(kz+1)
dz=1./(dz1+dz2)
! Assign particle position
!*************************
! Do the following steps only if particles are not read in from previous model run
!*****************************************************************************
if (ipin.eq.0) then
xtra1(numpart+jj)=real(ix)-0.5+ran1(idummy)
if (ix.eq.0) xtra1(numpart+jj)=ran1(idummy)
if (ix.eq.nxmin1) xtra1(numpart+jj)= &
real(nxmin1)-ran1(idummy)
ytra1(numpart+jj)=real(jy)-0.5+ran1(idummy)
ztra1(numpart+jj)=(height(kz)*dz2+height(kz+1)*dz1)*dz
if (ztra1(numpart+jj).gt.height(nz)-0.5) &
ztra1(numpart+jj)=height(nz)-0.5
! Interpolate PV to the particle position
!****************************************
ixm=int(xtra1(numpart+jj))
jym=int(ytra1(numpart+jj))
ixp=ixm+1
jyp=jym+1
ddx=xtra1(numpart+jj)-real(ixm)
ddy=ytra1(numpart+jj)-real(jym)
rddx=1.-ddx
rddy=1.-ddy
p1=rddx*rddy
p2=ddx*rddy
p3=rddx*ddy
p4=ddx*ddy
do i=2,nz
if (height(i).gt.ztra1(numpart+jj)) then
indzm=i-1
indzp=i
goto 6
endif
end do
6 continue
dz1=ztra1(numpart+jj)-height(indzm)
dz2=height(indzp)-ztra1(numpart+jj)
dz=1./(dz1+dz2)
do in=1,2
indzh=indzm+in-1
y1(in)=p1*pv(ixm,jym,indzh,1) &
+p2*pv(ixp,jym,indzh,1) &
+p3*pv(ixm,jyp,indzh,1) &
+p4*pv(ixp,jyp,indzh,1)
end do
pvpart=(dz2*y1(1)+dz1*y1(2))*dz
if (ylat.lt.0.) pvpart=-1.*pvpart
! For domain-filling option 2 (stratospheric O3), do the rest only in the stratosphere
!*****************************************************************************
if (((ztra1(numpart+jj).gt.3000.).and. &
(pvpart.gt.pvcrit)).or.(mdomainfill.eq.1)) then
! Assign certain properties to the particle
!******************************************
nclass(numpart+jj)=min(int(ran1(idummy)* &
real(nclassunc))+1,nclassunc)
numparticlecount=numparticlecount+1
npoint(numpart+jj)=numparticlecount
idt(numpart+jj)=mintime
itra1(numpart+jj)=0
itramem(numpart+jj)=0
itrasplit(numpart+jj)=itra1(numpart+jj)+ldirect* &
itsplit
xmass1(numpart+jj,1)=colmass(ix,jy)/real(ncolumn)
if (mdomainfill.eq.2) xmass1(numpart+jj,1)= &
xmass1(numpart+jj,1)*pvpart*48./29.*ozonescale/10.**9
else
jj=jj-1
endif
endif
endif
end do
end do
numparttot=numparttot+ncolumn
if (ipin.eq.0) numpart=numpart+jj
30 continue
end do
end do
! Check whether numpart is really smaller than maxpart
!*****************************************************
if (numpart.gt.maxpart) then
write(*,*) 'numpart too large: change source in init_atm_mass.f'
write(*,*) 'numpart: ',numpart,' maxpart: ',maxpart
endif
xmassperparticle=colmasstotal/real(numparttot)
! Make sure that all particles are within domain
!***********************************************
do j=1,numpart
if ((xtra1(j).lt.0.).or.(xtra1(j).ge.real(nxmin1)).or. &
(ytra1(j).lt.0.).or.(ytra1(j).ge.real(nymin1))) then
itra1(j)=-999999999
endif
end do
! For boundary conditions, we need fewer particle release heights per column,
! because otherwise it takes too long until enough mass has accumulated to
! release a particle at the boundary (would take dx/u seconds), leading to
! relatively large position errors of the order of one grid distance.
! It's better to release fewer particles per column, but to do so more often.
! Thus, use on the order of nz starting heights per column.
! We thus repeat the above to determine fewer starting heights, that are
! used furtheron in subroutine boundcond_domainfill.f.
!****************************************************************************
fractus=real(numcolumn)/real(nz)
write(*,*) 'Total number of particles at model start: ',numpart
write(*,*) 'Maximum number of particles per column: ',numcolumn
write(*,*) 'If ',fractus,' <1, better use more particles'
fractus=sqrt(max(fractus,1.))/2.
do jy=ny_sn(1),ny_sn(2) ! loop about latitudes
do ix=nx_we(1),nx_we(2) ! loop about longitudes
ncolumn=nint(0.999/fractus*real(npart(1))*colmass(ix,jy) &
/colmasstotal)
if (ncolumn.gt.maxcolumn) stop 'maxcolumn too small'
if (ncolumn.eq.0) goto 80
! Memorize how many particles per column shall be used for all boundaries
! This is further used in subroutine boundcond_domainfill.f
! Use 2 fields for west/east and south/north boundary
!************************************************************************
if (ix.eq.nx_we(1)) numcolumn_we(1,jy)=ncolumn
if (ix.eq.nx_we(2)) numcolumn_we(2,jy)=ncolumn
if (jy.eq.ny_sn(1)) numcolumn_sn(1,ix)=ncolumn
if (jy.eq.ny_sn(2)) numcolumn_sn(2,ix)=ncolumn
! Calculate pressure at the altitudes of model surfaces, using the air density
! information, which is stored as a 3-d field
!*****************************************************************************
do kz=1,nz
pp(kz)=rho(ix,jy,kz,1)*r_air*tt(ix,jy,kz,1)
end do
! Determine the reference starting altitudes
!*******************************************
deltacol=(pp(1)-pp(nz))/real(ncolumn)
pnew=pp(1)+deltacol/2.
do j=1,ncolumn
pnew=pnew-deltacol
do kz=1,nz-1
if ((pp(kz).ge.pnew).and.(pp(kz+1).lt.pnew)) then
dz1=pp(kz)-pnew
dz2=pnew-pp(kz+1)
dz=1./(dz1+dz2)
zposition=(height(kz)*dz2+height(kz+1)*dz1)*dz
if (zposition.gt.height(nz)-0.5) zposition=height(nz)-0.5
! Memorize vertical positions where particles are introduced
! This is further used in subroutine boundcond_domainfill.f
!***********************************************************
if (ix.eq.nx_we(1)) zcolumn_we(1,jy,j)=zposition
if (ix.eq.nx_we(2)) zcolumn_we(2,jy,j)=zposition
if (jy.eq.ny_sn(1)) zcolumn_sn(1,ix,j)=zposition
if (jy.eq.ny_sn(2)) zcolumn_sn(2,ix,j)=zposition
! Initialize mass that has accumulated at boundary to zero
!*********************************************************
acc_mass_we(1,jy,j)=0.
acc_mass_we(2,jy,j)=0.
acc_mass_sn(1,jy,j)=0.
acc_mass_sn(2,jy,j)=0.
endif
end do
end do
80 continue
end do
end do
! If particles shall be read in to continue an existing run,
! then the accumulated masses at the domain boundaries must be read in, too.
! This overrides any previous calculations.
!***************************************************************************
if (ipin.eq.1) then
open(unitboundcond,file=path(2)(1:length(2))//'boundcond.bin', &
form='unformatted')
read(unitboundcond) numcolumn_we,numcolumn_sn, &
zcolumn_we,zcolumn_sn,acc_mass_we,acc_mass_sn
close(unitboundcond)
endif
end subroutine init_domainfill
|